[35]

VII. On the Means of difcovering the Difance, Magnitude, \&c. of the Fixed Stars, in confequence of the Diminution of the Velocity of their Light, in cafe fuch a Diminution Joould be found to take place in any of them, and fuch otber Data Jbould be procured from Obfervations, as woould be farther neceflary for that Purpofe. By the Rev. John Michell, B. D. F. R.S. In a Letter to Henry Cavendifh, E/q. F. R. S. and A. S.

Read November 27, 1783.

I inE method, which I mentioned to you when I was laft find the diftance, magnitude, alud weight of fome of the fixed ftars, by means of the diminution of the velocity of their light, occurred to me foon after I wrote what is mentioned by Dr. Priestley in his Hiftory of Optics, concerning the diminution of the velocity of light in confequence of the attraction of the fun; but the extreme difficulty, and perhaps impoffibility, of procuring the other data neceffary for this purpofe appeared to me to be fuch objections againft the fcheme, when I firf thought of it, that I gave it then no farther confideration. As fome late obfervations, however, begin to give us a little more chance of procuring fome at leaft of thefe data, I thought it would not be amifs, that aftronomers fhould be apprized of the method, I propofe (which, as far as I know, F 2
has
has not been fuggefted by any one elfe) left, for want of being aware of the ufe, which may be made of them, they fhould neglect to make the proper obfervations, when in their power: I fhall therefore beg the favour of you to prefent the following paper on this fubject to the Royal Society.

I am, \&c.

THE very great number of fars that have been difcovered to be double, triple, \&c. particularly by Mr. Herschel *, if we apply the doctrine of chances, as I have heretofore done in my " Enquiry into the probable Parallax, \&c. of the Fixed "Stars," publifhed in the Philofophical Tranfactions for the year 1767, cannot leave a doubt with any one, who is properly aware of the force of thofe arguments, that by far the greateft part, if not all of them, are fyftems of ftars fo near to each other, as probably to be liable to be affected fenfibly by their mutual gravitation; and it is therefore not unlikely, that the periods of the revolutions of fome of thefe about their principals (the fmaller ones being, upon this hypothefis, to be confidered as fatellites to the others) may fome time or other be difcovered.
2. Now the apparent diameter of any central body, round which any other body revolves, together with their apparent diftance from each other, and the periodical time of the revolv-

[^0]ing body being given, the denfity of the central body will be given likewife. See Sir Isaac Newton’s Prin. b. III. pr. viry. cor. I .
3. But the denfity of any central body being given, and the velocity any other body would acquire by falling towards it from an infinite height, or, which is the fame thing, the velocity of a comet revolving in a parabolic orbit, at its furface, being given, the quantity of matter, and confequently the real magnitude of the central body, would be given likewife.
4. Let us now fuppofe the particles of light to be attracted in the fame manner as all other bodies with which we are acquainted; that is, by forces bearing the fame proportion to their vis inertio, of which there can be no reafonable doubt, gravitation being, as far as we know, or have any reafon to believe, an univerfal law of nature. Upon this fuppofition then, if any one of the fixed ftars, whofe denfity was known by the above-mentioned means, fhould be large enough fenfibly to affect the velocity of the light iffuing from it, we fhould have the means of knowing its real magnitude, \&c.
5. It has been demonftrated by Sir Isaac Newton, in the 39th propofition of the firft book of his Principia, that if a right line be drawn, in the direction of which a body is urged by any forces whatfoever, and there be erected at right angles to that line perpendiculars every where proportional to the forces at the points, at which they are erected refpectively, the velocity acquired by a body beginning to move from reft, in confequence of being fo urged, will always be proportional to the fquare root of the area defcribed by the aforefaid perpendiculars. And hence,
6. If fuch a body, inftead of beginning to move from reft, had already fome velocity in the direction of the fame line, when
when it began to be urged by the aforefaid forces, its velocity would then be always proportional to the fquare root of the fum or difference of the aforefaid area, and another area, whofe fquare root would be proportional to the velocity which the body had before it began to be fo urged ; that is, to the fquare root of the fum of thofe areas, if the motion acquired was in the fame direction as the former motion, and the fquare root of the difference, if it was in a contrary direction. See cor. 2. to the abovefaid propofition.
7. In order to find, by the foregoing propofition, the velocity which a body would acquire by falling towards any other central body, according to the common law of gravity, let C in the figure (tab. III.) reprefent the centre of the central body, towards which the falling body is urged, and let CA be a line drawn from the point C , extending infinitely towards A . If then the line RD be fuppofed to reprefent the force, by which the falling body would be urged at any point D , the velocity which it would have acquired by falling from an infinite height to the place D would be the fame as that which it would acquire by falling from D to C with the force RD, the area of the infinitely extended hyperbolic fpace ADRB, where RD is always inverfely proportional to the fquare of $D C$, being equal to the rectangle RC contained between the lines RD and CD. From hence we may draw the following corollaries.
8. Cor. ı. The central body DEF remaining the fame, and confequently the forces at the fame diftances remaining the fame likewife, the areas of the rectangles $\mathrm{RC}, r \mathrm{C}$ will always be inverfely as the diftances of the points D, d from C , their fides $\mathrm{RD}, r d$ being inverfely in the duplicate ratio of the fides CD, Cd : and therefore, becaufe the velocity of a body falling from an infinite height towards the point C, is always in the
fub-duplicate ratio of thefe rectangles, it will be in the fubduplicate ratio of the lines $\mathrm{CD}, \mathrm{C} d$ inverfely. Accordingly the velocities of comets revolving in parabolic orbits are always in the fub-duplicate ratio of their diftances from the fun inverfely; and the velocities of the planets, at their mean diftances (being always in a given ratio to the velocity of fuch comets, viz. in the fub-duplicate ratio of 1 to 2) muft neceffarily obferve the fame law likewife.
9. Cor. 2. The magnitude of the central body remaining the fame, the velocity of a body falling towards it from an infinite height will always be, at the fame diftance from the point C, taken any where without the central body, in the fub-duplicate ratio of its denfity; for in this cafe the diftance C d will remain the fame, the line $r d$ only being increafed or diminifhed in the proportion of the denfity, and the rectangle $r \mathrm{C}$ confequently increafed or diminifhed in the fame proportion.
ro. Cor: 3. The denfity of the central body remaining the fame, the velocity of a body falling towards it from an infinite height will always be as its femi-diameter, when it arrives at the fame proportional diftance from the point C ; for the weights, at the furfaces of different fphæres of the fame denfity are as their refpective femi-diameters; and therefore the fides RD and CD , or any other fides $r d$ and Cd , which are in a given ratio to thofe femi-drameters, being both increafed or diminifhed in the fame proportion, the rectangles RC or $r \mathrm{C}$ will be increafed or diminifhed in the duplicate ratio of the femi-diameter $C D$, and confequently the velocity in the fimple ratio of CD.
11. Cor. 4. If the velocity of a body falling from an infinite height towards different central bodies is the fame, when it arrives at their furfaces, the denfity of thofe central bodies muft be
in the duplicate ratio of their femi-diameters inverfely; for by the laft cor. the denfity of the central body remaining the fame, the rectangle RC will be in the duplicate ratio of CD ; in order therefore that the rectangle RC may always remain the fame, the line RD muft be inverfely, as CD , and confequently the denfity inverfely, as the fquare of CD.
12. Cor. 5. Hence the quantity of matter contained in thofe bodies muft be in the fimple ratio of their femi-diameters directly; for the quantity of matter being always in a ratio compounded of the fimple ratio of the denfity, and the triplicate ratio of their femi-diameters, if the denfity is in the inverfe duplicate ratio of the femi-diameters, this will become the direct triplicate and inverfe duplicate, that is, when the two are compounded together, the fimple ratio of the femi-diameters,
13. The velocity a body would acquire by falling from an infinite height towards the fun, when it arrived at his furface, being, as has been faid before in article 3 d, the fame with that of a comet revolving in a parabolic orbit in the fame place, would be about 20,72 times greater than that of the earth in its orbit at its mean diftance from the fun ; for the mean diftance of the earth from the fun, being about 214,64 of the fun's femidiameters, the velocity of fuch a comet would be greater at that diftance than at the diftance of the earth from the fun, in the fub-duplicate ratio of 214,64 to 1 , and the velocity of the comet being likewife greater than that of planets, at their mean diftances, in the fub-duplicate ratio of 2 to 1 ; thefe, when taken together, will make the fub-duplicate ratio of 429,28 to 1 , and the fquare root of 429,28 is 20,72 , very nearly.
14. The

Difance, Magnitude, E'c. of the Fixed Stars, E'c. 41

14. The fame refult would have been obtained by taking the line RD proportional to the force of gravity at the fun's furface, and DC equal to his femi-diameter, and from thence computing a velocity, which fhould be proportional to the fquare root of the area RC when compared with the fquare root of another area, one of whofe fides fhould be proportional to the force of gravity at the furface of the earth; and the other fhould be, for inftance, equal to 16 feet, r inch, the fpace a body would fall through in one fecond of time, in which cafe it would acquire a velocity of 32 feet, 2 inches per fecond. The velocity thus found compared with the velocity of the earth in its orbit, when computed from the fame elements, neceffarily gives the fame refult. I have made ufe of this latter method of computation upon a former occafion, as may be feen in Dr. Priestley's Hiftory of Optics, p. 787 , \&cc. but I have rather chofen to take the velocity from that of a comet, in the article above, on account of its greater fimplicity, and its more immediate connexion with the fubject of this paper.
15. The velocity of light, exceeding that of the earth in its orbit, when at its mean diftance from the fun, in the proportion of about 10.310 to 1 , if we divide 10.310 by 20,72 , the quotient 497 , in round numbers, will exprefs the number of times, which the velocity of light exceeds the velocity a body could acquire by falling from an infinite height towards the fun, when it arrived at his furface ; and an area whofe fquare root fhould exceed the fquare root of the area RC, where RD is fuppofed to reprefent the force of gravity at the furface of the fun, and CD is equal to his femi diameter, in the fame proportion, muft confequently exceed the area RC in the proportion of 247.009 , the fquare of 497 to I .
16. Hence, according to article 10 , if the femi-diameter of a fphære of the fame denfity with the fun were to exceed that of the fun in the proportion of 500 to 1 , a body falling from an infinite height towards it, would have acquired at its furface a greater velocity than that of light, and confequently, fuppofing light to be attracted by the fame force in proportion to its vis inertiæ, with other bodies, all light emitted from fuch a body would be made to return towards it, by its own proper gravity.
17. But if the femi-diameter of a fphrre, of the fame denfity with the fun, was of any other fize lefs than 497 times that of the fun, though the velocity of the light emitted from fuch a body, would never be wholly deftroyed, yet would it always fuffer fome diminution, more or lefs, according to the magnitude of the faid fphære; and the quantity of this diminution may be eafily found in the following manner : Suppofe S to reprefent the femi-diameter of the fun, and aS to reprefent the femi-diameter of the propofed fphære; then, as appears from what has been fhewn before, the fquare root of the difference between the fquare of 497 S and the fquare of aS will be always proportional to the ultimately remaining velocity, after it has fuffered all the diminution, it can poffibly fuffer from this caufe; and confequently the difference between the whole velocity of light, and the remaining velocity, as found above, will be the diminution of its velocity. And hence the diminution of the velocity of light emitted from the fun, on account of it's gravitation towards that body, will be fomewhat lefs than a 494.000 dth part of the velocity which it would have had if no fuch diminution had taken place; for the iquare of 497 being 247.00 , and the fquare of I being 1 , the diminution of the velocity will be the difference between

Difance, Magnitude, ©ic. of the Fixed Stars, EBC.

 43 the fquare root of 247.009 , and the fquare root of 247.008 , which amounts, as above, to fomewhat lefs than one 494.000 th part of the whole quantity.18. The fame effects would likewife take place, according to article 11 , if the femi-diameters were different from thofe mentioned in the two laft articles, provided the denfity was greater or lefs in the duplicate ratio of thofe femi-diameters inverfely.
19. The better to illuftrate this matter, it may not be amifs to take a particular example. Let us fuppofe then, that it fhould appear from obfervations made upon fome one of thofe double ftars above alluded to, that one of the two performed its revolution round the other in 64 years, and that the central one was of the fame denfity with the fun, which it muft be, if its apparent diameter, when feen from the other body, was the fame as the apparent diameter of the fun would be if feen from a planet revolving round him in the fame period: let us further fuppofe, that the velocity of the light of the central body was found to be lefs than that of the fun, or other flars whofe magnitude was not fufficient to affect it fenfibly, in the proportion of 19 to 20 . In this cafe then, according to article 17 , the fquare root of 247.00) SS muft be to the fquare root of the difference between $24 \% .009 \mathrm{SS}$ and aaSS as 20 to 19. But the fquares of 20 and 19 being 400 and 361 , the quantity ${ }_{247.009}$ SS muft therefore be to the difference between this quantity and aaSS in the fame proportion, that is as 247.009 to $222.925,62$; and aaSS muft confequently be equal to 24.083 , 38 SS , whofe fquare root $155,2 \mathrm{~S}$ nearly, or, in round numbers, 155 times the diameter of the fun, will be the diameter of the central ftar fought.
20. As the fquares of the periodical times of bodies, revolving round a central body, are always proportional to the cubes of their mean diftances, the diftance of the two bodies from each other muft therefore, upon the foregoing fuppofitions, be fixteen times greater in proportion to the diameter of the central body, than the diftance of the earth from the fun in proportion to his diameter; and that diameter being already found to be alfo greater than that of the fun in the proportion of 155,2 to 1 , this diffance will confequently be greater than that of the earth and fun from each other in the proportion of 16 times 155,? that is 2483,2 to 1 .
21. Let us farther fuppofe, that from the obfervations, the greateft diftance of the two fars in queftion appeared to be only one fecond; we muft then multiply the number $24.83,2$ by $206.264,8$, the number of feconds in the radius. of a circle, and the product 512.196 .750 will thew the number of times which fuch a ftar's diftance from us muft exceed that of the fun. The quantity of matter contained in fuch a far would be $\overline{155,2}^{3}$ or $3.73^{8.308}$ times as much as that contained in the fun; its light, fuppofing the fun's light to take up $8^{\prime} .7^{\prime \prime}$. in coming to the earth, would, with its common velocity, require 7.900 years to arrive at us, and 395 years more on account of the diminution of that velocity; and fuppofing fuch a far to be equally luminous with the fun, it would fill be very fufficiently vifible, I apprehend, to the naked eye, notwithftanding its immenfe diftance.
22. In the elements which I have employed in the above computations, I have fuppofed the diameter of the central ftar to have been obferved, in order to afcertain its denfity, which cannot be known without it; but the diameter of fuch a far is

Difance, Magnitude, Be. of the Fixed Stars, Bec. 45 much too fimall to be obferved by any telefcopes yet exifing, or any that it is probably in the power of human abilicies to make; for the apparent diameter of the central ftar, if of the fame denfity with the fun, when feen from another body, which would revolve round it in 64 years, would be only the 171 th part of the diftance of thofe bodies from each other, as will appear from multiplying $107,3^{2}$, the number of times the fun's diameter is contained in his diftance from the earth, by 16 , the greater proportional diftance of the revolving body, correfponding to 64 years inftead of 1 . Now the 177^{7} th part of a fecond muft be magnified 309.060 times in order to give it an apparent diameter of three minutes; and three minutes, if the telefcopes were mathematically perfect, and there was no want of diftinctnefs in the air, would be but a very finall matter to judge of*。

23. But

Abstract

* In Mr. Herschel's Obfervations upon the Fixed Stars abovementioned, alinoft all of them are reprefented as appearing with a well-defined round difc. 'That this is not the real dife, but only an optical appearance, occafioned perhaps by the confitution of the eye, when the pencil, by which objects are feen, is fo exceedingly fmall as thofe which he employed upon this occafion, is very manifert, from the obfervations themfelves, of which indeed Mr. Herschel feems to be himfelf fufficiently aware: if it were not fo, the intenfity of the light of thefe flars mult either be exceedingly inferior indeed to that of the fun, or they muft be immenfely larger, otherwife they muft have a very fenfible parallax; for the fun, if removed to 10.000 .000 times his prefent dittance, would ftill, I apprehend, be of about the brightnefs of the fars of the fixth magnitude; in which cafe he mutt be magnified r .000 .000 times to make his apparent difc of any fenfible magnitude; or, on the other hand, if he was only removed to a thoufandth part of that diftance, then he muft be lefs luminous in the proportion of 1.000 .000 to 1 , to make him appear no brighter than a flar of the fixth magnitude. Now the fun's diameter being contained nearly 215 times in the diameter of the earth's orbit, the annual parallax therefore of fuch a body in that cafe, if it was placed in the pole of the

23. But though there is not the leaft probability that this element, fo effential to be known, in order to determine with precifion the exact diftance and magnitude of a far, can ever be obtained, where it is in the fame circumftances, or nearly the fame, with chofe above fuppofed, yet the other elements, fuch as perhaps may be obtained, are fufficient to determine the diftance, $\& c \mathrm{c}$. with a good deal of probability, within fome moderate limits; for in whatever ratio the real diftance of the two flars may be greater or lefs than the diftance fuppofed, the denfity of the central far muft be greater or lefs in the fixth power of that ratio inverfely ; for the periodic time of the revolving body being given, the quantity of matter contained in the central body muft be as the cube of their diftance from each other. See Sir I. Newton’s Prin. b. 3d. pr. 8th. cor 3d. But the quantity of matter in different bodies, at whofe furfaces the velocity acquired by falling from an infinite height is the fame, muft be, according to art. 12 , directly as their femi-diameters; the femi-diameters therefore of fuch bodies muft be in the triplicate ratio of the diftance of the revolving body; and confequently their denfities, by art. II, being in the inverfe duplicate ratio of their femi-diameters, muft be in the inverfe fextuplicate ratio of the diftance of the revolving body. Hence if the real diftance fhould be greater or lefs than that fuppofed, in the proportion of two or three to one, the denfity of the central body muft be lefs or greater, in the firft cafe, in the proportion of 64 , or in the latter of 729 to I .
ecliptic, would be 215 times its apparent diameter ; and as the bright ftar in Lyrâ appeared to Mr. Herschel about a third part of a fecond in diameter, if this was its real dife, and it was no bigger than the fun, it would confequently have and annual parallax in the pole of the ecliptic of about $72^{\prime \prime}$.
24. There
25. There is alfo another circumftance, from which perhaps fome little additional probability might be derived, with regard to the real diftance of a ftar, fuch as that we have fuppofed; but upon which however, it muft be acknowledged, that no great ftrefs can be laid, unlefs we had fome better analogy to go upon than we have at prefent. The circumftance I mean is the greater fpecific brightnefs which fuch a ftar muft have, in proportion as the real diftance is lefs than that fuppofed, and vice versa ; fince, in order that the ftar may appear equally luminous, its fpecific brightnefs muft be as the fourth power of its diftance inverfely; for the diameter of the central ftar being as the cube of the diftance between that and the revolving ftar, and their diftance from the earth being in the fimple ratio of their diftance from each other, the apparent diameter of the central ftar muft be as the fquare of its real diftance from the earth, and confequently, the furface of a fphære being as the fquare of its diameter, the area of the apparent difc of fuch a ftar muft be as the fourth power of its diftance from the earth; but in whatever ratio the apparent difc of the ftar is greater or lefs, in the fame ratio inverfely muft be the intenfity of its light, in order to make it appear equally luminous. Hence, if its real diffance fhould be greater or lefs than that fuppofed in the proportion of 2 or 3 to 1 , the intenfity of its light muft be lefs or greater, in the firt cafe, in the proportion of 16 , or, in the latter of 8 I to i .
26. According to Monf. Bouguer (fee his Traité d'Optique) the brightnefs of the fun exceeds that of a wax candle in no lefs a proportion than that of 8000 to I. If therefore the brightnefs of any of the fixed ftars fhould not exceed that of our common candles, which, as being fomething lefs luminous than
wax, we will fuppofe in round numbers to be only one 10.000 dth part as bright as the fun, fuch a ftar would not be vifible at more than an roodth part of the diftance, at which it would be vifible, if it was as bright as the fun. Now becaufe the fun would ftill appear, I apprehend, as luminous, as the ftar Sirius, when removed to 400.000 times his prefent diftance, fuch a body, if no brighter than our common candles, would only appear equally luminous with that ftar at 4000 times the diftance of the fun, and we might then begin to be able, with the beft telefcopes, to diftinguifh fome fenfible apparent diameter of it ; but the apparent diameters of the ftars of the lefs magnitudes would ftill be too fmall to be diftinguifhable even with our beft telefcopes, unlefs they were yet a good deal lefs luminous, which may poffibly however be the cafe with fome of them; for, though we have indeed very flight grounds to go upon with regard to the fpecific brightnefs of the fixed fars compared with that of the fun at prefent, and can therefore only form very uncertain and random conjectures concerning it, yet from the infinite varicty which we find in the works of the creation, it is not unreafonable to fufpect, that very poffibly fome of the fixed ftars may have fo little natural brightnefs in proportion to their magnitude, as to admit of their diameters having fome fenfible apparent fize, when they fhall come to be more carefully examined, and with larger and better telefcopes than have been hitherto in common ufe.
27. With regard to the fun, we know that his whole furface is extremely luminous, a very fmall and temporary interruption fometimes from a few fpots only excepted. This univerfal and exceffive brightnefs of the whole furface is probably owing to an atmofphrer, which being luminous throughout,
and in fome meafure alfo tranfparent, the light, proceeding from a confiderable depth of it, all arrives at the eye; in the fame manner as the light of a great number of candles would do, if they were placed one behind another, and their flames were fufficiently tranfparent to permit the light of the more diftant ones to pafs through thofe that were nearer, without any interruption.
28. How far the fame conftitution may take place in the fixed ftars we don't know ; probably however it may do fo in many; but there are fome appearances with regard to a few of them, which feem to make it probable, that it does not do fo univerfally. Now, if I am right in fuppofing the light of the fun to proceed from a luminous atmofphære, which muft neceffarily diffufe itfelf equally over the whole furface, and I think there can be very little doubt that this is really the cafe, this conftitution cannot well take place in thofe ftars, which are in fome degree periodically more and lefs luminous, fuch as that in Collo Ceti, \&c. It is alfo not very improbable, that there is fome difference from that of the fun, in the conftitution of thofe ftars, which have fometimes appeared and fometimes difappeared, of which that in the corftellation of Caffiopeia is a notable inftance. And if thofe conjectures are well founded which have been formed by fome philofophers concerning ftars of thefe kinds, that they are not wholly luminous, or at leaft not conftantly fo, but that all, or by far the greateft part of their furfaces is fubject to confiderable changes, fometimes becoming luminous, and at other times being extinguifhed; it is amongft the ftars of this fort, that we are moft likely to meet with inftances of a fenfible apparent diameter, their light being much more likely not to be fo great in proportion as that of the fun, which, if removed to four hundred thoufand times Vol. LXXIV.
his prefent diftance would fill appear, I apprehend, as brighe ts Sirius, as I have obferved above; whereas it is hardly to be expected, with any telefcopes whatfoever, that we fhould ever be able to diftinguifh a well defined difc of any body of the fame fize with the fun at much more than ten thoufand times his diftance.
29. Hence the greateft diftance at which it would be poffible to diftinguilh any fenfible apparent diameter of a body as denfeas the fun cannot well greatly exceed five hundred times ten thoufand, that is, five million times the diftance of the fun: for if the diameter of fuch a body was not lefs than five hundred times that of the fun, its light, as has been fhewn above ${ }_{2}$. in art. 16. could never arrive at us.
30. If there fhould really exift in nature any bodies, whofe denfity is not lefs than that of the fun, and whofe diameters are more than 500 times the diameter of the fun, fince their light could not arrive at us; or if there fhould exift any other bodies of a fomewhat fmaller fize, which are not naturally luminous; of the exiftence of bodies under either of thefe circumftances, we could have no information from fight; yet, if any other luminous bodies fhould happen to revolve about them we might fill perhaps from the motions of thefe revolving bodies infer the exiftence of the central ones with fome degree of probability, as this might afford a clue to fome of the apparent irregularities of the revolving bodies, which would not be eafily explicable on any other hypothefis; but as the confequences of fuch a fuppofition are very obvious, and the confideration of them fomewhat befide my prefent purpofe, I fhall not profecute them any farther.
31. The diminution of the velocity of light, in cafe it Thould be found to take place in any of the fixed ftars, is the principal phænomenon whence it is propofed to difcover their diftance, \&c. Now the means by which we may find what this diminution amounts to, feems to be fupplied by the difference which would be occafioned in confequence of it, in the refrangibility of the light, whofe velocity fhould be fo dimiminíhed. For let us fuppofe with Sir Isaac Newton (fee his Optics, prop. vi. paragr. 4 and 5) that the refraction of light is occafioned by a certain force impelling it towards the refracting medium, an hypothefis which perfectly accounts for all the appearances. Upon this hypothefis the velocity of light in any medium, in whatever direction it falls upon it, will always bear a given ratio to the velocity it had before it fell upon it, and the fines of incidence and refraction will, in confequence of this, bear the fame ratio to each other with thefe velocities inverfely. Thus, according to this hypothefis, if the fines of the angles of incidence and refraction, when light paffes out of air into glafs, are in the ratio of 31 to 20 , the velocity of light in the glafs muft be to its velocity in air in the fame proportion of $3{ }^{1}$ to 20 . But becaufe the areas, reprefenting the forces generating thefe velocities, are as the fquares of the velocities, fee art. 5. and 6. thefe areas muft be to each other as 961 to 400 . And if 400 reprefents the area which correfponds to the force producing the original velocity of light, 56 I , the difference between 96 r and 400 , muft reprefent the area correfponding to the additional force, by which the light was accelerated at the furface of the glafs.
$3^{\text {r. In art. 19. we fuppofed, by way of example, the velo- }}$ city of the light of fome particular ftar to be diminifhed in the
ratio of 19 to 20 , and it was there obferved, that the area reprefenting the remaining force which would be neceffary to generate the velocity 19, was therefore properly reprefented by $\frac{36}{4} \frac{1}{0} \mathrm{dth}$ parts of the area, that fhould reprefent the force that would be neceffary to generate the whole velocity of light, when undiminifhed. If then we add 56I, the area reprefenting the force by which the light is accelerated at the furface of the glafs, to 361 , the area reprefenting the force which would have generated the diminifhed velocity of the ftar's light, the fquare root of 922 , their fum, will reprefent the velocity of the light with the diminifhed velocity, after it has entered the glafs. And the fquare root of 922 being 30,364 , the fines of incidence and refraction of fuch light out of air into glafs will confequently be as 30,364 to 19 , or what is equal to it, as $3^{1,96}$ to 20 inftead of 3^{1} to 20 , the ratio of the fines of incidence and refraction, when the light enters the glafs with its velocity undiminifhed.
32. From hence a prifm, with a fmall refracting angle, might perhaps be found to be no very inconvenient inftrument for this purpofe : for by fuch a prifm, whofe refracting angle was of one minute, for inftance, the light with its velocity undiminifhed would be turned out of its way $33^{\prime \prime}$, and with the diminifhed velocity $35^{\prime \prime}, 88$ nearly, the difference between which being almoft $2^{\prime \prime} .53^{\prime \prime \prime}$, would be the quantity by which the light, whofe velocity was diminihed, would be turned out of its way more than that whofe velocity was undiminifhed.
33. Let us now be fuppofed to make ufe of fuch a prifm to look at two ftars, under the fame circumftances as the two ftars in the example above-mentioned, the central one of which fhould be large enough to diminifh the velocity of its light one twentieth part, whilft the velocity of the light of the other, which
which was fuppofed to revolve about it as a fatellite, for want of fufficient magnitude in the body from whence it was emitted, fhould fuffer no fenfible diminution at all. Placing then the line, in which the two faces of the prifm would interfect each other, at right angles to a line joining the two ftars; ; if the thinner part of the prifm lay towards the fame point of the heavens with the central ftar, whofe light would be moft turned out of its way, the apparent diftance of the ftars would be increafed $2^{\prime \prime} \cdot 53^{\prime \prime \prime}$ and confequently become $3^{\prime \prime} \cdot 53^{\prime \prime \prime}$ inftead of $\mathrm{I}^{\prime \prime}$. only, the apparent diftance fuppofed above in art. 21. On the contrary, if the prifm fhould be turned half way round, and its thinner part lye towards the fame point of the heavens with the revolving ftar, their diftance muft be diminifhed by a like quantity, and the central ftar therefore would appear $\mathrm{I}^{\prime \prime} .53^{\prime \prime \prime}$ diftant from the other on the oppofite fide of it, having been removed from its place near three times the whole diftance between them:
34. As a prifm might be made ufe of for this purpofe, which fhould have a much larger refracting angle than that we have propofed, efpecially if it was conftructed in the achromatic. way, according to Mr. dollond's principles, not only fuch a diminution, as one part in twenty, might be made ftill more diftinguifhable; but we might probably be able to difcover confiderably lefs diminutions in the velocity of light, as perhaps a hundredth, a two-hundredth, a five-hundredth; or even a thoufandth part of the whole, which, according to what has been faid above, would be occafioned by fphæres, whofe diameters fhould be to that of the fun, provided they were of the fame denfity, in the feveral proportions nearly of 70,50 ; 3°, and 22 to I refpectively.
35. If fuch a diminution of the velocity of light, as that above fuppofed, fhould be found really to take place, in confe-
quence of its gravitation towards the bodies from whence it is emitted, and there fhould be feveral of the fixed fars large enough to make it fufficiently fenfible, a fet of obfervations upon this fubject might probably give us fome confiderable information with regard to many circumftances of that part of the univerfe, which is vifible to us. The quantity of matter contained in many of the fixed ftars might from hence be judged of, with a great degree of probability, within fome moderate limits; for though the exact quantity muft ftill depend upon their denfity, yet we muft fuppofe the denfity moft enormoufly different from that of the fun, and more fo, indeed, than one can eafily conceive to take place in fact, to make the error of the fuppofed quantity of matter very wide of the truth, fince the denfity, as has been thewn above in art. 11. and 12. which is neceffary to produce the fame diminution in the velocity of light, emitted from different bodies, is as the fquare of the quantity of matter contained in thofe bodies inverfely.
36. But though we might poffibly from hence form fome reafonable guefs at the quantity of matter contained in feveral of the fixed ftars; yet, if they have no luminous fatellites revolving about them, we fhall ftill be at a lofs to form any probable judgment of their diftance, unlefs we had fome analogy to go upon for their fpecific brightnefs, or had fome other means of difcovering it; there is, however, a cafe that may poffibly occur, which may tend to throw fome light upon this matter.
37. I have fhewn in my Enquiry into the probable Parallax, \&c. of the Fixed Stars, publifhed in the Philofophical Tranfactions for the year 1767 , the extremely great probability there is, that many of the fixed ftars are collected together into groups; and that the Pleiades in particular conftitute one of thefe
thefe groups. Now of the ftars which we there fee collected together, it is highly probable, as I have obferved in that paper, that there is not one in a hundred which does not belong to the group itfelf; and by far the greateft part, therefore, according to the fame idea, muft lye within a fphrre, a great circle of which is of the fame fize with a circle, which appears to us to include the whole group. If we fuppofe, therefore, this circle to be about 2°. in diameter, and confequently only about a thirtieth part of the diftance at which it is feen, we may conclude, with the higheft degree of probability, that by far the greateft part of thefe ftars do not differ in their diftances from the fun by more than about one part in thirty, and from thence deduce a fort of fale of the proportion of the light which is produced by different ftars of the fame group or fyftem in the Pleiades at leaft; and, by a fomewhat probable analogy, we may do the fame in other fyftems likewife. But having yet no means of knowing their real diftance, or fpecific brightnefs, when compared either with the fun or with one another, we fhall ftill want fomething more to form a farther judgment from.
38. If, however, it fhould be found, that amongft the Pleiades, or any other like fyftem, there are fome fars that are double, triple, \&c. of which one is a larger central body, with one or more fatellites revolving about it, and the central body thould likewife be found to diminifh the velocity of its light; and more efpecially, if there fhould be feveral fuch inftances met with in the fame fyftem; we fhould then begin to have a kind of meafure both of the diftance of fuch a fyftem of fars from the earth, and of their mutual diftances from each other. And if feveral inftances of this kind fhould occur in different groups or fyitems of ftars, we might alfo, perhaps, begin to form
form fome probable conjectures concerning the fpecific denfity and brightnefs of the ftars themfelves, efpecially if there fhould be found any general analogy between the quantity of the diminution of the light and the diftance of the fyftem deduced from it; as, for inftance, if thofe ftars, which had the greateft effect in diminifhing the velocity of light fhould in general give a greater diftance to the fyftem, when fuppofed to be of the fame denfity with the fun, we might then naturally conclude from thence, that they are lefs in bulk, and of greater fpecific denfity, than thofe ftars which diminiif the velocity of light lefs, and vice verfa. In like manner, if the larger ftars were to give us in general a greater or lefs quantity of light in proportion to their bulk, this would give us a kind of analogy, from whence we might perhaps form fome judgment of the fpecific brightnefs of the fars in general ; but, at all adventures, we fhould have a pretty tolerable meafure of the comparative brightnefs of the fun and thofe ftars, upon which fuch obfervations chould be made, if the refult of them fhould turn out agreeable to the ideas above explained.
39. Though it is not improbable, that a few years may inform us, that fome of the great number of double, triple ftars, \&c. which have been obferved by Mr. Herschel, are fyftems of bodies revolving about each other, efpecially if a few more obfervers, equally ingenious and induftrious with himfelf could be found to'fecond his labours ; yet the very great diftance at which it is not unilikely many of the fecondary ftars may be placed from their principals, and the confequently very long periods of their revolutions*, leave very little room to hope that

[^1]that any very great progrefs can be made in this fubject for many years, or perhaps fome ages to come ; the above outlines, therefore, of the ufe that may be made of the obfervations upon the double ftars, \&c. provided the particles of light fhould be fubject to the fame law of gravitation with other bodies, as in all probability they are, and provided alfo that fome of the ftars fhould be large enough fenfibly to diminif their velocity, will, I hope, be an inducement to thofe, who may have it in their power, to make thefe obfervations for the benefit of future generations at leaft, how little advantage foever we may expect from them ourfelves; and yet very poffibly fome obfervations of this fort, and fuch as may be made in a few years, may not only be fufficient to do fomething, even at prefent, but alfo to thew, that much more may be done hereafter, when thefe obfervations fhall become more numerous, and have been continued for a longer period of years.
pretty near the truth, any fatellite revolving round fuch a far, provided the fat was not either of lofs pecific prightnefs, or of greater denfity than the fun, muft, if it appeared at its greateft elongation, at the diftance of one fecond only from its principal, be between three and four hundred years in performing one revelution; and the time of the revolution of the very fmall ftar near α Lyræ, if it is a fatellite to this latter, and its principal is of the fame fpecific brightnefs and denfity with the fun, could hardly be lefs than eight hundred years, though $37^{\prime \prime}$ the difance at which it is placed from it, according to Mr. Herschen's obfervations, fhould happen to be its greateft diftance. Thefe periodical times, however, are computed from the above diftances, upon the fuppofition of the ftar, that revolves as a fatellite, being very much fmaller than the central one, fo as not to difturb its place fenfibly; for if the two fars flould contain equal, or nearly equal, quantities of matter, the periodical times might be fomewhat lefs, on account of their revolving about their common centre of gravity, in circles of little more than half as great a diameter as that in which the fatellite muft revolve upon the other fuppofition.

[^0]: * See his Catalogue of Stars of this kind, publifhed in the Philofophical Tranf. actions for the year 1782 , which is indeed a moft valuable prefent to the aftronomical world. By a happy application of very high magnifyiug powers to his telefcopes, and by a moft perfevering induftry in obferving, he has made a very wonderful progrefs in this branch of aftronomy, in which almoft nothing of any confequence had been done by any one before him.

[^1]: * If the fun, when removed to 10.000 .000 times his prefent diftance, would sill appear as bright as a ftar of the fixth magnitude, which I apprehend to be

