(59)

IV. A fecond Letter from Mr. Colin Mc Laurin, Profeffor of Matbematicks in the Univerfity of Edinburgh and F. R. S. to Martin Folkes, E/q; concerning the Roots of Equations, with the Demonftration of other Rules in Algebra; being the Continuation of the Letter publighed in the Philofophical Tranfactions, $\mathrm{N}^{\circ} 394$.

Edinburgh, April 19th, 1729.

$S I R$,

IN the Y ar $\mathbf{1 7 2 5}$, I wrote to you that I had a Method of demonftrating Sir Ifaac Nerwton's Rule concerning the impoffible Roots of Equations, deduced from this obvious Principle, that the Squares of the Differences of real Quantities muft always be pofitive: and fome time after, I fent you the firft Principles of that Method, which were publifhed in the Pbilofophical Tranfactions for the Month of May, 1726. The Defign I have for fome Time had of publifhing a Treatife of Algebra, where I propofed to treat this and feveral other Subjects in a new Manner, made me think it unneceffary to fend you the remaining Part of that Paper. But fome Reafons have now determined me to fend you with the Continuation of my former Method, a fhort Account of two other Methods in which I have treated the fame Subject, and fome Obfervations on Equations that I take to be new, and which will, perhaps, be more acceptabie to you than what relates to the imaginary Roots themfelves. Befides Sir Ifaac Neroton's Rule, there arifes from the following gene-

(60)

ral Propofitions, a great Variet'y of new Rules, different from his, and from any other hitherto publifhed, for difcovering when an Equation has imaginary Roots. I hall particularly explain one that is more ufeful for that Purpofe, than any that have been hitherto publifhed.

Suppofe there is an Equation of (n) Dimenfions of this Form,

$$
\begin{aligned}
& \quad x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3}+\mathrm{D} x^{n-4} \\
& -\mathrm{E} x^{n-5}+\mathrm{F} x^{n-6}-\mathrm{G} x^{n-7}+\mathrm{H} x^{n-8}- \\
& \mathrm{I} x^{n-9}+\mathrm{K} x^{n-\mathrm{r} 0} \mathrm{Sc}=\mathrm{c} .
\end{aligned}
$$

And that the Roots of this Equation are, a, b, c, d, e, $f, g, b, i, k, l, \& c$. then fhall $\mathrm{A}=a+b+c+d+e$ $+f \& c$. and therefore I call $a, b, c, d, e, f, \& c$. Parts or Terms of the Coefficient A. For the fame Reafon I call $a b, a c, a d, a e, b c, b d, c d, \& c$. Parts or Terms of the Coefficient B; $a b c, a b d, a b e, a c d, b c d, \&<c$. Parts or Terms ofC; $a b c d, a b c e, a b c f$, Parts or Terms of the Coefficient D, and fo on. By the Dimenfions of any Coefficient ; I mean the Number of Roots or Factors that are multiplied into each other in its Parts, which is always equal to the Number of Terms in the Equation that preceed that Coefficient. Thus A is a Coefficient of one Dimenfion, B of two, C of three, and fo of the reft. I call a Part or Term of a Coefficient C fimilar to a Part or Term of any Coefficient G, when the Part of G involves all the Factors of the Part of C : Thus $a b c, a b c d e f g$ are fimilar Parts of C and G ; after the fame manner $a b c d, a b c d e f$ are fimilar Parts of D and F, the Part of Finvolving all the Factors of the Part of D. Thofe I call difimilar Parts that involve no common Root or Factor: Thus $a b c$, and defg b are diffimilar Parts of the Cocfficients C and F . The Sum of all
the

(61)

the Products that can be made by multiplying the Parts of any CoefficientC by all the fimilar Parts of G, I exprefs by $\mathrm{C}^{\prime} \mathrm{G}^{\prime}$ placing a fmall Line over each Coefficient: After the fame manner $D^{\prime} F^{\prime}$ expreffes the Sum of all the Products that can be made by multiplying the fimilar Parts of D and F by each other; and $\mathrm{C}^{\prime} \times \mathrm{C}^{\prime}$ expreffes the Sum of the Squares of the Parts of the Coefficient C, but $\mathrm{C}^{\prime} \times \mathrm{C}$; expreffes the Sum of the Products that can be made by multiplying any two Parts of C by one another. Thefe Expreflions being underftood, and the five Propofitions in Pbil. Tranj: $\mathbf{N}^{\circ} 394$, being premifed, next follows

> PROP. VI.

If the Difference of the Dimenfions of any two Coefficients C and G be called (m) then gall the Product of thefe Coefficients multiplied by one another be equal to $\mathrm{C}^{\prime} \mathrm{G}^{\prime}+\overline{m+2} \times \mathrm{B}^{\prime} \mathrm{H}^{\prime}+\frac{m+3}{\mathbf{I}} \times$ $\frac{m+4}{2} A^{\prime} I^{\prime}+\frac{m+4}{\mathrm{I}} \times \frac{m+5}{2} \times \frac{m+6}{3} \times I \times K$.

Where B and H are the Coefficients adjacent to the Coefficients C and G, A and I the Coefficients adjacent to B and H, I and K the Coefficients adjacent to B and H .

It is known that $\mathrm{C}=a b c+a b d+a b e+a b f+$ $a b g, \& c$. and $G=a b c d e f g+a b c d e f b+a b c d e f i$ $+b c d e f g b, \& c$. and it is manifeft,

1. That in the Product CG each Term of $\mathrm{C}^{\prime} \mathrm{G}^{\prime}$ will arife once as $a^{2} b^{2} c^{2} d e f g$. But
2. Any Term of $\mathrm{B}^{\prime} \mathrm{H}^{\prime}$ as $a^{2} b^{2} c d e f g h$ may be the Product of $a b c$, and $a b d e f g b$, or of $a b d$ and $a b c e f g h$, or of $a b e$ and $a b c d f g b$, or of $a b f$ and abcdegh,

(62)

$a b c d e g b$, or of $a b g$ and $a b c d e f b$, or laftly of $a b b$ and $a b c$ defg; fo that it may be the Product of any Term of C that involves with $a b$ one of the Roots, c, d, e, f, g, b, multiplied by that Term of G, which involves $a b$ and the other five; that is, it may arife in the Product CG as often as there are Roots in $a^{2} b^{2} c$ def $g b$ befides a and b, or in general, as often as there are Units in the Difference of the Dimenfions of B and H , that is, $m+2$ times; becaufe m expreffes the Difference of the Dimenfions of C and G, and confequently in expreffing the Value of $C G$ the Coefficient of the fecond Term $\mathrm{B}^{\prime} \mathrm{H}^{\prime}$ mult be $m+2$.
3. Any Term of AI, as $a^{2} b c d e f g b i$, may be the Product of any Part of C that involves the Root a with any two of the reft b, c, d, e, f, g, b, i (the Number of which is the Difference of the Dimenfions of A and I, which is in general equal to $m+4$) multiplied by the Part of G that involves a and the other fix; and therefore $a^{2} b c d e f g b i$ or any other Term of $A^{\prime} l^{\prime}$ mult arife as often as different Products of two Quantities can be taken from Quantities whofe Number is $m+4$, that is $\overline{m+4} \times \frac{m+4-1}{2}$ times or $\frac{m+3}{1} \times \frac{m+4}{2}$ times; and confequently in expreffing the Value of C G the Coefficient of the third Term $A^{\prime} \mathrm{I}^{\prime}$ muft be $\frac{m+3}{I}$ $\times \frac{m+4}{3}$.
4. Any Term of $1 \times \mathrm{K}$ as $a b c d e f g b i k$, may be the Product of any Part of C that involves three of its Factors, and of the Part of G that involves the reft, and therefore may arife in the Product CG as often as different

(63)

Products of three Quantities can be taken out of Quantities whofe Number is $m+6$ that is, $\overline{m+6} \times \frac{m+5}{2}$ $\times \frac{m+4}{3}$ times, and therefore the Coefficient of the fourth Term in the Value of C G muft be $\frac{m+4}{\mathrm{I}} \times$ $\frac{m+5}{2} \times \frac{m+6}{3}$.

In general, in expreffing the Value of the Product of any two Coefficients C and G , if x exprefs the Order of any Term of this Value as $\mathrm{A}^{\prime} \mathrm{I}^{\prime}$, that is, the Number of Terms that precede it, the Coefficient of that Term muft be $\frac{2 x+m}{\mathbf{I}} \times \frac{2 x+m-\mathbf{I}}{2} \times$ $\frac{2 x+m-2}{3}$ \&c. taking as many Factors as there are 3
Units in x.
Cor. I. If it is required to find by this Propofition the Square of any Coefficient E, then fuppofe $m=0$, the Difference of the Dimenfions of the Coefficients in this Cafe vanifhing, and we fhall have $\mathrm{E}^{2}=\mathrm{E}^{\prime} \times \mathrm{E}^{\prime}+$ $2 D^{\prime} F^{\prime}+3 \times \frac{4}{2} \times C^{\prime} G^{\prime}+4 \times \frac{5}{2} \times \frac{6}{3} \times B^{\prime} \mathrm{H}^{\prime}$ $\& c .=E^{\prime} \times E^{\prime}+2 D^{\prime} F^{\prime}+6 C^{\prime} G^{\prime}+20 B^{\prime} H^{\prime}$ $+70 A^{\prime} I^{\prime}+252 \mathrm{~K}$. Therefore if $\mathrm{E}^{\prime} \times \mathrm{E}, \mathrm{ex}-$ prefs the Sum of the Products of any two parts of E multiplied by each other, we fhall have $\mathrm{E}^{2}=\mathrm{E}^{\prime} \times \mathrm{E}^{\prime}$ $+2 E^{\prime} \times E_{f}$, and therefore $E^{\prime} \times E_{1}=D^{\prime} F^{\prime}+$ $3 C^{\prime} G^{\prime}+10 B^{\prime} H^{\prime}+35 A^{\prime} I^{\prime}+126 K$.

Cor.

Cor. II. It follows from this Propofition that $E^{2}=E^{\prime} x E^{\prime}+2 D^{\prime} F^{\prime}+6 C^{\prime} G^{\prime}+20 B^{\prime} H^{\prime}+70 A^{\prime} I^{\prime}+25^{\prime} \mathrm{K}$. $D F=-\quad D^{\prime} F^{\prime}+4 C^{\prime} G^{\prime}+1 \rho B^{\prime} H^{\prime}+\rho 6 A^{\prime} I^{\prime}+210 \mathrm{~K}$. $C G=-\quad . \quad \mathrm{C}^{\prime} \mathrm{G}^{\prime}+6 \mathrm{~B}^{\prime} \mathrm{H}^{\prime}+28 \mathrm{~A}^{\prime} \mathrm{I}^{\prime}+120 \mathrm{~K}$ $\mathrm{BH}=$. - - . . - - $\mathrm{B}^{\prime} \mathrm{H}^{\prime}+8 \mathrm{~A}^{\prime} \mathrm{I}^{\prime}+45 \mathrm{~K}$ $\mathrm{AI}=$. $\mathrm{A}^{\prime} \mathrm{I}^{\prime}+10 \mathrm{~K}$

Cor. III. It eafily appears by comparing the Theorems given in the laft Corollary, that $\mathrm{E}^{\prime} \mathrm{E}^{\prime}=-\mathrm{E}^{2}-2 \mathrm{DF}+2 \mathrm{CG}-2 \mathrm{BH}+2 \mathrm{AI}-2 \mathrm{~K}$. $\mathrm{D}^{\prime} \mathrm{F}^{\prime}=$ - - $\mathrm{DF}-4 \mathrm{CG}+9 \mathrm{BH}-16 \mathrm{AI}+2 \rho \mathrm{~K}$ $\mathrm{C}^{\prime} \mathrm{G}^{\prime}=-. .-\quad-\mathrm{CG}-6 \mathrm{BH}+20 \mathrm{AI}-50 \mathrm{~K}$ $\mathrm{B}^{\prime} \mathrm{H}^{\prime}=-. .-. .-\mathrm{BH}-8 \mathrm{AI}+35 \mathrm{~K}$ $\mathrm{A}^{\prime} \mathrm{I}^{\prime}=$. AI- I 0 K . PROP. VII.

Let $l=n \times \frac{n-1}{2} \times \frac{n-2}{3}$ \&c. taking as many
Factors as the Coefficient E bas Dimenfions and $\frac{l-\mathbf{r}}{2 l} \times \mathrm{E}^{2}$ yball always exceed $\mathrm{D} \mathrm{F}-\mathrm{C} \mathrm{G}+\mathrm{BH}$ $-\mathrm{AI}+\mathrm{K}$ when the Roots of the Equation are all real Quantities.

For it is manifeft that l expreffes the Number of Parts or Terms in the Coefficient E , and it is plain from Propofition V (See Pbil. Tranf. N° 394) that $\frac{l-1}{2 l} \times E^{2}$ mult always be greater than the Sum of the Products that can be made by multiplying any two

(65)

of the Parts of E by each other, that is, than $\mathrm{E}^{\prime} \times \mathrm{E}_{1}$; but $2 \mathrm{E}^{\prime} \times \mathrm{E}_{\mathrm{f}}=\mathrm{E}^{2}-\mathrm{E}^{\prime} \mathrm{E}^{\prime}=$ (by the firft Theorem in the laft Corollary) $2 \mathrm{DF}-2 \mathrm{CG}+2 \mathrm{BH}$ $\boldsymbol{-}^{2} A^{\prime} \mathrm{I}+2 \mathrm{~K}$, and therefore fince $\frac{l-\mathbf{1}}{2 l} \times \mathrm{E}^{\text {: }}$ muft always exceed $E^{\prime} E_{l}$, it follows that $\frac{l-\mathbf{I}}{2 l} E^{2}$ mult always be greater than $\mathrm{DF}-\mathrm{CG}+\mathrm{BH}-$ $A I+K$ when the Roots of the Equation are real Quantities.

Sсноц. In following my Method this was the firft general Propofition prefented it felf. For having firft obferved that if l expreffes the Number of any Quantities, the Square of their Sum multiplied by $\frac{l-\mathbf{1}}{2 l}$ muft always exceed the Sum of the Products made by multiplying any two of them by each other; and that the Excefs was the Sum of the Squares of the Differences of the Quantities divided by $2 l$, it was eafy to fee in the Equation $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3}+$ $\mathrm{D} x^{n-4} \& c .=0$. Since B is the Sum of the Products of any two of the Parts of A, that if l expreffes theNumber of the Roots of the Equation, $\frac{l-\mathbf{I}}{2 l} \times A^{*}$ muft always exceed B; and this is one Part of the 5 th Propofition. In the next Place, I compared the Sum of the Products of any two Parts of B with AC , and found that it was not equal to AC but to $\mathrm{AC}-\mathrm{D}$ from which I inferred, that if l expreffes K_{2}

(66)

the Number of the Parts of B then $\frac{l-\mathbf{T}}{2 l} \times B^{2}$ muft always exceed $A C-D$; and thefe eafily fuggefted this general Propofition.

PROP. VIII.

Let r exprefs the Dimenfons of the Coefficient C , and s the Difference of the Dimenfions of the Coefficients C and G , then B and H being Coefficients adjacent to C and $\mathrm{G}, \overline{\mathrm{n}-\mathrm{r}-\mathrm{s}} \times \mathrm{r} \mathrm{C}^{\prime} \mathrm{G}^{\prime}$ foallalways be greater than $\mathrm{s}+\mathrm{x} \times \mathrm{s}+2 \times \mathrm{B}^{\prime} \mathrm{H}^{\prime}$ when the Roots of the Equation are all real Quantities affected with the Same Sign.

For taking the Differences of all thofe Parts of the Coefficient C that are fimilar in all their Factors but one, as $a b c a b b, a b i, \& c$. and multiplying the Square of each Difference by fuch Parts of the Coefficient D (which is of s Dimenfions) as are diffimilar to both the Parts of C in that Difference, the Sum of all thofe Squares thus multiplied, will confift of Terms of $\mathrm{C}^{\prime} \mathrm{G} /$ taken pofitively, and of Terms of $\mathrm{B}^{\prime} \mathrm{H}^{\prime}$ taken negatively. By multiplying in this manner $a \overline{b c-a b b}{ }^{2}+$ $\left.\overline{a b c-a b}\right|^{2}+\left.\overline{a b c-a b k}\right|^{2} \bar{\alpha} c .+\overline{a b c-\left.a c b\right|^{2}}+$ $\left.\overline{a b c-a c}\right|^{2}+\left.\overline{a b c-a c k}\right|^{2} \& c .+\overline{a b c-\left.b c b\right|^{2}}+$ $\overline{a b c-b c e}{ }^{2}+\overline{a b c-\left.b c k\right|^{2}} \& c$. by $d e f g$ the Term of D, that is diffimilar to all thofe Parts of C, you will find that $a^{2} b^{2} c^{2} d e f g$ will arife in the Sum of the Products $r \times \overline{n-r-s}$ times: For thofe Products may be alfo expreffed thus defga$a^{2} b^{2} \times{\overline{\overline{c-b}}{ }^{2}+\left.\overline{c-}\right|^{2}+\overline{c-k}}^{2}$ $\& \mathrm{c} .+\operatorname{def} g a^{\prime} b^{2} \times \overline{b-b}+\left.\overline{b-i}\right|^{2}+b-\left.k\right|^{2} \& c+$ defg $b^{\prime} c^{2}$

(67)

defg $b^{2} c^{2} \times a-\left.\right|^{2}+\left.\overline{a-1}\right|^{2}+a-\left.k\right|^{2}$ \&c. where the Number of the Differences $c-b, c-i, c-k$, \&c. whofe Squares are multiplied by defg. $a^{2} b^{2}$ is manifeftly equal to the Number of the Roors of the Equation that do not enter $a^{2} b^{2} c^{2} d e f g$ or $a b c d e f g$, that is, to the Excefs of the Number of the Roots of the Equation above the Dimenfions of $a b c$ def g, a Term of G, that is to $n-r-s$. But in collecting all the faid Products, $n-r$ - $s \times a^{2} b^{2} c^{2} d e f g$ mult arife as often as there are Units in r : Becaufe the Terms which are fubtracted from $a b c$ may differ from it in the Root c, as $a b b, a b i, a b k$, \&c. or in the Root b, as $a c h, a c i, a c k$, $\mathbb{X} c$. or in the Root a as $b c b, b c i, b c k$; that is, $n-r-s \times a^{2} b^{2} c^{2} d e f g$ muft arife as often as there are Dimenfions in $a b c_{3}$, a Term of C , or as often in general as there are units in r, which expreffes the Dimenfions of C: Therefore the Term $a^{2} b^{2} G^{2} d e f g$ will arife in the Sum of the above-mentioned Products $r \times n-r-s$ times.

The Negative Part muft confift of the Terms of $\mathrm{B}^{\prime} \mathrm{H}^{\prime}$ doubled; each of which, as $2 a^{2} b^{2} c d e f g$ may arife as often as there can be Differences $c-d, c-e$, $c-f, c-g, d-e, \& c$. affumed amongft the Terms c, d, e, f, g whofe Number is equal to $s+2$ that is, $s+2$ $\times \frac{s+1}{2}$ times; and therefore $a^{2} b^{x} c d e f g$ or any other Part of $\mathrm{B}^{\prime} \mathrm{H}^{\prime}$ muft arife in the negative Part $\overline{s+\mathbf{x}}$ $\times s+2$ times; and fince the whole aggregate muft be pofitive it follows $\overline{n-r-s} \times r \mathrm{C}^{\prime} \mathrm{G}^{\prime}$ muft al. ways exceed $\overline{s+} \times \overline{s+2} \times \mathrm{B}^{\prime} \mathrm{H}^{\dagger}$.

(68)

Cor.I. Suppofe we are to compare $\mathrm{E}^{\prime} \mathrm{E}^{\prime}$ the Sum of the Squares of the Parts of E with $D^{\prime} F^{\prime}$ the Sum of the Products of the fimilar Parts of D and F; in this Cafe s vanifhes, and therefore $\overline{n-r} \times r \mathrm{E}^{\prime} \mathrm{E}^{\prime}$ muft exceed $2 \mathrm{D}^{\prime} \mathrm{F}^{\prime}$. Let $\overline{n-r} \times r=m$ and confequently $\overline{n-r-1} \times \overline{r-1}=m-n+\mathbf{1} ; \overline{n-r-2} \times$ $\overline{r-2}=m-2 n+4 ; \overline{n-r-3} \times \overline{r-3}=$ $m-3 n+9 ; \overline{n-r-4} \times \overline{r-4}=\overline{m-4 n+16}$. Since it is plain that $\overline{n-r-q} \times \overline{r-q}=\overline{n-r} \times r$ $-q n+q^{2}$. Then by this Propofition, fuppofing $m \times \mathrm{E}^{\prime} \mathrm{E}^{\prime}-2 \mathrm{D}^{\prime} \mathrm{F}^{\prime}=a^{\prime}$ $\overline{m-n+1} \times \mathrm{D}^{\prime} \mathrm{F}^{\prime}-12 \mathrm{C}^{\prime} \mathrm{G}^{\prime}=b^{\prime}$ $\overline{m-2 n+4} \times \mathrm{C}^{\prime} \mathrm{G}^{\prime}-30 \mathrm{~B}^{\prime} \mathrm{H}^{\prime}=c^{\prime}$ $\overline{m-3 n+9} \times \mathrm{B}^{\prime} \mathrm{H}^{\prime}-56 \mathrm{~A}^{\prime} \mathrm{I}^{\prime}=d^{\prime}$
$m-4 n+16 \times \mathrm{A}^{\prime} \mathrm{l}^{\prime}-90 \mathrm{~K}^{\prime}=e^{\prime}$
The Quantities $a^{\prime}, l^{\prime}, c^{\prime}, d^{\prime}, e \prime$, muft be always pofitive when the Roots of the Equation are real Quantities affected with the fame Sign. The Coefficients prefixed to the negative Parts are the Numbers 2,12,30,56,90, whofe Differences equally increafe by the fame Number 8.

Cor.II. Suppofing as before, that $\overline{n-r} \times r=m$; and alfo that $m \times \overline{m-n+1}=m^{\prime} ; m^{\prime} \times \overline{m-2 n+4}$ $=m^{\prime \prime} ; m^{\prime \prime} \times m-3 n+9=m^{\prime \prime \prime} \& c$. it may be demonftrated after the manner of this Propofition, that if $m \mathrm{E}^{\prime} \mathrm{E}^{\prime}-2 \mathrm{D}^{\prime} \mathrm{F}^{\prime}=a^{\prime}$ $m^{\prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime}-2 \times \mathrm{I}_{2} \mathrm{C}^{\prime} \mathrm{G}^{\prime}=a^{\prime \prime}$

$$
\begin{aligned}
& m^{\prime \prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime}-2 \times 12 \times 30 \mathrm{~B}^{\prime} \mathrm{H}^{\prime}=a^{\prime \prime \prime} \\
& m^{\prime \prime \prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime}-2 \times 12 \times 30 \times 56 \mathrm{~A}^{\prime} \mathrm{I}^{\prime}=a^{\prime \prime \prime \prime} \&{ }^{2} .
\end{aligned}
$$

Then

(69)

Then fhall $a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}, \& c$. be always pofitive when the Roots are real Quantities, whether they be affected with the fame, or with different Signs. The Negative Coefficients arife by multiplying thofe in the preceeding Corollary, 2,12,30,56,90, by one another.

P R O P. IX.

Let a $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \epsilon^{\prime}$, and m exprefs the fame 2 uantities as in the Corollaries of the laft Propofition, and $m \mathrm{E}^{2}$ $m+n+1 \times \mathrm{DF}=a^{\prime}+b^{\prime}+2 c^{\prime}+5 d^{\prime}+14 e^{\prime}$. For by Cor. ii Prop. vi.
$E^{2}=E^{\prime} E^{\prime}+2 D^{\prime} F^{\prime}+6 C^{\prime} G^{\prime}+20 B^{\prime} H^{\prime}+70 A^{\prime} I^{\prime}+252 K$, and by the fame
$\mathrm{DF}=-\quad-\mathrm{D}^{\prime} \mathrm{F}^{\prime}+{ }_{4} \mathrm{C}^{\prime} \mathrm{G}^{\prime}+{ }_{15} \mathrm{~B}^{\prime} \mathrm{H}^{\prime}+56 \mathrm{~A}^{\prime} \mathrm{I}^{\prime}+2{ }_{20} \mathrm{~K}$; therefore $m \mathrm{E}^{2}-m+n+\mathrm{I} \times \mathrm{DF}=m \mathrm{E}^{\prime} \mathrm{E}^{\prime}+$ $m-n-1 \times \mathrm{D}^{\prime} \mathrm{F}^{\prime}+m-2 n-2 \times 2 \mathrm{C}^{\prime} \mathrm{G}^{\prime}$ $+m-3 n-3 \times 5 \mathrm{~B}^{\prime} \mathrm{H}^{\prime}+m-4 n-4 \times$ $14 \mathrm{~A}^{\prime} \mathrm{I}^{\prime}+m-5 n-5 \times 42 \mathrm{~K}=$ (by fubftituting fucceffively for $m \mathrm{E}^{\prime} \mathrm{E}^{\prime}, m-n+\mathbf{m} \times \mathrm{D}^{\prime} \mathrm{F}^{\prime}$, $\overline{m-2 n+4} \times \mathrm{C}^{\prime} \mathrm{G}^{\prime}, \overline{m-3 n+9} \times \mathrm{B}^{\prime} \mathrm{H}^{\prime}$, $m-4 n+16 \times A^{\prime} I^{\prime}$ their Values deduced from the firt Corollary of the laft Propofition) $=a^{\prime}+b^{\prime}+$ $2 c^{\prime}+5 d^{\prime}+14 e^{\prime}$, where the Coefficients prefixed to $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \epsilon^{\prime}$, are the Differences of the Coefficients of $\mathrm{E}^{\prime} \mathrm{E}^{\prime}, \mathrm{D}^{\prime} \mathrm{F}^{\prime}, \mathrm{C}^{\prime} \mathrm{G}^{\prime}, \mathrm{B}^{\prime} \mathrm{H}^{\prime}, \mathrm{A}^{\prime} \mathrm{H}^{\prime}$ and K in the Values of E^{2} and $D F$ taken from Cor. ii. Prop. vi. being $I-0$, 2-1, 6-4,20-15, 70-56 and 252-210.

(70)

Cor. Since $m=\overline{n-r} \times r$ therefore $m+n+1$ $=\overline{n-r+x} \times \overline{r+x}$; and confequently $\frac{r}{r+\mathbf{x}} \times$ $\overline{n-r+\mathbf{x}} \times \mathrm{E}^{\bar{i}}$ muft always be greater than DF the Product of the Coefficients adjacent to E ; and hence the Fractions are deduced, that in Sir IJaac Nervoton's Rule are placed over the Terms of the Equation, which multiplied by the Square of the Terms under them, muft always exceed the Produtts of the adjacent Terms of the Equation, when the Roots are real Quantities : For it is manifeft that the Fration to be placed over the Term $\mathrm{Ex}{ }^{-n-r}$ according to that Rule is the Quotient of $\frac{n-r}{r+\mathrm{I}}$ divided by $\frac{n-r+1}{r}$.

PROP. X.

The fame Expreflons being allowed as in the preceeding Propofitions, it will be found in the fame mannerthat as $m \mathrm{E}^{\prime}-\overline{m+n+\mathrm{I}} \times \mathrm{DF}=a^{\prime}+b^{\prime}+2 c^{\prime}+5 a^{\prime}+14 e^{\prime} \mathrm{f}_{0}$ $\overline{m-n+x} \times$ DF- $\overline{m+2 n+4} \times \mathrm{CG}=-b^{\prime}+3 c^{\prime}+9 a^{\prime}+28 e^{\prime}$ $\overline{m-2 n+4} \times \mathrm{CG}-\overline{m+3 n+9} \times \mathrm{BH}=\cdots c^{\prime}+5 k^{\prime}+20 e^{\prime}$ $\frac{\overline{m-3 n+9}}{\overline{m-4 n}+16} \times \mathrm{BH}-\overline{m+4 n+16} \times \mathrm{AI}=\cdots \cdot d^{\prime}+7 e^{\prime}$

Thefe Theorems are eafily deduced from the Theorems given in the fecond Corollary of Prop. vi. and the firt Corollary of the viiith Propofition; and the Coefficients prefixed to $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}$, are the Differences of the Coefficients of the correfponding Terms in the Values of E^{2}, D F, C G, B H, A I and K in Cor. ii. Prop. vi.

Cor.

(71)

Cor. Hence the Products of any two Coeficients, as DF and AI may be compared together when the Sum of the Dimenfions of D and F is equal to the Sum of the Dimenfions of A and I. Let the Dimenfions of A and F be equal to s and m refpectively, and $\operatorname{let} p=\frac{n-s}{s+\mathbf{x}} \times \frac{n-s-\mathbf{1}}{s+2} \times \frac{n-s-2}{s+3}$ \&ic. tak. ing as many Factors as there are Units in the Difference of the Dimenfions of D and A . Let $q=\frac{n-m}{m+\mathbf{I}} \times 1$ $\frac{n-m-1}{m+2} \times \frac{n-m-2}{m+3} \& c$. taking as many Factors as you took in the Value of p. Then fhall $\frac{q}{p} \times$ DF always exceed AI when the Roots of the Equation are real Quantities affected with the fame Sign; and this Rule obtains, though the Roots are affected with different Signs when the Coefficients D and F are equal.

P R O P. XI.

The fame Things being fuppofed as in the preceeding Propofitions.

2. $\left.\overline{m-n+1} \times \mathrm{DF}-\overline{m-n+4} \times 4 \mathrm{CG}+\overline{m-n+9} \times\}={ }_{9} \mathrm{BH} \overline{m-n+16} \times 16 \mathrm{AI}+\overline{m-n+25} \times 25 \mathrm{~K}\right\}$
3. $\overline{m-2 n+4} \times \mathrm{CG}-\overline{m-2 n+9} \times 6 \mathrm{BH}+\overline{m-2 n+16} \times 3=c^{\prime}$.
$4 \overline{m-3 n+9} \times \mathrm{BH}-\overline{m-3 n+16} \times 8 \mathrm{AI}+\overline{m-3 n+25} \times 35 \mathrm{~K}=d^{\prime}$. ᄃ. - $\overline{m-4 n+16} \times \mathrm{AI}_{\mathrm{L}} \overline{m-4 n+25} \times 10 \mathrm{~K}=e$ Thefe

(72)

Thefe Theorems follow eafily from the third Corollary of the vith Propofition. The firfteafily appears thus, $a^{\prime}=m \mathrm{E}^{\prime} \mathrm{E}^{\prime}-2 \mathrm{D}^{\prime} \mathrm{F}^{\prime}=$ (by that Corollary) $m \mathrm{E}^{2}-2 m \mathrm{DF}+2 m \mathrm{CG}-2 m \mathrm{BH}+2 m \mathrm{AI}-2 m \mathrm{~K}$. $-2 \mathrm{DF}+8 \mathrm{CG}-18 \mathrm{BH}+32 \mathrm{AI}-50 \mathrm{~K}$.
$=m \mathrm{E}^{2}-\overline{m+1} \times 2 \mathrm{DF}+\overline{m+4} \times 2 \mathrm{CG}-$ $m+9 \times 2 B H+\overline{m+16 \times 2 A I-\overline{m+25} \times 2 K .}$ The other Theorems are deduced from the fame Corollary compared with Cor. i. Prop. viii.

PROP. XII.

The fame Things being fuppofed as in the fecond Corollary of the viiith Propofition.

1. $\left.m \mathrm{E}^{2}-\overline{m+1} \times 2 \mathrm{DF}+\overline{m+4} \times 2 \mathrm{CG}-\overline{m+9} \times\right\}=a^{\prime}$.
$2 \mathrm{BH}+\overline{m+16} \times 2 \mathrm{AI}-\overline{m+25} \times 2 \mathrm{~K} \cdots$,

$$
\left.\begin{array}{l}
\text { 2. } m^{\prime} \mathbf{E}^{2}-\frac{m^{\prime} \mathrm{DF}}{}+\overline{m^{\prime}-12} \times 2 \mathrm{CG}-\overline{m^{\prime}-7^{2}} \times \\
2 \mathrm{BH}+\overline{m^{\prime}-240} \times 2 \mathrm{AI}-\bar{m}-600 \times 2 \mathrm{~K}-.-
\end{array}\right\}=a^{\prime \prime} .
$$

$$
\begin{array}{r}
\text { 3. } m^{\prime \prime} \mathbf{E}^{2}-2 m^{\prime \prime} \mathrm{DF}+2 m^{\prime \prime} \mathrm{CG}-\overline{m^{\prime \prime}+360} \times \\
\left.\left.2 \mathrm{BH}+\overline{m^{\prime \prime}+360 \times 8} \times 2 \mathrm{AI}-\overline{m^{\prime \prime}+360 \times 35 \times 2 \mathrm{~K}}\right\}\right\}=a^{\prime \prime \prime} .
\end{array}
$$

$$
\begin{aligned}
& \text { 4. } m^{\prime \prime \prime} \times \mathrm{E}^{2}-2 \mathrm{DF}+2 \mathrm{CG}-2 \mathrm{BH}+m^{\prime \prime}-750 \times 28 \times \times, \\
& \mathrm{Al}^{\prime \prime} \mathrm{m}-7200 \times 28 \times 2 \mathrm{~K} \cdots \cdots a^{\prime \prime \prime \prime} .
\end{aligned}
$$ $\mathcal{E}^{\circ} \mathrm{c}$.

Thefe Theorems follow from the third Corollary of the vith Propofition compared with the fecond Corollary of the eighth Propofition. The firft is the fame with the firft of the laft Propofition. The fecond is demonftrated by fubftituting in $m^{\prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime}-24 \mathrm{C}^{\prime} \mathrm{G}^{\prime}=$ $8^{\prime \prime \prime}$. The Values of $\mathrm{E}^{\prime} \mathrm{E}^{\prime}$ and $\mathrm{C}^{\prime} \cdot \mathrm{G}^{\prime}$ given in the third

Cor.

(73)

Cor. of the vith Propofition. The third is found by fubftituting in $m^{\prime \prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime}-720 \mathrm{~B}^{\prime} \mathrm{H}^{\prime}=a^{\prime \prime \prime}$ the Values of $\mathrm{E}^{\prime} \mathrm{E}^{\prime}$ and $\mathrm{B}^{\prime} \mathrm{H}^{\prime}$; and by a like Subftitution thefe Theorems may be continued.

A General COROLLARY.

From thefe Propofitions a great Variety of Rules may be deduced for difcovering when an Equation has imaginary Roots. The Foundation of Sir I/aac Nerw$t o n ' s$ Rule is demonftrated in the ninth Propofition, and its Corollary. The feventh Propofition fhews that if $\frac{l-\mathrm{I}}{2 l} \times \mathrm{E}^{2}$ does not exceed D F-C $-\mathrm{C}+\mathrm{BH}-\mathrm{AI}$ $+K$, fome of the Roots of the Equation muft be inaginary; and fometimes this Rule will difcover impoffible Roots in an Equation, that do not appear by Sir Ifaac Nerwton's Rule. Thefe are the only two Rules that have been hitherto publifhed. But the Rules that arife from the Theorems in the eleventh and twelfth Propofitions,are preferable to both; becaufe any imaginary Roots that can be difcovered by the viith or ix ${ }^{\text {th }}$ always appear from the xith and xiith Propofitions; and impoffible Roots will often be difcovered by the xith and xiith Propofitions in an Equation, that do not appear in that Equation when examined by the viith and ix th Propofitions. The Advantage which the Rules deduced from the xith Propofition, have above thofe deduced from the preceeding Propofitions, will be manifeft by confidering that in the xith Propofition we have the Values of the Quantities $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}$, feparately ; whereas in the preceeding Propofitions, we have only the Values of certain Aggregates of thefe Quantities

(74)

joined with the fame Signs. Now it is obvious that if thefe Quantities be feparately found pofitive, any fuch Aggregates of them muft be pofitive; but thefe Aggregates may be pofitive, and yet fome of the Quantities $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \epsilon^{\prime}$, themfelves may be found negative : From which it follows, that if the Roots of the Equation are all affected with the fame Sign, and no impoffible Roots appear by Propofition xith, none will appear by the preceeding Propofitions; but that fome imaginary Roots may be difcovered by Propofition xith, when none appear in the Equation examined by the Propofitions that preceed the $\mathbf{x} \mathrm{i}^{\text {th }}$. If fome of the Roots of the Equation are pofitive, and fome negative (which always eafily appears by confidering the Signs of the Terms of the Equation) then the xiith Propofition will be in many Cafes more apt to difcover imaginary Roots in an Equation than thofe that preceed it.

The Rule that flows from the firf Theorem of the $x^{\text {th }}$ Propofition, obtains when the Roots of the Equation are affected with different Signs, as well as when they all have the fame Sign, and it is this; Multiply the Number of the Terms in an Equation that preceeds any Term, as $\mathrm{E} x^{n-r}$ by the Number of Terms that follow it in the fame Equation, and call the Product m. Suppofe that $+\mathrm{D},-\mathrm{C},+\mathrm{B},-\mathrm{A},+\mathrm{I}$ are the $\mathrm{Co}-$ efficients preceeding the Term $\mathrm{E} x^{n-r}$, and that +F , $-\mathrm{G},+\mathrm{H},-\mathrm{I},+\mathrm{K}$ are the Coefficients that follow it; then if $\frac{\mathbf{1}}{2} \mathrm{E}^{2}$ does not exceed $\overline{m+1} \times \mathrm{DF}$ $-\overline{m+4} \times \mathrm{CG}+\overline{m+9} \times \mathrm{BH}-\overline{m+16} \times \mathrm{AI}$ $+m+25 \times \mathrm{K}$ the Equation muft have fome imaginary Roots; where the Coefficients $m+\mathbf{1}, m+4, m+9$, \&ic.

(75)

$\delta \cdot \mathrm{c}$. are found by adding to m the Squares of the Numbers $1,2,3,4$, \&c. which thew the Dittances of the Coefficients to which they are prefixed, from the Coefficient E. The fecond Theorem of the xiith Propofition flews, that if $\frac{\mathbf{I}}{2} m^{\prime} \mathrm{E}^{\mathbf{2}}$ does not exceed $m^{\prime} \mathrm{DF}$ 2
$-\overline{m_{i}^{\prime}-12} \times \mathrm{CG}+m-72 \times \mathrm{BH}-\overline{m^{\prime}-240}$ $\times A I+\overline{n^{\prime}-600} \times K$, the Equation muft havefome Roots imaginary.

For an Example, If the four Roots of the Biquadratick Equation $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}=0$ are real Quantities, it will follow equally from the $v^{\text {th }}$, vii $i^{\text {th }}, \mathrm{ix}^{\text {th }}$, and $\mathrm{x}^{\text {ith }}$ Propofitions, that $\frac{3}{8} A^{2}$ muft be greater than B, and that $\frac{3}{8} C^{2}$ muft exceed $B D$. The viith further fhews that $\frac{5}{12} \mathrm{~B}^{2}$ muft exceed $\mathrm{AC}-\mathrm{D}$; the ix th demonftrates that $\frac{4}{9} B^{2}$ muft exceed $A C$; but 9 our Rule deduced from Prop xi. fhews that $2 \mathrm{~B}^{2}$ muft exceed $5 \mathrm{AC}-8 \mathrm{D}$, the excefs being $\frac{\mathbf{1}}{2} a^{\prime}$, and the Rule deduced from the fecond Theorem of the xiith Propofition fhews that B^{2} muft always exceed 2 AC +4 D , the Excels being $\frac{1}{4} a^{\prime \prime}$. It appears from feveral preceeding Propofitions, that if the Roots of the Equation have all the fame Sign, then AC muft exceed $16 \mathrm{D}:$ Let the Exceffes $5 \mathrm{~B}^{2}-12 \mathrm{AC}+12 \mathrm{D}$ $=p, 4 \mathrm{~B}^{2}-9 \mathrm{AC} \rightleftharpoons q, \mathrm{AC}-16 \mathrm{D}=s$; and it is plainthat $a^{\prime}\left(=4 B^{2}-10 \mathrm{AC}+16 \mathrm{D}\right)=q$

(76)

$-s=\frac{2}{5} \times \overline{2 p-s}$; and that $a^{\prime \prime}=q+s=\frac{2}{5} \times$
$2 p+4 s$. Let us fuppofe,

1. That s is pofitive, then it is manifeft that if either p or q be negative, a^{\prime} mult alfo be found negative, and confequently that when the vith or ix ${ }^{\text {th }}$ Propofitions hew any Roots to be imaginary, the xith Propofition muft difcover them at the fame time. But as al
($=q-s=\frac{2}{5} \times \overline{2 p-s}$) may be found negative when p and q are both pofitive, it follows that the Rule we have deduced from the xith Propofition may difcover imaginary Roots in an Equation, that do not appear by the preceeding Propofitions: Thus if you examine the Equation $x^{4}-6 x^{3}+10 x^{2}-7 x$ $+\mathbf{I}$ by Sir Ifaac Newton's Rule, or by our viith Propofition, no imaginary Roots appear in it from cither. But fince $2 B^{2}-5 A C+8 D\left(=\frac{\mathbf{1}}{2} a^{\prime}\right)=$ $200-210+8=-2$ is in this Equation negative, it is manifeft that two Roots of the Equation muft be imaginary. Let us fuppofe

2 That s is negative, and that from the Signs of the Terms of the Equation, it appears that fome Roots are pofitive and fome negative; then in Order to fee if the Equation has any imaginary Roots, the moft ufeful Rule is that we deduced from the fecond Theorem of Prop. xii. viz. that if B^{2} does not exceed $2 \mathrm{AC}+$ 4 D fome of the Roots of the Equation mult be imaginary: For the Excefs of B^{2} above $2 \mathrm{AC}+4 \mathrm{D}$ being $\frac{\mathbf{I}}{4} a^{\prime \prime}=\frac{\mathbf{x}}{4} \times \overline{q+s}=\frac{\mathbf{I}}{10} \times \overline{2 p+4 s}$, and s

(77)

being negative, it is manifeft, that if q or p be negan tive $\frac{1}{4} a^{\prime \prime}$ muft be negative; and that $\frac{1}{4} a^{\prime \prime}$ may benegative when q and p are both pofitive ; that is, This Rule muft always difcover fome Roots to be imaginary when the viith or ix ${ }^{\text {th }}$ Propofitions difcover any impoffible Roots in an Equation; and will very often difcover fuch Roots in an Equation when thefe Propofitions difcover none. For Example, if you examine the Equation $x^{4}+5 x^{2}+6 x^{2}-x-12=0$, you will difcover no imaginary Roots in it by the viith or ix ${ }^{\text {th }}$ Propofitions; and though $\mathrm{AC}-16 \mathrm{D}(=s)$ be negative, it does not follow, that the Equation has any impoffible Roote, becaufe it appears from the Signs of the Terms, that the Equation has Roots affected with different Signs. But fince $\mathrm{B}^{2}-2 \mathrm{AC}-4 \mathrm{D}(=$ $36+10-48=-2$) is negative, it appears from our Rule, that the Equation muft have fome imaginary Roots.

I might fhew in the next Place, how the Rules deduced from the xith and xith Propofitions may be extended fo as to difcover when more than two Roots of an Equation are imaginary, and in general to determine the Number of imaginary Roots in any Equation ; but as it would require a long Difcuffion, and fome Lemma$t a$ to demonftrate this ftrictly, I fhall only obferve that thefe xith and $x i^{\text {th }}$ Propofitions will be found to be ftill the moft ufeful of all thofe we have given for that Purpofe. To give one Example of this; If we are to examine the Equation $x^{4}-4 a x^{3}+6 a^{2} x^{2}-4 a b^{2} x$ $+b^{4}=0$ by Sir $\stackrel{+}{\text { Jjaac }} \overline{N e w i t o n ' s ~}^{+}{ }_{\text {Rule, }}$ it is found $+$
to have four impoffible Roots when a is greater than b; for though the Square of the fecond Term multiplied

（78）

ed by $\frac{3}{8}$ be equal to the Product of the firft and third Terms，yet in that Cafe，in applying Sir Ifaac New－ ton＇s Rule，the Sign－ought to be placed under the fecond Term，and the fame is to be faid of the Square of the fourth Term．The Rule deduced fron the viiti Propofition thews four Roots imaginary，when a is greater than b ，and alfo when b^{2} is greater than $15 a^{2}$ ； but a Rule founded on the xith Propofition，fhews the four Roots to be imaginary always when a exceeds b ， or when b^{2} exceeds $9 a^{2}$ ；from which the Excellency of this Rule above thefe two is manifeft．I have faid fo much of Biquadratick Equations，that I muft leave it to thofe that are willing to take the Trouble，to make like Remarks on the higher Sorts of Equations．

In inveftigating the preceeding Propofitions，when I found my felf obliged to go through fo intricate Cal－ culations，I often attempted to find fome more cafy Way of treating this Subject．The following was of confiderable Ufe to me，and may perhaps be entertaining to you．By it，I inveftigate fome maxima in a very ea－ fy Manner，that could not be demonftrated in the com－ mon Way with fo little Trouble．
Lemma V．Let the given Line $A B$ be divided any where in P and the Rectangle of the Parts AP and PB will be a maximuin when thefe Parts are e－ qual．

This is manifeft from the Elements of Euclid．
Lemma VI．If the Line AB is divided into any Number of Parts AB，CD，DE，EB，the Product of all thofe Parts multiplied into one another will be a

(79)

maximum when the Parts are equal amongtt themfelves. For let the Point D be where you will, it is manifeft that if DB be biffected in E , the Product $\mathrm{AC} \times \mathrm{CD}$ $\times \mathrm{DE} \times \mathrm{EB}$ will be greater than $\mathrm{AC} \times$
$\mathrm{C} \mathrm{D} \times \mathrm{D} e \times e \mathrm{~B}$

becaufe by the laft Lemma $\mathrm{DE} \times \mathrm{EB}$ is greater than $\mathrm{D} e \times e \mathrm{~B}$; and for the fame raalon AD and CE muft be biffected in C and D ; and confequently all the Parts AC, C D, DE, EB muft be equal amongft themfelves, that their Product may be a maximum.

Lemma VII. The Sum of the Products that can be made by multiplying any two Parts of A B by one another is a maximum when the Parts are equal. The Sum of thefe Products is $A C \times C B+C D \times D B+D E$ $\times \mathrm{EB}$: Now that DE $\times \mathrm{EB}$ may be a maximum, D B muft be biffected in E by the $\mathrm{v}^{\text {th }}$ Lemma, and for the fame reafon $A D$ and $C E$ muft be biffected in C and D, that is all the Parts, A C, CD, DE, E B mult be equal, that the Sum of all thefe Products may be a maximum.

Lemma VIII. The Sum of the Products of any three Parts of the Line AB is a maximum, when all the Parts are equal. For that ${ }^{\prime}$ Sum is $\mathrm{AC} \times \mathrm{CD} \times \mathrm{DE}$
 fuppofing the Point E given, it is manifeft that A E muft be equally trifected in C and D that $\mathrm{AC} \times \mathrm{CD} \times \mathrm{DE}$ may be a maximum by Lemma vi. and that $\mathrm{AC} \times \mathrm{CD}$ $+\mathrm{AC} \times \mathrm{DE}+\mathrm{CD} \times \mathrm{DE}$ may be a maximum by Lemma viith. From which it is manifeft that all the Parts AC, CD, DE, E B muft be equal, that theSum of the Products of any three of them may be a maximum.

Lemma IX. It is manifeft that this way of reafoning is general, and that the Sum of any Quantities being given, the Sum of all the Products that can be

(80)

made by multiplying any given Number of them by one arother, muft be a maximum when thefe Quantities are equal. But the Sum of the Squares, or of any pure Powers of thefe Quantities, is a minimum, when the Quantities are equal.

THEOREM.

Suppofe $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3}+$ $\mathrm{D} x^{n-4}-\mathrm{E} x^{n-5} \& \mathrm{c} .=0$, to be an Equationtbat has not all its Roots equal to one another: Let rexprefs the Dimenfions of any Coeffrient D , and let $l=n \times \frac{n-\mathbf{1}}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}$ \&c. taking as many Factors as there are Unitsinr; then fall $\frac{l}{n^{r}} \times A^{r}$ be always greater than D, if the Roots of the Equation are real Quantities affected with the fame Sign.

This may be demonftrated from the preceeding Propofitions: But to demonftrate it from the laft Lemmata, let us affume an Equation that has all its Roots equal to one another, and the Sum of all its Roots equal to A, the Sum of the Roots of the propofed Equation. This Equation will be $\left.\overline{x-\frac{\mathbf{I}}{n} \mathrm{~A}}\right|^{n}=0$, or $x^{n}-\mathbf{A} x^{n-5}+n \times \frac{n-\mathbf{I}}{2} \times \frac{\mathbf{A}^{2}}{n^{2}} x^{n-2}-n \times$ $\frac{n-1}{2} \times \frac{n-2}{3} \times \frac{A^{3}}{n^{3}} x^{n-3} \& c=0$ and if r ex prefs the Dimenfions of the Coefficient of any Term of this Equation (or the Number of Terms which

(8i)

preceed it) it is manifeft that the Term it felf will be $l \times \frac{\mathrm{A}^{r}}{n^{r}} x^{n-r}$: But by the Suppofition $\mathrm{D} x^{n-r}$ is the
Correfponding Term in the propofed Equation, and D mult be the Sum of all the Products that can be made by multiplying as many Roots of that Equation by one another, as there are Units in r; and $\frac{l \mathrm{~A}^{r}}{n^{\prime}}$ mult be the Sum of the like Products of the Roots of the other Equation ; which muft be the greater Quantity by the preceeding Lemmata, becaufe its Roots are equal amongft themfelves, and their Sum is equal to the Sum of the Roots of the propofed Equation; and the Sum of fuch Products is a maximum when the Roots are equal amongft themfelves. By purfuing this Method, it may be demonftrated that $\frac{2 B}{n \times n-1} \times l$ muft always exceed the Coefficient prefixed to the Term x^{n-r} in an Equation whofe Roots are all real Quantities affected with the fame Sign; providing that r be a Number
greater than 2 ; and alfo that $\left.\frac{2 \times 30}{n \times \overline{n-1} \times \overline{n-2}}\right|^{\frac{3}{3}} \times l$ muft exceed the fame Coefficient, if r be any Number greater than 3 .

It is eafy to continue thefe Theorems.
The third Method which I mentioned in the Beginning of this Letter, is deduced from the Confideration of the Limits of the Roots of Equations; and though it is explained by fome Authors already, yet as I de-

(82)

monftrate and apply it to this Subject in a different Manner, I fhall add a fhort Account of it.

Lemma X. If you transform the Biquadratick $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}=0$ into one that fhall have each of its Roots lefs than the refpective Values of x by a given Difference e; fuppofe $y=x-e$ or $x=e+y$ and the transformed Equation, the Order of the Terms being inverted, will have this Form.

$$
\begin{aligned}
& e^{4}+4 e^{3} y+6 e^{2} y^{2}+4 e y^{3}+y^{4}=0 . \\
&- \mathrm{A} e^{2}+3 \mathrm{~A} e^{2} y-3 \mathrm{~A} e y^{2} \pm \mathrm{A} y^{3} \\
&+\mathrm{B} e^{2}+2 \mathrm{~B} e y+\mathrm{B} y^{2} \\
&+ \mathrm{C} e- \\
&+\mathrm{D}
\end{aligned}
$$

Where it is manifeft,

1. That the firft Term $e^{4}-\mathrm{A} e^{3}+\mathrm{B} e^{2}-\mathrm{C} e+\mathrm{D}$ is the Quantity that arifes by fubftituting e in Place of x in the propofed Equation $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-$ $\mathrm{C} x+\mathrm{D}$.
2. That the Coefficient of the fecond Term $4 e^{3}$ $3 \mathrm{~A} e^{2}+2 \mathrm{~B} e-\mathrm{C}$ is the Quantity that arifes by multiplying each Part of the firft $e^{4}-\mathrm{A} e^{3}+\mathrm{B} e^{2}$ $-\mathrm{C} e+\mathrm{D}$ by the Index of e in that Part, and dividing the Product by e.
3. That the Coefficient of the third Term $6 e^{2}$ ${ }_{3} \mathrm{~A} e+\mathrm{B}$ is the Quantity that arifes from the preceeding Coefficient $4 e^{3}-3 \mathrm{~A} e^{2}+2 \mathrm{~B} e-\mathrm{C}$ by multiplying each Part by the Index of e in it, and dividing the Product by $2 e$.
4. That the Coefficient of the fourth Term arifes in like Manner from the preceeding, only you now divide by $3 e$; and in general, the Coefficient of any Term may be deduced from the Coefficient of that Term which preceeds it, by multiplying each Part of

(83)

the preceeding Coefficient by the Index of e in that Part, and dividing the Product by e and by the Index of y, in the Term whofe Coefficient is required.

Lemma XI. If any Equation $x^{n}-\mathrm{A} x^{n-1}+$ $\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3} \& \mathrm{c} .=\mathrm{o}$ be transformed in the fame Manner, by fuppofing $x=y-e$ or $x=$ $e+y$, and confequently $x^{n}=\left.\overline{e+y}\right|^{n}, \mathrm{~A} x^{n-1}=$ $\mathrm{A} \times\left.\overline{e+y}\right|^{n-1}, \mathrm{~B} x^{n-2}=\mathrm{B} \times\left.\overline{e+y}\right|^{n-2}$ \&c. The transformed Equation will have this Form, the Order of the Terms being inverted,

$$
\begin{gathered}
e^{n}+n e^{n-1} y+n \times \frac{n-1}{2} \times e^{n-2} y^{2} \& \mathrm{c} .=0 \\
-\mathrm{A} e^{n-1}-\overline{n-1} \times \mathrm{A} e^{n-2} y-\overline{n-1} \times \frac{n-2}{2} \times \mathrm{A} e^{n-3} y^{2} \& \mathrm{c} . \\
+\mathrm{B} e^{n-2}+\overline{n-2} \times \mathrm{B} e^{n-3} y+\overline{n-2} \times \frac{n-3}{2} \times \mathrm{B} e^{n-4} y^{2} \& \mathrm{cc} . \\
-\mathrm{C} e^{n-3}-\overline{n-3} \times \mathrm{C} e^{n-4} y-\overline{n-3} \times \frac{n-4}{2} \times \mathrm{C} e^{n-5} y^{2} \& \mathrm{c} . \\
\& \mathrm{c} .
\end{gathered}
$$

Where it is manifeft,

1. That the firft I rm $e^{\bar{x}}-\mathrm{A} e^{\bar{n}-\mathrm{I}}+\mathrm{B} e^{n-2}-$ $\mathrm{C} e^{n-3} \& \mathrm{c}$. is the Quantity that arifes by fubftituting e in the Place of x in the propofed Equation x^{n} $\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3} 8 \mathrm{c}$.
2. That the Coefficient of the fecond Term $n e^{n-1}-\overline{n-1} \times \mathrm{A} e^{n-2}+\overline{n-2} \times \mathrm{B} e^{n-3}$ -$\overline{n-3} \times \mathrm{Ci} e^{n-4} \& \mathrm{c}$. is deduced from the preceeding $e^{n}-\mathrm{A} e^{n-1}+\mathrm{B} e^{n-2}-\mathrm{C} e^{n-3} \& \mathrm{c}$. by multiplying each of its Parts by the Index of e in that Part, and dividing by e.
3. That

(84)

3. That the Coefficient of the third Teria is deduced from the Coefficient of the fecond Term, by inultiplying after the fame manner, each of its Parts by the Index of e and dividing by $2 e$. In general, the Coefficient of any Term $y^{\prime \prime}$ is deduced from the Coefficient of the preceeding Term, that is of y^{r-1} by multiplying every Part of that Coefficient by the Index of e in it, and dividing the Product by re.

Lemma XII. If you fubftitute any two Quantities K and L in the Place of x in $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-$ $\mathrm{C} x+\mathrm{D}$, and the Quantities that refult from thefe Subftitutions be affected with contrary Signs, the Quantities K and L muft be Limits of one or more real Roots of the Equation $x^{4}-\mathrm{A} \boldsymbol{x}^{3}+\mathrm{B} x^{2}-\mathrm{C} x$ $+D=0$. That is, one of thefe Quantities mult be greater, and the other lefs than one or more Roots of that Equation.

For if you fuppofe that a, b, c, d, are the Roots of that Equation, then it is plain from the Genefis of Equations, that $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}=$ $\overline{x-a} \times \overline{x-b} \times \overline{x-c} \times \overline{x-d}$; and therefore K and L being fubftituted for x in $\overline{x-a} \times \overline{x-b} \times$ $\overline{x-c} \times \overline{x-d}$, the Product becomes in the one Cafe pofitive, and in the other negative; fo that one of the Factors $x-a, x-b, x-c, x-d$ muft have a Sign when K is fubftituted for x in it, contrary to the Sign which it is affected with when L is fubtituted in in it for x, fuppofe that Factor to be $x-b$; and fince $K-b$ and $L-b$ are Quantities whereof the one is pofitive, and the other negative, it is manifeft that b one of the Roots of the Equation muft be lefs than one, and greater than the other of the two Quan-

(85)

tities K and L : So that K and L muft be the Limits of the Root b.

I fay further, that the Root whereof K and L are Limits, muft be a real Root of the Equation; for the Product of the Factors that involve impoffible Roots in an Equation can never have its Signs changed by fubftituting any real Quantity whatfoever in place of x; becaufe the Number of fuch Roots is always an even Number, and the Product of any two of thefe Roots fuch as $x-m-\sqrt{-n}$, and $x-m+\sqrt{-n}$ is $\left.\overline{x-m}\right|^{2}+n^{2}$ which muft be always pofitive, whatever Quantity be fubitituted for x while n remains pofitive, that is, while thefe two Roots are impoffible.

Lemma XIII. If you fubititute K and L for x in $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2} \& c$. and the Quantities that refult be affected with contrary Signs, then fhall K and L be the Limits of one or more real Roots of the Equation $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2} \& c .=0$. This may be demonftrated after the fame Manner as the laft Lemma.

TheoremI. If a, b, c, d are the Roots of the Equation $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}=0$, they thall be the Limits of the Roots of the Equation $4 x^{3}-3 \mathrm{~A} x^{2}+2 \mathrm{~B} x-\mathrm{C}=0$.

Suppofe a to be the leaft Root of the biquadratick $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}=0, b$ the fecond Root, c the third, and d the fourth, and the Values of y in the Equation in the $x^{\text {th }}$ Lemma, will be $a-e$, $b-e, c-e, d-e$; then by fubftituting fucceffively a, b, c, d for e in that Equation of y, one of the Values of y will vanifh in every Subftitution, and the firft Term of the Equation of y, viz. $e^{4}-\mathrm{A} e^{3}+$ $\mathrm{B} e^{2}-\mathrm{C} e+\mathrm{D}$ vanifhing, the Equation will be reduced to a Cubick of this Form.

(86)

$$
\begin{aligned}
& 4 e^{3}+6 e^{\overline{2}} y+4 e y^{2}+y^{3}=0 \\
- & 3 e^{2}-3 A e y-A y^{2} \\
+ & 2 \mathrm{~B} e+\mathrm{B} y
\end{aligned}
$$

And confequently $4 e^{3}-3 \mathrm{~A} e^{\overline{2}}+2 \mathrm{~B} e-\mathrm{C}$ muft be the Product of the three remaining Values of y having its Sign changed ; that is, it muft be equal to $-\overline{b-a} \times \overline{c-a} \times \overline{d-a}$ when e is fuppofed equal to a, it muft be $-\overline{a-b} \times \overline{\overline{-b} b} \times \overline{d-b}$ when $e=b$; it muft be $-\overline{a-c} \times \overline{b-c} \times \overline{d-c}$ when $e=c$; and it muft be $-\overline{a-d} \times \overline{b-d} \times \overline{c-d}$ when $c=d$. Now it is manifeft that thefe Products $\overline{\overline{b-a}} \times \overline{a-a} \times \frac{d-a}{a-c} \times \frac{\overline{a-b}}{a-c} \times \overline{a-b} \times \overline{d-b}$, muft be affected with the Signs $+, \ldots,+,-$ refpectively; the firf being the Product of three pofitive Quantities, the fecond the Product of one negative and two pofitives, the third the Product of two negatives and one pofitive, and the fourth the Product of three negatives. Therefore fince by fubftituting a, b, c, d for e in the Quantity $4 e^{3}-3 \mathrm{~A} e^{2}+2 \mathrm{Be}-\mathrm{C}$, it becomes alternately a pofitive and a negarive Quantity, it follows from the laft Lemma that a, b, c, d muft be the Limits of the Roots of the Equation $4 e^{3}$ ${ }_{3} \mathrm{~A} e^{2}+{ }_{2} \mathrm{Be}-\mathrm{C}=0$, or of the Equation $4 x^{3}$ $3 A x^{2}+2 B x-C=0$.

Cor. It follows from this Theorem, that if $a^{\prime} b^{\prime}$ and c^{\prime} are the three Roots of the Equation $4 x^{3}-3 \mathrm{~A} x^{2}+$ $2 \mathrm{~B} x-\mathrm{C}=0$, they muft be Limits betwixt a, b, c, d the Roots of the Biquadratick $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}$ $\mathrm{C} x+\mathrm{D}=0$: For if a, b, c, d are Limits of the Roots

(87)

Roots a^{\prime}, b^{\prime}, and c^{\prime}; thefe Roots converfely muft be $L i$ mits betwixt a, b, c and d.

TheoremiI. Multiply the Terms of any Biquadratick $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}=0$ by any Arithmetical Series of Quantities $l+4 m, l+3 m$, $l+2 m, l+m, l$, and the Roots of the Biquadratick a, b, c, d will be the Limits of the Roots of the Equation that refults from that Multiplication that is of the Equation.

$$
l x^{4}-l \mathrm{~A} x^{3}+l \mathrm{~B} x^{2}-l \mathrm{C} x+l \mathrm{D}=0
$$ $+4 m x^{4}-3 m \mathrm{~A} x^{3}+2 m \mathrm{~B} x^{2}-m \mathrm{C} x$

Suppofe that fubftituting the Roots a, b, c, d of the biquadratick Equation $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+$ $\mathrm{D}=\circ$ fucceflively, for x in $4 x^{3}-3 \mathrm{~A} x^{2}+$ $2 \mathrm{~B} x-\mathrm{C}$, the Quantities that refult are $-\mathrm{R},+\mathrm{S}$, $-\mathrm{T},+\mathrm{Z}$; while $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}$ is in every Subftitution equal to nothing; and it is manifeft that the Quantity

$$
\begin{aligned}
& \quad+l x^{4}-l \mathrm{~A} x^{3}+l \mathrm{~B} x^{2}-l \mathrm{C} x+l \mathrm{D} \\
& +4 m x^{4}-3 m \mathrm{~A} x^{3}+2 m \mathrm{~B} x^{2}-m \mathrm{C} x \\
& \text { will become (when } a, b, c, d \text { are fubftituted fucceffively }
\end{aligned}
$$ in it for x) equal to - $m \mathrm{R} x,+m \mathrm{~S} x,-m \mathrm{~T} x,+$ $m \mathrm{Z} x$; where the Signs of thefe Quantities being alternately negative and pofitive, it follows that a, b, c, d muft be Limits of that Equation by Lemma xii.

Cor. Hence it follows, that a, b, c and d are Limits of the Roots of the Cubick Equation $\mathrm{A} \boldsymbol{x}^{3}-2 \mathrm{~B} \boldsymbol{x}^{2}$ $+3 \mathrm{C} x-4 \mathrm{D}=0$, and converfely, that the Roots of this Cubick are Limits of the Roots of the biquadratick Equation $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}=0$, for multiplying the Terms of this biquadratick Equation by the A rithmetical Progreffion 0,-1,-2,-3,-4, the Cubick $\mathrm{A} x^{3}-2 \mathrm{~B} x^{2}+3 \mathrm{C} x-\mathrm{AD}=0$ arifes.

N
The-

（ 88 ）

Theorem III．Ingeneral，the Roots of the Equa－

 tion $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3} \& \mathrm{c}=0$ ， are the Limits of the Roots of the Equation $n x^{n-1}$ $-\overline{n-1} \times A x^{n-2}+\overline{n-2} \times \mathrm{B} x^{n-3} \& \mathrm{Kc}=0$ ， or of any Equation that is deduced from it by multi－ plying its Terms by any Aritbmetical Progreflion l干d，l干2d，l干3d \＆c．and converfely the Roots of this new Equation will be the Limits of the Roots of the propofed Equation $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2}$ \＆c．$=0$ ．This Theorem is demonftrated from the xith and xiiith Lemmata in the fame manner as the preceeding Theorems were demonftrated from the $x^{\text {th }}$ and xiith． From thefe Theorems it is eafy to infer all that is deli－ vered by the Writers of Algebra on this Subject．

TheoremIV．The Equation $x^{n}-\mathrm{A} x^{n-1}+$ $\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3} \& \mathrm{c}=0$ will have as many ima－ ginary Roots as the Equation $n x^{n-1}-\overline{n-1} \times$ A $x^{n-2}-\overline{n-2} \times \mathrm{B} x^{n-3} \& \mathrm{c} .=0$ ，or the Equa－ $\operatorname{tion} \mathrm{A} x^{n-1}-2 \mathrm{~B} x^{n-2}+{ }_{3} \mathrm{C} x^{n-3} \& \mathrm{c} .=0$ ．

Suppofe that any Root of the Equation $n x^{n-1}$－ $\overline{n-1} \times \mathrm{A} x^{n-2}+\overline{n-2} \times \mathrm{B} x^{n-3}$ \＆c．$=0$ ，as p becomes imaginary，and the two Roots of the Equa－ tion $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2} \& \mathrm{c}=0$ ，which by Theorem III．ought to be its Limits，cannot both be real Quantities；for it is manifeft from the Demonftra－ tion of Theorem I．that if they are real Quantities， then being fubitituted for x in $n x^{n-1}-\overline{n-1} \times$ $\mathrm{A} x^{n-2}+\overline{n-2} \times \mathrm{B} x^{n-3}$ \＆ c ．the Quantities that refult mult have contrary Signs，and confequently the Root p ，whereof they are Limits，muft be a real Root； which

(89)

which is againft the Suppofition. The fame is true of the Equation A $x^{n-1}-2 B x^{n-2}+3 \mathrm{C} x^{n-3}$ \&c. $=0$, for the fame Reafon.

Cor. The biquadratick $x^{4}-\mathrm{A} x^{3}+\mathrm{B} x^{2}-$ $\mathrm{C} x+\mathrm{D}=0$, will have two imaginary Roots, if two Roots of the Equation $4 x^{3}-3 \mathrm{~A} x^{2}+2 \mathrm{~B} x$ $-\mathrm{C}=0$ be imaginary; or if two Roots of the Equa$\operatorname{tion} \mathrm{A} x^{3}-2 \mathrm{~B} x^{2}+3 \mathrm{C} x-4 \mathrm{D}=0$ be imaginary. But two Roots of the Equation $4 x^{3}-3 \mathrm{~A} x^{2}$ $+2 \mathrm{Bx}-\mathrm{C}=0$ muft be imaginary, when two Roots of the Quadratick $6 x^{2}-3 \mathrm{~A} x+\mathrm{B}=0$, or of the Quadratick $3 \mathrm{~A} x^{2}-4 \mathrm{~B} x+3 \mathrm{C}=0$ are imaginary, becaufe the Roots of thefe quadratick Equations are the Limits of the Roots of that Cubick, by the third Theorem; and for the fame reafon two Roots of the Cubick Equation $\mathrm{A} x^{3}-2 \mathrm{~B} x^{2}+3 \mathrm{C} x-$ ${ }_{4} \mathrm{D}=0$ muft be imaginary, when the Roots of the quadratick $3 \mathrm{~A} x^{2}-4 \mathrm{~B} x+3 \mathrm{C}=0$, or of the quadratick $\mathrm{B} x^{2}-3 \mathrm{C} x+6 \mathrm{D}=0$ are impoffible. Therefore two Roots of the Biquadratick $x^{4}-\mathrm{A} x^{3}$ $+\mathrm{B} x^{2}-\mathrm{C} x+\mathrm{D}=0$ muft be imaginary when the Roots of any one of thefe three quadratick Equations $6 x^{2}-3 \mathrm{~A} x+\mathrm{B}=0,3 \mathrm{~A} x^{2}-4 \mathrm{~B} x+$ ${ }_{3} \mathrm{C}=0, \mathrm{~B} x^{2}-{ }_{3} \mathrm{C} x+6 \mathrm{D}=0$ become imaginary ; that is, when $\frac{3}{8} A^{2}$ is lefs than $B, \frac{4}{9} B^{2}$ lefs than $A C$, or $\frac{3}{8} C^{2}$ lefs than $B D$.

Cor. II. By proceeding in the fame manner, you may deduce from any Equation $x^{n}-\mathrm{A} x^{n-1}+$ $\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3} \& \mathrm{c} .=0$, as many quadratick Equations as there are Terms excepting the firft and laft whofe Roots muft be all real Quantities, if the

(90)

propofed Equation has no imaginary Roots. The Quadratick deduced from the three firf Terms x^{n} $\mathrm{A} x^{n-i}+\mathrm{B} x^{n-2}$ will manifeftly have this Form, $n \times \overline{n-1} \times n-2 \times \overline{n-3} \& \mathrm{c} . \times x^{2}-\overline{n-1} \times$ $n-2 \times n-3 \times n-4 \& c . \times$ A $x+n-2 \times n-3$ $\times \overline{n-4} \times \overline{n-5} \& c . \times B=0$, continuing the Factors in each till you have as many as there are Units in $n-2$. Then dividing the Equation by all the Factors $n-2, n-3 \& c$. which are found in each Coefficient, the Equation will become $n \times \overline{n-1} \times x^{2}$ -$n-1 \times 2 \mathrm{~A} \boldsymbol{x}+2 \times \mathbf{I} \times \mathrm{B}=0$, whofe Roots will be imaginary by Prop. i. when $n \times n-1 \times 2 \times 4$ B exceeds $\left.\overline{n-1}\right|^{2} \times 4 A^{2}$, or when B exceeds $\frac{n-1}{2 n} A^{2}$, fo that the propofed Equation muft have fome imaginary Roots when B exceeds $\frac{n-1}{2 n} A^{2}$; as we demonftrated after another Manner in the $\mathrm{v}^{\text {th }}$ Propofition. The Quadratick Equation deduced in the fame Manner from the three firft Terms of the Equation $\mathrm{A} x^{n-1}-2 \mathrm{~B} x^{n-2}$ $+{ }_{3} \mathrm{C} x^{n-3} \& \mathrm{c} .=0$, will have this Form $\overline{n-1} \times$ $\overline{n-2} \times \overline{n-3}$ \&c. $\times \mathrm{A} x^{2}-\overline{n-2} \times \overline{n-3} \times \overline{n-4}$ \&c. $\times 2 \mathrm{~B} x+n-3 \times \overline{n-4} \times \overline{n-5}$ \&c. $\times 3 \mathrm{C}=$ 0 ; which by dividing by the Factors common to all the Terms, is reduced to $\overline{n-\mathrm{I}} \times n-2 \times \mathrm{A} x^{2}-\overline{n-2} \times$ $4 \mathrm{~B} x+6 \mathrm{C}=0$, whofe Roots mult be imaginary when $\frac{2}{3} \times \frac{n-2}{n-\mathrm{x}} \times \mathrm{B}^{2}$ is lefs than AC ; and therefore in that cafe fome Roots of the propofed Equation mult be imaginary.

Cor. III. In general, let D $x^{n-r^{+1}}-\mathrm{E} x^{n-r}+$ F x^{n-1-1} be any three Terms of the Equation, x^{n} -

(91)

$\mathrm{A} x^{\bar{n}-1}+\mathrm{B} x^{n-2}$ \&ic. $=0$, that immediately follow one another, multiply the Terms of this Equation firlt by the Progreffion $n, n-\mathbf{1}, n-2, \& c$. then by the Progreflion $n-1, n-2, n-3, \& c$. then by $n-2, n-3, n-4$, \&c. till you have multiplied by as many Progreflions as there are Units in $n-r-1$: Then multiply the Terms of the Equation that arifes, as often by the Progreflion $0,1,2,3 \& c$. as there are Units in $r-1$, and you will at length arrive at a Quadratick of this Form,
$\overline{n-r+r} \times \overline{n-r} \times \overline{n-r-1} \times n-r-2 \& c . \times r-1$ $\times \overline{r-2} \times \overline{r-3} \times \overline{r-4} \& c . \mathrm{D} x^{2}$
$\overline{n-r} \times \overline{n-r-1} \times \overline{n-r-2} \times \overline{n-r-3} \& c$. $\times r \times \overline{r-1} \times \overline{r-2} \times \overline{-3}$ ic. $\times \mathrm{E} x$
$+\overline{n-r-1} \times \overline{n-r-2} \times \overline{n-r-3} \times n-r-4 \& \mathrm{c}$. $\times r+\mathrm{x} \times r \times r-\mathrm{r} \times \overline{r-2} \& \mathrm{c} \times \mathrm{F}=0$,
and dividing by the Factors $n-r-\mathbf{I}, n-r-2, \& \mathbf{~} \mathbf{n c}$. and $r-\mathrm{I}, r-2 \& c$. which are found in each Coefficient, this Equation will be reduced to $n-r+1$ $\times \overline{n-r} \times 2 \times 1 \times \mathrm{D} x^{2}-\overline{n-r} \times 2 \times r \times 2 \mathrm{E} x+$ $2 \times \mathbf{1} \times \overline{r+1} \times r \mathrm{~F}=0$, whofe Roots muft be imaginary (by Prop i.) when $\frac{n-r}{n-r+1} \times \frac{r}{r+\mathrm{I}} \times \mathrm{E}^{2}$ is lefs than DF. From which it is manifeft that if you divide each Term of this Series of Fractions $\frac{n}{1}, \frac{n-\mathbf{I}}{2}$, $\frac{n-2}{3}, \frac{n-3}{4}$, \&ic. $\frac{n-r+1}{r}, \frac{n-r}{r+1}$ by that which preceeds it, and place the Quotients above the Terms of the Equation $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3}$
\&c. $=0$, beginning with the fecond: Then if the Square of any Term multiplied by the Fraction over it be found lefs than the Product of the adjacent Terms, fome of the Roots of that Equation muft be imaginary Quantities. There remain many things that might be added on this Subject, but I am afraid you will think I have faid as much of it as it deferves; and therefore I fhall only add the Demonftration of fome Algebraick Rules and Theorems that are very eafily deduced from the xith Lemma.
I. The Rule for difcovering when two or more Roots of an Equation are equal, immediately follows from that Lemma, Suppofe that two Roots of the Equation $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2}-\mathrm{C} x^{n-3} 8 \mathrm{c} .=0$ are equal, and two Values of y (which is equal always to $x-e$) will be equal. Suppofe that e is equal to one of thofe two equal Values of x; and two Values of y will vanifh, and confequently $y^{\prime 2}$ muft enter cach of the Terms of the Equation of y; and therefore in this Cafe the firft and fecond Term of the Equation of y in Lemma $\mathrm{xi}^{\text {th }}$ mult vanifh, that is, $e^{n}-\mathrm{A} e^{n-1}+\mathrm{B} e^{n-2}-$ $\mathrm{C} e^{n-3} \& \mathrm{c} .=0$ and $n e^{n-1}-\overline{n-\mathrm{I}} \times \mathrm{A} e^{n-2}+$ $\overline{n-2} \times \mathrm{B} e^{n-3}-\overline{n-3} \times \mathrm{C} e^{n-4} \& \mathrm{Ec}=0$ at the fame time; and confequently thefe two Equations muft have one Root common, which muft be one of thofe Values of x that were fuppofed equal to each other. It is manifeft therefore that when two, Values of x are equal in the Equation $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2} \mathrm{z} \mathrm{c}=0$, one of them mult be a Root of the Equation $n x^{n-1}$, $\overline{n-1} \times \mathrm{A} x^{n-2}+\overline{n-2} \times \mathrm{B} x^{n-3} \mathcal{E} \mathrm{c} .=0$.

If three Values of x be fuppofed equal amongft themfelves and to e, then three Values of $y(=x-e)$ will vanifh, and the firf three Terms of the Equation of y

(93)

in Lemina xi. will vanifh, and therefore $n \times \overline{n-1}$ $\times e^{n-2}-\overline{n-1} \times \overline{n-2} \times \mathrm{A} e^{n-3}+\overline{n-2} \times n-3$ $\times \mathrm{B} e^{n-4} \& \mathrm{c}=0$; and one of the equal Values of \boldsymbol{x} will be a Root of this laft Equation, and two of them will be Roots of the Equation $n x^{n-1}-\overline{n-1} \times$ $\mathrm{A} x^{n-2}+\overline{n-2} \times \mathrm{B} x^{n-3} \& \mathrm{c} .=0$. In general, it appears that if the Equation $x^{n}-\mathrm{A} \boldsymbol{x}^{n-1}+\mathrm{B} x^{n-2}$ $\& \mathrm{c} .=0$ have as many Roots equal amongft themfelves as there are Units in S , then fhall as many of thofe be Roots of the Equation $n x^{n-1}-\overline{n-1} \times \mathrm{A} x^{n-2}$ $+\overline{n-2} \times \mathrm{B} x^{n-3} \& \mathrm{c} .=0$ as there are Units in $\mathrm{S}-\mathrm{I}$; as many of them fhall be Roots of the Equation $n \times \overline{n-1} \times x^{n-2}-\overline{n-1} \times \overline{n-2} \times \mathrm{A} x^{n-3}+$ $\overline{n-2} \times n-3 \times \mathrm{B} x^{n-4} \& \mathrm{c} .=0$, as there are Units in $\mathrm{S}-2$; and fo on.
II. The general Rule which Sir Ifaac Nerwton has given in the Article de limitibus Equationum for finding a Limit greater than any of the Values of x inmediately follows from the xith Lemina; for it is manifeft that if e be fuch a Quantity as fubftituted in all the Coefficients of the Equation of $y, v i z$. in $e^{n}-A e^{n-1}$ $+\mathrm{B} e^{n-2} \& \mathrm{c} . n e^{n-1}-\overline{n-1} \times \mathrm{A} e^{n-2}+\overline{n-2}$ $\times \mathrm{B} e^{\bar{n}-\overline{3}}$ \&c. $n \times \frac{n-\mathbf{1}}{2} \times e^{n-\overline{2}}-\overline{n-\mathbf{I}} \times \frac{n-2}{2} \times$ $\mathrm{A} e^{n-3}+\overline{n-2} \times \frac{n-3}{2} \times \mathrm{B} e^{n-4} \& c$. gives th Quantities that refult all pofitive; then there being no Changes of the Signs of the Equation of y in this cafe, all its Values mult be negative; and fince y is always equal to $x-e$ it follows that e muft be a greater Quantity than any of the Values of x; that is, it muft be a

(94)

Limit greater than any of the Roots of the Equation $x^{n}-\mathrm{A} x^{n-1}+\mathrm{B} x^{n-2} \& \mathrm{c}_{0}=0$.
III. From this $\mathrm{xi}^{\text {th }}$ Lemma fome important Theorems in the Method of Series, and of Fluxions, and the Refolution of Equations are demonftrated with great Facility; it is obvious that the Coefficient of the fecond Term of the Equation of y in that Lemma is the Fluxion of the firf Term divided by the Fluxion of e; the Coefficient of the third Term is the fecond Fluxion of that firft Term divided by $2 \dot{e}^{2}$; fuppofing e to flow uniformly. The third Term is the third Fluxion of the firf Term divided by $2 \times 3 \dot{e}^{3}$; and fo on. Therefore fuppofing $e^{n}-\mathrm{A} e^{n-1}+\mathrm{B} e^{n-2} \& c .=c$, the Equation for determining y will be $c+\frac{\dot{c}}{\dot{e}} y+\frac{\ddot{c}}{1 \times 2 \dot{e}^{2}} y^{2}$ $+\frac{\dot{\ddot{c}}}{1 \times 2 \times 3 \dot{e}^{3}} y ; \& c=0$; and hence, when e is near the true Value of x, Theorems may be deduced for approximating to y, and confequently to x, which is fuppofed equal to $y+e$.
IV. Let A P $(=x)$ be the Abfcifs and PM $(=z)$ the Ordinate of any Curve BLM; and fuppofe any other Abfcifs $\mathrm{AK}=e$ and Ordinate $\mathrm{KL}=c$, then fhall $\mathcal{z}(:=\mathrm{PM})=c \mp \frac{\dot{c}}{\dot{e}} y+\frac{\ddot{c}}{2 \dot{e}^{2}} y^{2} \mp \frac{\ddot{\dot{c}}}{2 \times 3 \dot{e}^{3}} y^{3}$ $+\frac{c}{2 \times 3 \times 4 e^{4}} y^{+} \& \mathrm{c}$.

For let \approx be fuppofed equal to any Series confifting of given Quantities, and the Powers of x, as to $A x^{n}+$ $\mathrm{B} x^{r}+\mathrm{C} x=\& \mathrm{c}$. and fubftituting $e \mp y$ for x, we fhall find after the manner of the xith Lemma,
$z=\mathrm{A} e^{\bar{n}} \mp n \mathrm{~A} e^{\bar{z}-\mathrm{x}} y+n \times \frac{n-\mathrm{I}}{2} \times \mathrm{A} e^{\bar{\pi}-\bar{z}} y^{\overline{2}} \& \mathrm{c}$. $+\mathrm{B} e^{r} \mp r \mathrm{~B} e^{r-1} y+r \times \frac{r-1}{2} \times \mathrm{B} e^{r-2} \times y^{2} \& \mathrm{C}$.
$+\mathrm{C} e^{s \mp} \mathrm{C} e^{s-1} y+s \times \frac{5-\mathrm{I}}{2} \times \mathrm{C} e^{1-2} y^{2}$ \&ic.
Sic. E ic. Sic.

But when $x=e$ then $z=c=\mathrm{A} e^{n}+\mathrm{B} e^{r}+\mathrm{C} e$ s $\& c . \dot{c}=n \mathrm{~A} e^{n-1} \dot{e}+r \mathrm{~B} e^{r-1} \dot{e}+s \mathrm{C} e^{s-i} \dot{e} \& c$. $\ddot{c}=n \times \overline{n-1} \times \mathrm{A} e^{n-2} \dot{e}^{2}+r \times \overline{r-1} \times \mathrm{B} e^{r-2} \dot{e}^{2}$ $+s \times \overline{s-1} \times \mathrm{C} e^{s-2} \ddot{e}^{2} \& \mathbb{C}$. and therefore $\mathscr{z}=c \mp$ $\frac{\dot{c}}{\dot{e}} y+\frac{\ddot{c}}{2 \dot{e}^{2}} y^{2} \mp \frac{\ddot{\ddot{c}}}{2 \times 3 e^{3}} y^{3}$ \&c. After the fame manner you will find that $c=z \pm \frac{\dot{z}}{\dot{x}} y+\frac{\ddot{z}}{2 \dot{x}^{2}} y^{2}$ $\pm \frac{\dot{\ddot{z}}}{2 \times 3 \dot{x}^{3}} y^{3} \& \mathrm{c}$. for $c=\mathrm{A} e^{\bar{n}}+\mathrm{B} e^{\bar{y}}+\mathrm{C} e^{3} \& \mathrm{c} .=$ $\mathrm{A} \times\left.\overline{x \pm y}\right|^{n}+\mathrm{B} \times \bar{x} \pm\left. y\right|^{\eta}+\mathrm{C} \overline{x+y}{ }^{\prime} \& \mathrm{c} .=z \pm \frac{\dot{z}}{\dot{x}} y$

(96)

$+\frac{\ddot{z}}{2 \dot{x}^{2}} y^{2} \& c$. The Area KLMP is equal to the Fluent of $z \dot{y}$ or of $c \dot{y}$, but

$$
c y=z \dot{y} \pm \frac{\dot{z}}{x} y \dot{y}+\frac{\ddot{z}}{2 x^{2}} y^{2} \dot{y} \pm \frac{\ddot{z}}{2 \times 3 \dot{x}^{2}} y^{\dot{y}} y^{\prime} \& c .
$$

and $z \dot{y}=c \dot{y} \mp \frac{\dot{c}}{\dot{e}} y \dot{y}+\frac{\ddot{i}}{2 \dot{e}^{2}} y^{2} \dot{y} \mp \frac{\ddot{i}}{2 \times 3 \dot{e}^{2}} y^{3} \dot{y}$ \& .
And confequently by finding the Fluents
$K L M P=c y \mp \frac{\dot{c}}{2 \dot{e}} y^{2}+\frac{\ddot{c}}{2 \times 3 \dot{e}^{2}} y^{3} \mp \frac{\ddot{\ddot{c}}}{2 \times 3 \times 4 \dot{e}^{3}} y^{4} \& c$.
or KLMP $=z y \pm \frac{\dot{z}}{2 \dot{x}} y^{2}+\frac{\ddot{z}}{2 \times 3 \dot{x}^{2}} y^{3} \pm \frac{\dot{\dot{z}}}{2 \times 3 \times 4 \dot{x}^{3}} y^{4} \& c$.
This laft is the Theorem publifhed by the learned Mr. Bernouilli in the Acta Lippia 1694. It is now high Time to conclude this long Letter; I beg you may accept of it as a Proof of that Refpect and Efteem with which

$$
I \text { am, }
$$

$$
S I R
$$

Your mof Obedient,

> Moft Humble Servant,

Colin Mac Laurin.

