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VII. On Stwesses in Ram'fieol Gases alleging from Inequalities 0f Temperatme.

By J. CLERK MAXWELL F.13.8. ,P’rofessor of Experimental Physzcs in the

Umversity of Cambridge.
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1. IN this paper I have followed the method given in my paper “ On the Dynamical

Theory of Gases” (Phil. Trans, 1867, p. 49). I have shown that when inequalities of
temperature exist in a gas, the pressure at a given point is not the same in all

directions, and that the difference between the maximum and the minimum pressure

at a point may be of considerable magnitude when the density of the gas is small

enough, and when the inequalities of temperature are produced by smalla'r solid bodies

at a higher or lower temperature than the vessel containing the gas.
2. The nature of this stress may be thus defined:—-Let the distance from a given

point, measured in a given direction, be denoted by h ; then the space-variation 0f the

temperature for a point moving along this line will be denoted by 55%, and the space—r

 

variation of this quantity along the same line by dhg'

. . ~ . . . . , d26. ‘
There W111, 111 general, be a particular direction of the line It for which W is a

maximum, another for which it is a minimum, and a third for which it is a maximum-

gminimum. These three directions are at right angles to each other, and are the

* The dimensions of the bodies must be of the same order of magnitude as a certain length N, which

may be defined as the distance travelled by a molecule with its mean velocity during the time of

relaxation of the medium. ,

The time of relaxation is the time in which inequalities of stress would disappear if the rate at which

they diminish were to continue constant. Hence '

k=2(*21”)=2w(2 %7TP 20 ”PP

011 the hypothesis that the encounters between the molecules resemble those between “ rigid elastic ”

spheres, the free path of a molecule between two successive encounters has a definite meaning, and if Z is

its mean value,

Z=Q;L(2w_)%—_=38MEX=1'178X.

So that the mean path of a molecule may be taken as representing what we mean by “ small.”

If the force ”between the molecules is suppoSed to be a continuous function of the distance, the freepath

of a molecule has no longer a definite meaning, and we must fall back on the quantity k, as defined above.
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axes of principal stress at the given point; and the part of the stress arising from

inequalities of temperature is, in each of these principal axes,

3""-[L2 (Z29

p0 dhg’

Where a is the coefficient of Viscosity, p the density, and t9 the absolute temperature

3. NOW for dry air at 150 0, #:1'9 X 10‘4’1n centimetre-grarnme-seoond measure,

annid6:;0315, Where p is the pressure the unit of pressure being one dyne per

squaregoentimet1e, o1 nearly one millionth part of an at1nosphe1e.
If a sphere of 205 centimeties in diameter isT degrees oentigrade hotter than the air

at large distances from it, then, When the1e is a steady flow of heat, the temperature

at a distance of 7“ sentimeties from the centre Will be

. Ta 0326 2ch
9a— 60+ 7", and 23;"; -——W7‘3W .

Henoe, at a distance of 9" centimetres From the centre of the sphere, the pressure in

the direction of the radius arising from inequality of temperature Will he 3:063

dynes per square centimetre. -
4. In Mr. CROOKEs’ experiments the pressure, 10, was often so small that this

stress would be capable, if it existed alone, of producing rapid [notion in a radiometer.
Indeed, if we were to consider only the normal part of the stress exerted on solid

bodies immersed in the gas; most of the phenomena observed by Mr. CROOKES could

be readily explained.
5. Let us take the case of two small bodies symmetrical With respect to the axis

joining their centres of figure. If both bodies are warmer than the air at a distance

from them, then, in any section perpendicular tothe axis joining their centres, the‘

point where it cuts this line Will have the highest temperature, and there Will he a

flow of heat outwards from this axis in all directions.
9
d6'

Hence 7773 Will be positive for the aXis, and it Will he a line of maximum p1essure,

sothat the bodies Will repel each other.
If both bodies are colder than the air at a distance, everything Will be reversed;

the axis Will be a line of minimum pressure, and the bodies Will attract each other.

If one body is hotter and the othe1 Colder than the air at a distance, the effect Will

he smalle1, and it Will depend on the 1elative sizes of the bodies, and on their exact
temperatmes, Whether the action is attractive or repulsive.

6. If the bodies are two parallel disks very nea1 to each other, the central parts

Will produce very little efieot, because between the disks the temperature varies

dk"

inequality of temperature in the gas.

2 .
uniformly, and (19:0. Only near the edges Will there be any stress arising from
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7. If the bodies a1e encircled by a ring having its axis in the line joining the

bodies, then the repulsion between the two bodies, when they‘are warmer than the

air in general, may be converted into attraction by heating the ring so as to produce a

flow of heat inwards towards the axis.
8; If a body in the 101111 of a cup 01 bowl is warmer than the air, the distribution

of temperature in the surrounding gas is similar to the distribution of electric potential

near a body of the same form, which has been investigated by Sir W. THOMSON. Near

(1726.. .
the convex surface the value of W is nea1ly the same as 11' the body had been a

complete sphere, namely 2T2; where T is the excess of temperature, and 06 is the

radius of the sphere. Near the concave su1faee the variation of temperature is

exceedingly s111all.
Hence the normal p1essure will be g1eate1 011 the convex ‘su1faee than 011 the con»

cave surface, and if we were to neglect the tangential p1ess1'11es we might think this

an explanation of the motion of M1. CROOKES cups.

Since the expressions 101 the stress are linear as regards the temperatnre,eve1ything

Will be 1eve1sed when the cup is eolde1 than the su11011nding ai1.

'9. In a sphe1ical vessel, if the two polar regions a1e made hotter than the equatorial

zone, the pressure in the direction of the axis will be greater than that parallel to the

equatorial plane, and. the reverse will be the case if the polar regions a1e made colder

than the equat01ial zone.

10. All such explanations of the 0bse1ved phenomena must be subjected to ea1eful

c1itieism. They have been Obtained by eonside1ing the n01111al st1esses alone, to the

exclusion of the tangential st1esses, and it is much easie1 to ;give an elementa1y

exposition of the 1'01111e1 than of the latte1. If, howeve1, we go 011 to calculate the

f01ees acting on any portion of the gas in virtue of the st1esses 011 its s111faee,we find

that when the flow of heat1s steady, these ferees a1e in equilib1iu1n. M1. CROOKES

tells us that there1s n0 molar c1111ent 01' wind in his radiometer vessels. It is not

easy to prove this by eXperiment, but it is satisfaet01y to find that the system of

stresses here described as arising from inequalities of tempe1at111e will not, when the

flow of heat1s steady, genelate Currents.

11. Conside1, then, the ease in which the1e a1e 110 (3111rents of gas but a steady flow

of heat, the condition of which1s

6 ' ‘ (Z26 (€26 CZ°6___
(lac? ({ny ($29—

(In the absence of external forces such as gravity, and if the gas in contact With solid

bodies does not slide ove1 them, this is always a solution of the equations, and it is

the only permanent solution.) In this case the equations of motion show that every

particle of the gas is in equilib1ium under the stresses acting on it. Hence, any finite

portion of the gas is also in equilibI‘ium; also, since the stresses are linear functions of

MDCCOLXXIX. - 2 11
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the temperatu1“e,if we superpOse one system of temperatures on another, we also

supelpose the 0011esponding systems of forces.
N0w the system of tempelatures due to a solid sphe1e of uniform teinpeiatine

immersed1n the gas, cannot of itself give 1ise to any f01ee tending to move the sphe1e

in one direction rather than in another. Let the sphere be placed within the finite

portion of gas which, as we have said, is already in equilibrium. The equilibrium will

not be disturbed. We may introduce any number of spheres at different temperatures

into the portion of gas, so as to form a body of any shape, heated in any. manner, and

when the flow of heat has become steady the whole system will be in equilibrium.

12. How, then, are we to account for the Observed fact that forces act between solid

bodies immersed in rarified gases, and this, apparently, as long as inequalities of
tempe1ature ale maintained 2.

I think we must look for an explanation1n the phenomenon discoveied1n the case
of liquids by HELMHOLTZ and PIOTROWsKI,“ and £01 gases by KUNDT and WARBURGJ'

that the fluid in contact with the surface of a solid must slide over it with a finite

velocity in order to produce a finite tangential stress.

The theoretical treatment of the boundary conditions between a gas and a solid is
difficult, and it becomes more difficult if we consider that the gas Close to the surface

is probably in an unknown State of condensation. We shall therefore accept the
results obtained by KUNDT and WARBURG on their experimental evidence.

' They have found that the velocity of sliding of the gas over the surface due to a
given tangential stress varies inversely as the pressure.

The coeffiment 0f shding for air on glass was found to be G223 centnnetres, where p

is the pressure in millionths of an atmosphere. Hence at ordinary pressures G is

insensible, but in the vessels exhausted by M1". CROOKEs it may be considerable.

Hence, if close to the surface of a solid there is a tangential stress S acting on a

surface parallel to that of the body in a direction It parallel to that surface, there will

also be a sliding of the "gas in contact with the solid over its surface in the direction it

with a finite velocity 2—8;.

13. I have not attempted to enter on the calculation of the effect of this sliding

motion, but it is easy to see that if we begin with the ease in which there is no

sliding, the instantaneous effect of permission being given to the gas to slide must be
to diminish the action of all tangential stresses on the surface, without affecting the

normal stresses, and in course of time to set up currents sweeping over the surfaces
of solid bodies, thus completely destroying the simplicity of 0111‘ first solution of the
problem. .

14. When external forces,- sueh as gravity, act on the gas, and when the thermal

phenomena produce differences of density in different parts of the vessel, then the well—

11 Wiener Sitzb., X1., 1860, p. 607. + Pom. Ann, 0117., 1875, p. 337.
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known convection currents areset up. These also interfere With the simplicity of the

problem and introduce very complicated effects. All that we knowis that the rarer
the gas and the smaller the Vessel the less is the effect of the convection currents, so

that in M1. CROOKEs’ experiments they play a very small part.

We now proceed to the calculations :—

(1.) Encounter between two Molecules.

The motion of the two molecules after an encounter depends on their motionhefore
the encounter, and is capable of being determined by purely dynamical methods. If

the encounter of the molecules does not cause rotation 01" Vibration in the individual
molecules, then the kinetic energy of the centres of mass of the two molecules must

be the same after the encounter as it was before.
This Will be true on the average, even if the molecules are complex systems Capable

of rotation and internal vibration, provided the temperature is eonstaiit. If, however,

the temperature is rising, the internal energy of the molecules is, 011 the Whole,

increasing, and therefore the ehergy of translation of their centres of mass must he,

on an average,dimi11ishi11g at eVery encounter. The reverse will be the case if the

temperatule1s failing. ’
But however important this consideration may be in the theory of specific heat and

that of the conduction of heat, it has Only a secondary bearing on the question of the

stresses in the medium; and as it would introduce great complexity and much guess-
work into our calculations, I shall suppose that the gas here considered is one the

molecules of which do not take up any sensible amount of energy in the form of
internal motion. KUNDT and WARBURG 'x‘ have shown that this is the case With

mercury gas. ~

Let the masses of the molecules be M1 and M2, and their velocity-components

51, 171, C1, and 52, 192, C2 respectively. Let V be the velocity of M11e1ative t0 M11.

Before the encounte1 let a straight line be drawn through M1 pa1a11e1 to V, and let

a perpendicular b be (hawn. from M2 to this line. The magnitude and direction of

b and V Will be constant as long as the motion is undisturbed.
During the encounter the two molecules act on each other. If the force acts in the

line joining their centres of mass, the product 19V Will remain ieenstant, and if the

force is a function of the distance, V and therefore 6 will he of the same magnitude
after the encounter as before it, but their directions will be turned in the plane of

V and I) through an angle 2-6,- this angle being a function of b and V, Which vanishes

for values of b greater than the limit of meleeular action. Let the plane through V
and 19 make an angle (1’) with the plane through V parallel to .513, then all values of g6

are equally probable.
1f §1' be the value of £1 after the encounter,

*6 POGG. 1551111., clvii., 1876, p. 353.

2 11 2
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filzfi‘l' (ifszifl sing 6+[(772—771)2+(§2—-'§1)Ql%Sin 26 COS Sb) .- ~ (1)M1+M2 §

When the two molecules are of the same kind, M2 :1? and in the present,M1+M2 .
investigation of a single gas we shall assume this to be the case.

If We use the symbol 8 to indicate the increment of any quantity due to an

encounter,” and if we remember that all values of (t are equally probable, so that the

average value of cos qS and of cos3 qS is zero, and that of cos'g qS is %~, we find

5(»gl+gg):o..............»...(2)

agagg):“[3(§2—51)2—V2]sing(900520. . . . . . . . (3)

sews):mamatscmavmwisingBoos69 . 9 . - (4)
From these by transformation of coordinates we find

B(Elm+§mz)=—3(§2—§1)(772-"m)$112900?” - ~' . ~ - (5)

5(511912-1-527722): ~%[9(51n12+§2n22) —- 3(fin22+52n12) _- *
-(§1+§2)(6771772+V2)]sin9ficosgfi. . . . . . . . (6)

3(Emlél+fgn2€g)=-%[9(€1m§1+52772§2)--S(fmlé’g—I-€1772€1+fmg€2+§gm§1

+§2m€2+§2v72€fll 81112900329 - - - - — ~ (7)

[Application of Spherical Harmonics t0 the Theory of Gases.

If we suppose the direction of the velocity of M1 relative to M2 to be indicated by
the position of a point P on a sphere, which we may call the sphere of, reference, then.

the direction of the relative velocity after the encounter will be indicated by a point
P', the angular distance PP’ being 26, so that the point P’ lies in a small circle, every

position in which is equally probable.‘
We have to calculate the effect of an encounter upon certain functions of the six

velocity-ccmpcnents 0f the two molecules. These siX quantities may he expressed in

terms of the three velocity-compcnents 0f the centre of mass of the two molecules (say

u, v, w), the relative velocity of M1 with I'eSpect to M2 which we call V, and the two

angular coordinates which indicate the direction. of V. During the encounter, the

quantities to, v, w, and V remain the same, but the angular coordinates are altered

from those of P to those of P' on the sphere of reference.
Whatever he the form of the function of 51, 771, :1, 52, 772, :2, we may consider it

expressed in the form of a series of spherical harmonics of the angular coordinates,
their coefficients being functions of u, 7), to, V, and we have only to determine the effect

of the encounter upon the value of the spherical harmonics, for their coefficients are
not changed.
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Let Y9”) be the value at. P of the surface harmonic of order n in the series con-
sidered.

After the encounter, the corresponding term becomes what Y‘”) becomes at the point

P’ and since all positions of P’ in a circle whose centre is P are equally probable, the

mean value of the function after the encounter must depend on the mean value of the
spherical harmonic1n this circle.

Now the mean value of a sphe1ical harmonic of order 71 in a circle. the cosine of Whose

1adi11s1s 11, is equal to the value of the harmonic at the pole of the circle multiplied by
13"“)(11), the zonal harmonic of order 71, and amplitude ,u.

1 Hence, after the encounter, Y9") becomes Y(°")P(’“)(p), and if F” is the corresponding

part of the function to be considered, and 3F}, the increment of F%arising from the

encounter, BFflz: F%(P(“)(1L)—— 1).

This is the mean increment cf F” arising from an encounter in which cos 26:11.

The rate of increment is to be found from this by multiplying it by the number of

encounters of eaCh molecule per second in which 11 lies between a and fL—l—Olp, and
integrating for all values of' ,u from -—1 to +1.

This operation requires, in general, a knowledge‘of the law of force between the
molecules, and also a knowledge of the disti‘ibution of veIOcity among the molecules.

When, as in the present investigation, we suppose both the molecules to be of the

same kind, and take both molecules into account in the final summation, the spherical

harmonics of odd orders will disappear, so that if we restrict our calculations to

functions of not more than three dimensions, the effect of the encounters will depend

on harmonics of the second order only, in which case P(2)(;1)-- 1 :ggfi— 1)::--.__gl sin9 26,
—--~~Note added May, 1879.]

(2.) Nu/mbca" of Encounters in unit Qf T751116.

We now abandon the dynamical method and adopt the statistical method. Instead

of tracing the path of' a single molecule and determining the effects of each encounter
on its velocity—components and their combinations, we fix our attention on a particular

element of volume and trace the changes in the average values of such combinations
of components for all the molecules which at a given instant happen to be within it.
The problem which now presents itself may be stated thus: to determine the dis—
tribution of velocities among the molecules of any element of the 1nedi11n1,tl1e current—
velocity and the temperature of the medium being given in te1rns of the coordinates
and the time. The only case in which this problem has been actually solved1s that
in which the medium has attained to its ultimate state, in which the temperature1s
unifonn and there are no currents.

Denoting by

dN=fi(E, .17, C, (1:, y, z, t)dfd7;d§dmdydz
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the number of molecules of the kind M1 Which at a given instant are Within the

element of volume dxdyclz, and whose velocity-components lie between the limits

fildf, 7711:1037? {jfid; BOLTZMANN has shown that the function fl must satisfy the

equation

djfll df1+mdf1+€1df1+Xdf1+Yd_-]:1+Zd1E+EW Xdlg d?

+”1:52d772d5215d51d¢V(fif2—f172’)2:O .. . . . . (8)

+

Wherefg,f1’,j; denote Whatf becomes When in place of the velocity-components of M1

before the encounter we put those of Mg before the encounter, and those of ’M1 and

M2 after the encounter, respectively, and the integration is extended to all values of (f)

and b and 0f 52, 172, :2, the velocity—Components 0f the second molecule M2.
It is impossible, in. general, to perform this integration without a knowledge, not

only of the law of force between the molecules, but of the form of the functions f1, f2,

fi’,f2’, Which have‘themselves to be found by means of the equation.

It is only for particular cases, therefore, that the equation has hitherto been solved.
If the medium is surrounded by a surface through which no communication of

energy can take place, then one solution of the equation is given by the conditions

fife “£172,2 0,
and

d d l d d§§+n18+?”§+Yf+zf,
Which give

fl=A16"’L(2"’1+5’+7’2+§2). . . . . . . . . . (9)

Where 111 is the potential of the force Whose components are X1, Y1, Z1, and A1 is a
constant Which may be different for each kind of molecules in the medium, but k is

the samefor all kinds of molecules.
This is the complete solution of this problem, and is independent of any hypothesis

as to the manner in Which the molecules act on each other during an encounter. The

quantity h Which occurs in this expression may be determined by finding the mean

value of 53, whichIS NOW in the kinetic theory of gases,

[050210211106 . . . . . . . . . . (10)

210'

Where p is the pressure, p the density, (9 the absolute temperature, and. R a constant

for a given gas. Hence ‘
1

We shall suppose, however, With BOLTZMANN, that in a medium in Which there are

inequalities of temperature and of velocity
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dN=N<1+F<am§>mamadwnd: . . . . . . (12)
where F is a rational function of E, 77, C, which we shall suppose not to contain terms

of more than three dimensions, andfO is the same function as in equation (9).

Now consider two groups of molecules, each defined by the velocity-ccmpcnents,
and let the two groups be distinguished by the suffixes (1)and (2). We have to

estimate the number of encounters of a given kind between these two groups in a

unit of volume in the time 86, those encounters only being considered for which. the

limits of b and g!) are bi—édb and gbi—édgb. _ i
Let'us first suppose that both groups consist of mere geometrical points which do

not interfere with each other’s motion. The group le is moving through the group

ng with the relative velocity V, and we have to find how many molecules of the

first group approach a molecule of the second group in a manner which would, if the

molecules acted on eachother, produce an encounter of the given kind. This will be

the case for every molecule of the first group which passes through the area bdbdcfi in

the time 81?. The number of such molecules is leVbdbd¢8t for every molecule of

the second group, so that the whole number of pairs which pass each other within the
given limits is ,

VbdbquledN28t, .

and if we take the time 8t small enough, this will he the number of encounters of the

real mclectiles in the time 815.

(3.) Efiect 0f the Encounters.

We have next to estimate the effect of these encounters 0n the average values of

different functions of the velocity—ccmpcnents. The effect of an individual encounter

on these functions for the pair of molecules concerned is given in equations (3), (4), (5),
(6), (7), each of which is of the form

8P=Qsi1129ccs26 . . . . . . . . . (13)

where P and Q are functions of the velocity—ccmponents cf the two molecules, and if

we write F for the average value of P for the N mclecules in unit of volume, then
taking the sum of the effects of the encounters—-—~

28P=N8?...........(14)
Wethusfind '

§§=NlllllllleirMcos2 evwwsbfifidfldmdildfzdvzd42~ - - (15)
Now, since 6 is a function of b and V, the definite integral

V(2”(°°b sin2 0 0082 Hdbdgsz . . . . .A . . (16)
0 0 .

will be a, function of V only.
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If the molecules are “rigid—elastie ” spheres of diameter 3,

B=%7782V . t. . . . . . . . . . (17)

If they repel each other with a force inversely as the fifth poweref the distance, so

that at a distance r the force is K7”_5, then

B26312. . . . . . . . . . .\(18)

where A, is the numerical quantity 1 '3682. In this case B is independent of V.
The experiments of O. E. MEYER,* KUNDT and 'VVARBURGJ PULUJ,1 Von “OBER-

MAYERS EIEHARD WIEDEMANN,” and HOLMANfii show that the Viscosity of airvaries

according to a lower power of the absolute temperature than the first, probably the

0'77 power. If the Viscosity had varied as the first power of the absolute temperature,

B would have been independent of V. Though this is not the case, we shall assume,

for the sake of being able to effect the integrations, that B is independent of V.

We shall find it convenient to write for B,

29
zg—lq-IIHH.......(19)

where p is the hydrostatic pressure, N the number of molecules in unit of volume,

and ,u a new coefficient which we shall afterwards find to be the coefficient of Viscosity.
Equation (15) may now be written

813—11

33—3,, 111111 Qfijzdadmdtdadmdg, . . . . . . (20)

where the integrations are all between the limits — co and + 00 , and fl and f2 are of

the form _ -

f:(1+F(f,77,€)) gW—ge—.},(52+nfl+§2) . . . . . r . (21)

F (f, 7;, C) being small compared with unity.
We may write F in the form

F= (270%?+377+79+ 2h<ta952+t32n2+tyzég+fiyn§+w€§+«3%)
+ (2h)t(%a3§3+%fi3n3+ tygé?’ +t—a98f2n +ta9y€2€+tfizyn9€
+%Bzan2§+%y2aégf+%ygflzzn+a,8'y§37§) . . . . . . a . . (22)

where each combination of the symbols aBy is to be taken as a single independent

symbol, and not as a product of the component symbols.

t“ Poss. Ann, 1873, Bd. 148, p. 222.
T POGG. Ann, 1876, Ed. 159, p. 4:03.

1‘ Wiener Sitz., 1874: and 1876.

§ Wiener Sitz., 1875.,

H Arch. des Sci. Phys. et Nat, 1876, t. 56, p. 273.
$1 American Academy of Arts and Sciences, June 14:, 1876. Phil. Maw s. 5, vol. 3, N0. 16, Feb, 1877.D"



GASES ARISING FROM INEQUALITIES OF TEMPERATURE. 2'41

(4.) Mean Values of Combinations of E, 7;, 2;

To find the mean value of any function of E, n, {for all the molecules in the element,

we must multiply this function by]; and integrate with respect to f, 7;, and Z.

If the non-exponential factor of any term contains an odd power'of any of the vari-

ables, the corresponding part of the integral Will vanish, but if it contains only even
powers, each even power, such as 2n, will introduce a factor

R"6"’(2n—1)(2fn—3) . . 3'1

into the corresponding part of the integral.
‘ First, let the function be 1, then

=1Mfdédndé . . . . . . . . . (23)
or a

1: +2<a2+22+y2) *. . . . . . . . . (24)
which gives the condition

022+,32+y2=0 . . . . . . . . . . (25)

Let us next find the mean value of f in the same way, denoting the result by the

symbol 5,.

?=(R6)%[a+%§(a3+al82+ay2)]. . . . . . . . (26)

' Since in what follows we shall denote the veloeity-eomponents of each molecule by

n+5, 0+7}, w+§, where u, v, w are the velocity-eomponents 0f the centre of mass of

all the molecules within the element, it follows that the mean values of f, 77, 2; are each

of them zero. We thus obtain the equations

oc—I—12(a3+a,82-|—wy2)= O

[8-1-12002fi+33+3y)=0 . . . . . . . . (27)

7+1};(22Hy+Bzy+fl= 0 ‘

Remembering these conditions, we find that the meanvalues of combinations of two,

three, and four dimensions are of the forms

"5:2 =R€<1+a2fl
En =R0228

23 2:2(Rt9)%a3

gamma ‘. . . . . . . . . . . (29)
5274: = (Refiafiy

MDCOCLXXIX. V 2 I
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E1 =3R962(1+2a2) W
{537; =3R2c92al8

W=R262<1+a2+32>
I} (30)

35732:: Rgfizfiy J

(5.) Rates of Decay of these Mean Values.

if any term of Q in equation (20) contains symbols belonging to one group alone

of the molecules, the corresponding term of the integral may he found from the above

table, but if it contains symbols belonging to both groups we must consider the

sextuple integral (20). But we shall not find it necessary to do this for terms of

not more than three dimensions, for in these, if both groups of symbols occur, the index

of' one of them must be odd, and the integral vanishes.

We thus find from equations (8), (4), (5),5(6), and ('7)

8 2) '
“0693 :—__a2 a o o o o o o o o o o o o 31

@043 -— — 73w ‘ <32)8t — l1, ‘0 O . O . D U 0 O O 0 O 0

?_ds =l£(_2aa+a32+a 2) (33)8t 2” y I O O O C C C 0

£0989 :::~1— £2(0!.3—«80LIQQ—1—0L 2) h (34)5t 6 [1’ y o l 0’ 0 D O D O

8 3 p ' ,
szaBy: “é palgy . . b o n o . a I D I o (35)

[Any rational homogeneous function of f 77 Z is either a solid harmonic, or a solid

harmonic multiplied by a positive integral power of (52+n2+§9), or may be expressed

as the sum of a number of terms of these forms, ,3,»
If we express any one of these terms as a function of u, v, w, V and the angular

coordinates of V, we can determine the rate of change of each of the spherical ‘ha1"~

monies of the angular coordinates. ‘
If we then transform the expression back to its original form as a function of

$1, 771, :1, €53, 772, Q, and if we add the corresponding functions for both molecules, we

shall obtain an expression for the rate of change of the original function.
Thus among the terms of two dimensions we have the five conjugate solid harmonies
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gee~e—ex
517, 65,
172* :2}, ng

The rate of increase of each of theee arising from the encounters of the molecules is

found by multiplying it by ~25. We may therefore call if the “ modulus of the time

of relaxation ” of this class 0f functions.

The function EZ+172+§2 is not changed by the encounters.

Homogeneous functions of th1ee dimensions are either solid harmonics of the third

order or solid harmonics of the fi1st order multiplied by §2+n2+ :9, or combinations

of these.

The time modulus for solid harmonics of the third order is EgmNote added May,

1879]
‘ .

That of g, 17, 01' C, m111t1plied by §3+172+ :531s 93;

(6.) Efect of External Forces.

_ The onlyefi’ect of external forces is expressed by equations of the form

Em ,

The average values of f 77, C ahd thei1 cembmations am not affected by external

£01cee

(7.) Variation of Mean Values within cm Element of Volume.

We have employed the symbol 8 to denote the variation of any quantity Within an

element, arising either from encounters between meleculee 01‘ from the action of

external forces. ‘

There is a third. way, however, in Which a variation may occur, namely, by molecules

entering the element 01‘ leaving it, carryng their properties With them. 1

We shall use the symbol 6 to denote the actual variation within a specified element.

If MQ is the avelage value of any quantity for each molecule Within the element,

then the quantity in unit of volumeIS pQ. We have to trace the variation of pQ

We begin With an element of volumemoving With the velocity-components U, V, W »

then by the 0rd1na1-y investigatmn of the “ equation of continuity’ A

§[Qp]+%[Q(u+§--U)]+%[Q(v+n——V)]+%[Q(1u+g—W)]ZP%Q. , (37)

If after performing the difl’erentiatiohe we make Uzu, V27), W210, the equation

becomes for an element moving With the velocity (115, 1:, w)

2 I Z.
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(Qp)+pQ(§jf+dy+fi/”)+54st+1(me+j”;(PQ€)=P§;Q~ . . <88)

(8.) Equation ofDenvaty.

Let us first make » Q=1, then, since the mass of a, molecule is invariable, the

equation becomes ‘ *
hp d'le dv aha __ . .

bt+p<daz+c§éj+82§>_0 ‘ ' ' ' ' ' ‘ ' - . (39)

Which is the ordinary “ equation of continuity.”
Eliminating by means of this equation the second term of the general equation

(3 8) we Obtain the more convenient form“-

p:%+(g(pQE)+d7/(an)+d(pQC)p? - . . - . . <40)

5 (9.) Equations of Motion.

Putting Q=u+§, this equation becomes

bu cl
Pg-tgjpfizHg(Pffi)+gg(P§Q=-ZPX‘ . - - 1- - - (41)

where any combination of the symbols 5, 17, C is to be taken as the average value of

that combination.

Substituting their values as given in (28).

P::6+R“(p9)+R[;;i-w(P9“Q)+;fngB)+i(99a7)]=/JX- . . - (42)

which issue of the three ordinary equations of motion of a, medium in Which stresses
exist. '

(1 O.) Temns of Two. Dio‘nensiocns.

Put Q:(u+f)2. Since the resulting equation is true Whatever he the values (if
u, v, 20, we may, after difl‘erentiation, put each of these quantities equal to zero. We

shall thus obtain the same result Whichwe might have obtained by elimination between
this and the former equations. We find

p§£2+2p§2§§+2Mug;+2p£§§5§+§g(P53)+g‘7/(P§2nn)+§z(Pfgé)=ngfz —- (43)

or by substituting the mean values of these quantities from (29)
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($22 26316 du du
P:7+ng(6a2)+ 2p0"+2pl9<222dig+22figfy+222273;)

”22:Ipfiaz

p.

 

+R[%”“202923)+d(25"“"022+3)+2429“2fl: - (44)

With two ether equations of similar. form.

Similarly we obtain by putting Q=(u+§)(v+n)

p:7<6“’8)+p0232:)

ch duH4023:—-+aB—-+2“E337Za+223-1—:+B27Z;+B6)
cl szgz

 

+R1[*;(d(p6?0¢d2,8)+é:g(f362“182)+1:,(P9g0‘l87flz‘m 098 . . . (45)

with two other equations of like form for By and ya.

(11.) Terms of Three Dimefis'ims.

Putting Q=(u+§)3 and in the final equation making 16:2):w=0 and eliminating
bu - .
S; by (41) we find _

Z d lg p§t22+sp22gg+sp22{5+ 2222‘:
+7§00<p52+;—(pé2n)+7:(p22:)

222%<p22>++§y<p22>++3250]:p552 . . - (26)
which gives

26+M+++a+++27+ du
0L2 0‘27

Ball”4— 7d*)/

+3R2p6——-+3R2p6<ad235+0ch3+ayEZZ~Z>+3R2p6démgfl)

—3R96a2[j(p0a2)+c—§*:lQofia“22‘3”i(p6ay)]=p(R6)2~-(—— 2a2+a32+ay2) . (47)

Since the combinations of aBy represent small numerical quantities, we may at this.

stage of the calculation, When we are dealing With terms of the third order, neglect
terms involving them, except When they are multiplied by the large coefficient 10/“.
The equation. may then be written approximately :— '
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d0 fl1p _
3R2p6j33=p(R6)2-2~;(—2a3+oc,89’+ocy3) . . . . . '. (48)

Similarly, by putting Q=(u+f) (v+17)2, we obtain the approximate equation

Rp6@=p(R6)%é-§(a3 -'-—8a,82+ocy2) . . . , . , , (49)

and in the same way we find

113,009}-p(R6)1]9(84.0113240172) . . . . . . . (50)

(12.) Appvxz'mate Values of Tewms Qf Thonee Dimensions,

Frem equations (48), (49), arid (50), we find

9 R m 0 R we)3_____ L". ,_ __ 2... 2_-_°I“ .1 __
a _ 2 10(6) dx’ “’8 _a~y _ 2 29(0) dw

From which by substitution we obtain

 

 
' . 51

’83:...i3l‘fi 1L) 2d6a918__,82—~~ Z016. % ( )
2p 9 cZy’ 9’: 2p 9 dy

9 [.L R (M 3 [.L R idfl
3____ fl 2 _ 2 ._—___._._. _ w

7 _ 2 10(0):dz’ “?_B 7-— 219<6> dzJ

The value of 0987/ is of a smaller order of magnitude, and‘we do not require it in

this investigation.

(13.) Equation of Tempewatwe.

Adding the th1ee equations of the form (44), and omitting terms containing small

quantities of two dimensions, and also products of difice1ential coefficients such as

 

b F” 2 2 2 2 b

1329—“ Z6 M ~94. . . . . . . . (52)
hi 2;)de d—J—g 6Z2“

The first term of the second member represents the rate of increase of temperature

due to conduction of heat, as in FOURIER’S Theory, and the second term represents the

increase of temperature due to increase of density. We must remember that the gas

here considered is one for which the ratio of the specific heats is 1'66,
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(14.) Stwesses in the Gas.

Subtracting 011e-third 0f the sumvof the three equations from (44), we obtain

  
clu 2 5Z3) dw 2d26 d26 d26 d26

paz——2de+3fl<dw+d3/+dfi>+p6dw2+2p6<d$2+d3d3/22+dz2> ° ° (53)

This equation gives the excess of the normal pressure in 06 above the mean hydro-

static pressure p. The first two terms of the second member represent the effect of

Viscosity in a moving fluid, and are identical With those given by Professor STOKES

(Cambridge Transactions, V01. Viii., 1845, p. 297). The last two terms represent the

part of the stress Which arises from inequality of temperature, Which is the special

subject of this paper.
There are two other equations of similar form for the normal stresses in y and z. _

2 The tangential stress in the plane mg is given by the equation

* du- d3; ,5?» d26 .
Pa’B——M(d3/+dw>+3p6dwd3/ . . . . . . . . (54)

There are two other equations of similar form for the tangential stresses in the

planes of yz and 2:0.

(15.) Final Equations of Motion.

We are now prepared to complete the equations of motion by inserting in (42) the

_ values of the quantities 0:2, 098, my, and we find for the equation in m i

535 CZ39_ d 35 (Z235 (£235 1 cl du dw

Pht (la <d;2d3/2dz2>+3de<da¢+dg+dz>

 

  

 

9/1, d CZ~6 d26 (Z26

+2p6dx<d32+dj2+ d/2>=pX

If we write
' am (hi) (£26 0326 (P6 ‘

p_p+3fl<dw+d3/+dz) 29p6<dw2+cly2 +652) ' ° ' ‘ ° (5b)

__ 9 ,u 56 23 '11, hp

—p+56 52: 15 p at (57)

or, if the pressure 3') is constant, so that pb6+6bp=0

, 10 ,u 56

then the equation (55) may be written

bu (139’ (Z235 (Z 235 (1235 4
.P5+431 -M(gg;5+@g+3;5)=pX- - ~ ~ - - - (59)
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If there are 110 external forces such as gravity, then (one solution of the equations is

u=v=w=0, p’=eonstant,

and if the boundary conditions are such that this solution is consistent with them, it

will become the actual. solution as soon as the initial motions, if any exist, have

subsided. This will he the case if no slipping is possible between the gas and solid

bodies in contact with it. '
But if such slipping is possible, then wherever in the above solution there is a

tangential stress in the gas at the surface of a solid or liquid, there cannot be equi-

librium, but the gas will begin to slide over the surface till the velocity of sliding has

produced a frictional 1'esistanee equal and opposite to the tangential stress. When

this is the ease the motion may become steady. I have not, however, attempted to

enter into the calculation 0f the state of steady motion.

[I have 1eeently applied the method of spherical ha1m0nies, as desc1ibed in the

notes to sections (1) and (5 ), t0 ca1rying the app10Ximati0ns two orders higheI. I

expected that this would have involved the calculation of two new quantities, namely,

the rates of decay of spherical harmonics of the fourth and sixth orders, but I found

that, to the order of approximation required, all harmonics of the fourth and sixth

01'de1‘s may be neglected, so that the rate of decay of harmonics of the second 01"der,

the time-Inodulus of which is ”+10, determines the rate of decay of all functions of less

tha11'6 dimensions.

The equations of motion, as here given (equation 55) contain the second derivatives
of u, v, w, with respect to the coordinates, with the coefficient ,u.. I find that in

the more approximate expression there is a term containing the fourth derivatives of

u, v, w, with the coefficient 113+”).

The equations of motion also contain the third derivatives of 0 with the coefficient

,ug-Z—pfi. Besides these terms, there is another set consisting of the fifth derivatives
of6 with the coefficient p4+p2p6.

It appears from the investigation that the condition of the successful use of this

method of app10X1mat10n 1s that lg—hshould be small, where 3?; denotes differentiation

with respect to a line drawn in any direction. In other words, the properties of the

medium must not be sensibly different at points within a distance of each other, com-

parable with the “ mean free path” of a meleeule.--~Note added June, 1879.]
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APPENDIX.

(Added May, 1879.)

In the paper as sent in t0 the Royal Society, I made no attempt to express the
conditions Which must be satisfied by a gas in contact with a solid body, for I thought

it very unlikely that any equations I could write down would be a satisfactory repre—

sentation of the actual conditions, especially as it is almost certain that the stratum of

gas nearest to a solid body is in a very different condition from the rest of the gas.

One of the referees, however, pointed out that it was desirable to make the attempt,

and indicated several hypothetical forms of surfaces which might be tried. I have

therefore added the following calculations, which are carried to the same degree of

approximation as those for the interior of the gas.
It will be seen that the equations I have arrived at express both the fact that

the gas may slide over the surface with a finite velocity, the previous investigations

of which have been already Inentionedf“ and the fact that this velocity and the corres—

ponding tangential stress are affected by inequalities of temperature at the surface of

the solid, which give rise to a force tending to make the gas slide along the surface

from colder t0 hotter places. '

This phenomenon, to which Professor OSBORNE REYNOLDS has given the name of

Thermal Transpiration, was discovered entirely by him. He was the first to point out

that a phenomenon of this kind was a necessary consequence of the Kinetic Theory of

Gases, and he also subjected certain actual phenomena, of a somewhat different kind,

indeed, to measurement, and reduced his measurements by a method admirably

adapted to throw light on the relations between gases and solids.

It was not till after I had read Professor REYNOLDs’ paper that I began to recon-

sider the surface conditions of a gas, so that what I have done is simply to extend to

the surface phenomena the method which I think most suitable for treating the interior

of the gas. I think that this method. is, in some respects, better than that adopted

by Professor REYNOLDS, while I admit that his method is sufficient to establish the

existence of the phenomena, though not to afford an estimate of their amount.

The method which I have adopted throughout is a purely statistical one. It con-

siders the mean values of certain functions of the velocities within a given element of
the medium, but it never attempts to trace the motion of a molecule, not even so far

as to estimate the length of its mean. path. ' Hence all the equations are expressed in

the forms cf the differential calculus, in which the phenomena at a given place are

connected with the space variations of certain quantities at that place, but in which
no quantity appears which explicitly involves the condition of things at a finite

distance from that place.
The particular functions of the velocities which are here considered are those of one,

two, and three diniensicns. These are sufficient to determine approximately the prina
/ . 3* Sect. 12 of introduction.

MDCCCLXXIX. 2 K
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cipal phenomena in a gas which is not very highly rarified, and in Which the space?

variations Within distances comparable to A are not very great. ~ i

The same method, however, can be extended to functions of higher degrees, and by

a sufficient number of such functions any distribution of velocities, however abnormal,

may be expressed. The labour of such an approximation is considerably diminished

by the use of the method of spherical harmonics as indicated in the note to Section I.

of the paper.

071 the Conditions to be Satisfied by a Gas at the Smfaee of a Solid Body.

As a first hypothesis, let us suppose the surface of the body to be a perfectly elastio

smooth fixed surface, having the apparent shape of the solid, WithOut any minute

asperities.

In this case, every molecule Which strikes the surface Will have the normal component

of its velocity reversed, While the other components Will not be altered by impact.

The rebounding molecules Will therefore move as if they had come from an imaginary
portion of gas occupying the space really filled by the solid, and such that the motion

of every molecule close to the surface is the Optical reflection in that surface of the

motion of a molecule of the real gas.
In this case we may speak of the rebounding molecules close to the surface as con—

stituting the Irefleeted gas. All directed properties of the incident gas are reflected,

01', as Professor LISTING might say, perverted in the reflected gas ; that is to say, the
properties of the incident and the reflected gas are symmetrical With respect to the

tangent plane of the surface.
The incident and reflected gas together constitute the actual gas Close to the sur-

face. The actual gas, therefore, cannot exert any stress on the surface, except in the

direction of the normal, for the oblique components of stress in the incident and

reflected'gas Will destroy one another.

Since gases can actually exert oblique stress against real surfaces, such surfaces

cannot be representedas pe1fectly reflecting surfaces.

If a 1noleeule,'whose velocityis given in di1ection and magnitude, b11t Whose line of
motion is not given in position,st1'ikes afixed elastic sphe1e, its velocity after rebound
may With equal probability bein any direction. . .

Oonside13theref'o1e, a stratum in Which fixed elastic spheres are placed so far apa1t

from one another that any one sphereis not to any sensible extent protected by any

other sphere from the impact of molecules, and let the stratum be so deep that no

molecule can pass through it Without striking one or more of the spheres, and let this

stratum of fixed spheres be spread over the surface of the solid we have been con-
sidering, then every molecule which comes from the gas towards the ‘ surface must

strike one or more of the spheres, after Which all directions of its velocity become
equally probable.

When, at last, it leaves the stratum of spheres and 1et111ns into the gas, its Velocity
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must of course he fmm the surface, but the probability of any particular magnitude
and direction of the velocity will be the same as in a gas at rest with respect to the
sulfaee.

The distribution of velocity among the molecules which are leaving the surface will

therefore he the same as if, instead of the solid, there we1e a peltion of gas at rest,"

having the temperature of the solid, and a density such that the number of molecules

which pass from it through the su1faee in a given time is equal to the number of mole-

cules 0f the 1eal gas outside which strike the surface.

To distinguish the molecules, which, after being entangled1n the stratum of spheres,

afterwaIds 1etu1n into the surrounding gas, we shall call them, collectively, the

absorbed and evaporated gas.
If the spheres are so near together that a considerable part of the surface of each

sphere of the outer layer is shielded from the direct impact of the incident molecules

by the spheres which lie next to it, then if we call that point of each sphere which

lies furthest from the solid the pole of the sphere, a‘greater proportion of molecules

will strike any one of the outer layer of spheres near its pole than near its equator,

and the greater the obliquity of incidence of the molecule, the greater will he the

probability that it will strike a sphere near its pole.
The direction of the rebounding molecule will no longer be with equal probability in

all directions, but there will be a greater probability of the tangential part of its
velocity being in the direction of the motion before impact, and of its normal part

being opposite to the normal part before impact.
The condition of the molecules which leave the surface will therefore be intermediate

between that of evaporated gas and that of reflected gas, approaching most nearly to

evaporated gas at normal incidence and most nearly to reflected gas at grazing

incidence.

If the spheres, instead of being hard elastic bodies, are supposed to act on the mole—

cules at finite, though small distances, and if they are so close together that their

spheres of action intersect, then the gas which leaves the surface will be still more like

reflected gas, and less like evaporated. gas.
We might also consider a surface on Which there are a great number of minute

asperities of any given form, but since in this case there is considerable difficulty

in calculating the effect when the direction of rebound from the first impact is such as

to lead to a second 01“ third impact, I have preferred to treat the surface as some-
thing intermediate between a perfectly reflecting and a perfectly absorbing surface,

and, in particular, to suppose that of every unit of area a portion f absorbs all the

incident molecules, and afterwards allows them to evaporate with velocities corres—

ponding to these in still gas at the temperature of the solid, while a portion 1—-f

perfectly reflects all the molecules incident upon it.
We shall begin by supposing that the surface is the plane y z, and that the gas is

on that side of it for which at is positive. I

2 K 2
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The incident molecules are those which, Close to the surface, have their normal com—

ponent of velocity negative. We shall distinguish these molecules by the suffix (1).
For these, and these only, fl is negative.

The rebounding molecules are those which have 5 positive. We shall distinguish

them by the suffix (2). Those which are evaporatedwill be further distinguished by

an aeeent. . a

Symbols without any mark refer to the whole gas, incident, reflected, and evaporated,

close to the surface.

The quantity of gas which is incident 011. unit of surface in unit of time, is ~— p151.
Of this quantity the fraction 1—f is reflected, so that the sign of E is reversed, and

the fraction f is evaporated, the mean value of f in evaporated gas being f’, where the ‘

accent. distinguishes symbols belonging to unpolarized gas at rest relative to the sur-a
face, and having the temperature, 6', 0f the solid.

Equating the quantity of gas which is incident on the absorbing part of the surface
to that Which is evaporated from it, we have

fplgl+fp2/E2/=0' = ° ~ ° ° ° ° . - (6O)

Equating the whole quantity of gas which leaves the surface to the reflected and
evaporated portions

P2§2:(.f'“‘1) P1§1+fpzlfzi ° ' . ~ ~ -. .~ - (61)

If we next consider the momentum of the moleeules in the direction of y, that of

the incident molecules is plgml. A fraction (1—f) of this is reflected and becomes

(1 -—f)pl§m1, and a fraction f of it is absorbed and then evaporated, the mean Value

of 77 being newmv, namely, the velocity of the surface relatively to the gas in contact
with it.

' The momentum of the evaporated portion in the direction of y is therefore mfpz’fz’v,

and this, together with the reflected portion, makes up the whole momentum which is
leaving the surface, or

P2§2W2:(f“1)P1fl771-fP2/§2/v - - - ~ - - - (62)

Eliminating fpz’gg’ between equations (61) and (62)

(1—f)P1€1771+P2€2772+/U [(1nf)P1§1+P2§2]:O - ° - - (63)

The values of functions of f, 77 and Z; for the incident molecules are to be found by

multiplying the expression in equation (22) by the given funetion, and integrating

with respect to f between the limits -- co and O, and with respect to 77 and g between
the limits j; 00

The values of the same functions for the molecules which are leaving the surface a1e

to be found by integiating with respect to E from 0 to 00 .

We must remember; however, that since there is an essential discontinuity in the
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conditions of the gas at the surface,'the expression in equation. (22) is a much less

accurate approximation to the actual distribution of velocities in the gas close to the

surface than it is in the interior of the gas. We must, therefore, consider the surface

conditions at which we arrive in this way as liable to important corrections when we

shall have discovered more powerful methods of attacking the problem.

For the present, however, we consider only terms of three dimensions or less, and

we find

plsl=—p<2w>*%<36>%<1 W} . (64>
P252: P(2”)~%(R6)l(1+'193a2)

P133771=‘h‘PR60‘18 "" ”12“!) (277) “—13%le

P2§2W2=%PR6“:8+%3P(27T)_%R6a218

Substituting these expressions in equation (63), and neglecting a9 in comparison.
with unity, we find

(55!)

<2—f>pReaB+f<2w>~%pR6a2/a+2/(2w>~%<1+aa2><36rpv=o. . . <66)
lfwe write G=%p(277)%(pp)‘i<;-—1> . . . . . . . . (67)

and substitute for 01,8 and 012/8 their values as given in equations (54) and (51), and
divide by2(pp)%, equation (66) becomes

(Z?) :3” CZBQ 3p d6v—e(dw—2P6My~)—4P6dy...=01 . . . . . . (68)

 

If there is no inequality of temperature, this equation is reduced to

If, therefore, the gas at a finite distance from the surface is moving parallel to the

surface, the gas in contact with the surface will be sliding over it with the finite
velocity v, and the motion of the gas will be very nearly the same as if the stratum of

depth G had been removed from the solid and filled with the gas, there being now
no slipping between the new Surface of the solid and the gas in contact with it.

The coefficient G was introduced by HELMHOLTZ and PIOTROWSKI under the name

of Gleitungs—coeflic’iem, 0r coefficient of (slipping. The dimensions of G are those of a
line, and its ratio to l, the mean free path of a molecule, is given by the equation

k 2 2e=5(}—1)z .e . . . . . . . . . (70)

KUNDIT and WARBURG found that for air in contact with glass, G=2l, whence we

find 2—23 or the suifaee acts as if it were half perfectly reflecting and half perfectly

absorbent. If it were wholly abs01bent,G:-_§l
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It is easy to write down the surface conditions for a surface of any form.
Let the direction-cosines of the normal 12 be l, m, n, and let us write

d Cl 0? cl
dv for l 6E+Wldé+7zdg°

We then find as the surface conditions

d d cl d6 “
u—Géi;[(1—l‘3)u— lmv——lnw]+48p6<;l;— lbiix><6+4G 1,):0

v—G%[(1—wog)v—m7zw—mln:]+: 54%,:d- —ooz%><6+4G-£>=O.

T
7 (71)

 w..%[(1_ne) w—- nlu—nmvn;£5152 —n%><6-F4Gg~g>=

In each of these equations the first term is one of the velocity~oornponents of the gas

in contact with the surface, which is supposed fixed; the second term' depends on

the slipping of the gas over the surface, and the third term indicates the effect of

inequalities of temperature of thevgasolose to the surface, and shows that in general

there will he a force urging the gas from colder to hotter parts of the surface.

Let us take as an illustration the case of a capillary tube of circular section, and for

the sake of easy calculation we shall suppose that the motion is so slow, and the

temperature varies so gradually along the tube that we may suppose .the temperature

uniform throughout any one section of the tube. A
Taking the aXis of the tube for that of 2;, we have for. the condition of steadymotion

parallel to the aXis
 (72)420 23332 51%?
dz M (Z5139 623/2)

Since everything is symmetrical about the aXis, if we write 9‘2 for £132+y2 we find as

the solution of this equation
__ lclpqg
m_A+4-;bd7¢..........(73)

If Q denotes the quantity of gas which passes through a section of the tube in unit

of time
Q= 277Lowml7°

=77p012<A+81fld2a012). . . . . . . . . (74)

At the inner surface of the tube we have 9": 01, and

1 dfa2

w=A+4 dza

__ Q 10123 2
’Wpcfl—l—S/w dza - ° 9 e e e 9 3 :- 9 (75)
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also
dw 1 dp
d1) "'"" _ 2.2—1, dza o I o I o o o o o I (7 6)

The last of equations ('71) may therefore be written

Q
71"0662
 1 . dzo Sizer-+87L(az+4(}c )-~ ('77)

L dz —ZL p6 dz—

Equation (77) gives the relation between the quantity of gas Which passes through

any section of the tube, the rate of variation of pressure, and the rate of variation of

temperature in passing along the axis of the tube.
If the pressure is uniform there Will be a flow of gas from the colder to the hotter

end of the tube, and if there is no flow of gas the pressure will increase from the colder

to the hotter end of- the tube.
These effects of the variation of temperature in a tube have been} pointed out

by Professor OSBORNE REYNOLDS as a result of the Kinetic Theory of Gases, and

have received from him the name of Thermal Transpiration : “aname in strict analogy

With the use of the word Transpiration hy GRAHAM.
But the phenomenon actually observed by Professor REYNOLDS in his experiments

was the passage of gas through a porous plate, not through a capillary tube; and the
passage of gases through porous plates, as was shown by GRAHAM, is of an entirely

different kind from the passage of gases through capillary tubes, and is more nearly

analogous to the flow of a gas through a small hole in a thin plate.

When the diameter of the hole and the. thickness of the plate are both small com-

pared With the length of the free path of a molecule, then, as Sir WILLIAM THOMSON

has shown, any molecule Which comes up to the hole on either side Will he in. very

littledanger of encountering another molecule before it has got fairly through to the

other side. ,

Hence the flow of gas in either direction through the hole Will take place very nearly

in the same manner as if there had been a vacuum on the other side of the hole, and

this Whether the gas on the other side of the hole is of the same or of a different kind.

If the gas on the two sides of the plate is of the same kind but at different tempera~

tures, a phenomenon Will take plaoe’whioh we may call thermal efusioqz.

The velocity of the molecules is proportional to the square root of the absolute

temperature, and the quantity Which passes out through the hole is proportional to

this velocity and to the density. Hence, on Whichever side the product of' the

density into the square root of the temperature is greatest, more molecules Will pass

from that side than from the other through the hole, and this Will go on till this
product is equal on both sides of the hole. Hence the condition of equilibrium is that
the density must be inversely as the square root of the temperature, and since the
pressure is as the product of the density into the temperature, the pressure Will be
directly proportional to the square root of the absolute temperature.



256 PROFESSOR CLERK MAXWELL ON STRESSES IN RARIFIED GASES.

The theory of' thermal effusion through a small hole in a thin plate is therefore a

very simple one. It does not involve the theory of Viscosity at all.

The finer the pores of a porous plate, and the rarer the gas Which efi'uses through it,

the more nearly does the passage of gas through the plate correspond to What We have

called effusion, and the less does it depend on the Viscosity of the gas.

The coarser the pores of the plate and the denser the gas, the further does the

phenomenon depart from simple effusion, and the more nearly does it approach to

transpiration. through a capillary tube, Which depends altogether on Viscosity.

To return to the ease of transpiration through a capillary tube. 'When the tempera-

__ WpCL4—ng g _
Q— 8/1: dz<1+4ac> - - a - . . . o . . (78)

ture is uniform

By experiments on capillary tubes of glass, MM. KUNDT and WARBURG- found”?

for the value of G for air at different pressures and at from 17° C. to 2’70 0.,

, '8 .
G22]3 centimetres. . . . . . . . . . (79)

Where 20 is the pressure in dynes per square centimetre, Which is nearly the same as

in millionths of an atmosphere. For hydrogen on glass

pa

1' .
:~Eoe11t1met1"es . . . - . . . ~ - (80)

23

When there is no flow of gas in a tube in Which the temperature varies from end to

end, the pressure is greater at the hot end than at the cold end. Putting Q: 0 we have

@_EWJW ‘+M... p9a2+4aa . . . . . . . . . . (81)

The quantity 6SQ is just double of that calculated in section (3) of the introduction,

and is therefore in C.G.S measure 0'63 +13 for dry air at 150 G. Let us suppose 01,20'01

centimetre; and the pressure 40 millimetres of mercury, then G2'00016 centimetre.

If one end of the tube is kept at 0° C. and the other at 1000 0., the pressure at the

hot end Will exceed that at the cold end by about 1'2 millionths of an atmosphere,

The difference of pressure might be increased by using a tube of smaller bore and

air of smaller density, but the effect is so small that though the theoretical proof of its

existence seems satisfactory, an experimental verification of it would be difficult.

*8 POGG. Ann., July, 1876.


