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1. Intmduction.

In a recent paper* {Lord Rayleigh has called attention to the fact of the

instantaneous propagation of a limited disturbance over the surface of heavy

incompressible fluid. This instantaneity occurs in spite of the fact that the

velocity of any simple-harmonie gravity wave is finite, the depth being finite-

and constant. As the points thereby raised are of some delicacy, and are:

not completely settled in the paper quoted, some further remarks on the

phenomenon may not be superfluous.

2. Solutiow, 0f the Ocmchy—Poz'sson Pmblem f0?" Finite Depthrl'

In his treatment of this case Lord Rayleigh used the integral form of

solution. There are, however, great difficulties raised in this way on account.

of lack of convergence at the surface. I proceed to obtain a solution in the—

form of a series similar in type to the known serial solution of the problemh

for infinite depth.

We have es 2 3} 008:0:52; 3/) sm 0t cos kw elk,
7r 0 . 0'

 

Where 0'2 = 975 tanh 1767b. Y

 sin 7m: 0375.
Write X = _g_ j cosh k(h—g/) sm o-t

cosh kit 0'7r 0

* Lord Rayleigh, ‘Phil. Mag.’ [6], vol. 18, 1909, p. 1. The paper was breught to my
notice by Prof. Love, to whom I am also indebted for much helpful criticism of the
present paper before commui‘iication.

+ The notation used is that of Lamb, ‘Hydrodynamies,’ 3rd ed., pp. 344—346,

364~374, Where the theory for deep water is contained. The sign of y is, however,.
reversed.

0i]The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to (5% 331‘

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 5T0 R ®  
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Expanding the sine in powers of t, we have
00 fl _ ' 3 to n ..__. .' t@WJH chzzz—QLj wwwlktanhkhwmdkag

7T 4 cosh 1372, 3 ! cosh 76k
0 O

;__ n n-‘2n+1 0° ____ . '
+Wj QWkntanhnkh.ezkxdk+...].

 

 

(2 6e+ 1) i 0 cosh 737%

The integrals assume atmore convenient form by writing

, pEy/Zi’zy gEx/Zh, 7 t (1)

:‘and making the substitution u 2: 9 75h. Thus, if we write ’

(9n :- wGOSh (21“Q,6,_...2m) u” tanh" 21 2-0 . 6’59“ dd (2)
'_ 0 cosh ~21~ 2t ,.

"we have ‘ ,
' 1 g 1 g 2 (”>72 (9 >n+1 ]

=—~ “$0 ——- -—..- $3 -~-----~ W 62““ n . 3,5M?“ 77[27?, 0 3:<2h> 61”" +(29z+1)! 2h 9 + 0

Further, 6n =2 j egufifm—F eff?“ fa,” (gfunguy 6'59“ clu
6§2L+6 “5g“ 6§u+6 9"“

= j. (ewpu+ epumia) ’16” (1 _6~:c)n (1 + 6~u)—n-16ig£¢ d,”

o , .
Let (771,70 denote the coefficient of z" in the expansion of (1 +2)"(1-—z)“”“1

‘in ascending powers of 2. Then

(19,; z j {warm +e”“(1”f9“'59)} dumm, 1) j
w

0 .O

+ . . . + ( ____)A, (7?” 70j {6”26(4\+p~",ig) + 6wu(1+)\-p-iq)} 1072032114. . ' .

0

NOW if the real part of e is positive,

03 “62' 71 7% I
§0 6 21 CZZ 2 gym‘ .

“Hence, if we write
. 1 . . . 1 . ‘

0‘ =P+W =§71Cy+mh )8 =?"W 32%(y—m), (4)

“we have

($315! : [Eklfi‘Fa ‘:)n+1]m(%’ 1) [<1 +;)n+l+<2 w:)n+1]+

, +(_)A (71’: R) [(K+~,18)n+1+(1 +l£a>n+11+u ' (5)

It is convenient to introduce the quantity {7%, X}, Which is the coefficient

éof 2" in the expansion of (1. +2)” (1 ”2)“?2 The quantities (77/, x) and {7%, X}

are positive. It is easily proved that

(n,h)+(9z,_h~1)== (qz+l,?\,)—-(9z+1,h-~l),

(7t,K)—(%,?\.m1): {n,h}.

 

 

(6)
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By consideration of the explicit expressions for the quantities it is not

difficult to derive the inequalities

(7’2, k) < 22%"

{72” K} < 22”"17anl}

Which Will be useful in what folloWs.

(7)

3. 00717287316on 0f the Series.

We have to provethat the series (5) converges, and to find an upper limit

for 6,3. Regrouping the series Without change of order, we write

 
       

 

9.3: (91,1) 1 ' J (n2) (71,1)
7,1,1 )n-i-l“ (1 )12-1-1 (2+B)n+l—(2_a)n+1*

_ 21 (72,,7x)_((72, ?t— 1) ‘+< > (1+@711 _;)n+:]+ <8)
Substitute for (91,)») its value (72,, ?t—-1)+{n,7t}. Then, after some further

transformations, we get

6n__ 1 1 + _ 1
fly —I8n+1—(1+B)n+1 (1“ a)n+1

{(331111 >{<2+2>n+1<2th
+ :(2{f:32):+1_(n’2){(3+13)

n+1"(3_a)n+1}]f...

___A {n,k} 1 . _ 1 ‘

+< )..<>»+B>W1”‘(”’“hx—I-lww <x+l~a>n+11k1+"'

 

 

 

  
Let us write

  

 

f
1 :: .. “1”" XL { 1 }

16A —-- ( )A(7L+;8)n+1 ’ (Uh "“:(“—M) (719).) (K + 1 +B)n+lm ()‘J+ 1 __a)n+1

Then 6” "- 1 1 1 + 21621, +71)5;; _ Bn+1_(1+IB)n+1+ (1_a)n+1

’ Consider the u and 7) series separately. The real partOf 1+8 is positive

and greater than )1, so that 1h+,8 i > 7\,. Combining this With ('7), we get ‘

{21*} < 22"“1[>61 ‘

The 11 series therefore conVerges abSolutely and uniformly, and

 

2UA1< 22mm}. 2 l§<lw2.22n*1. (9)

Ami & A=l;\' 6 1 1 ‘

1 ‘ ..... ‘ (K+1+,8)"+1—(7\.+1~a)n+1

Furthe1, } ””1 .._ (-)’\<%,7\,) (k+1+,8)"+1(>»+1—a)”+1 .

VOL. LXXXIII.—-——~A. . . 2 B
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Since 0<:Sp_ 2, it is easily ploved that 11+1—a12 and |X+1 +312 each

exceed A2+M2, Where

MElalElfil: -——-(222+./2)2.. 2h

Again,

(X+1+,8)n+1_(7\,+1—a)n+1 : (7&“29-1-1+p)72+1__(7\,_7;q+1_20)n+1

=K72+1)<x—- 2q>21<1+p>—- <1-—p>]+K”+1)(x—2q>2-1[<1+2a>2—<1—2o>21+.-

+K“+ 1) 01—29122“ [<1 +p>2~<1 —2o>21 + + [<1 +p>2+1-—<1 —-2o>n+11.
Since [A—z’g] < (k2+ M2)2, While I 1 +29} and ] 1—pl are less than 2, we have

101+ 1 + B)”“—-(7\+ 1—a)2+1§<K2+ 1)(x2+1v12)22/292+
7 +<n+1/(k2+1\12)("”7+1)/2

2221+” +271”

< 222” (112+M2)n/2[K7Hl'1>‘+ +K7ljl>+ ...+ 11

< 22223 (x2+M2)2/2.

Making use of (13) and 0f the inequality

1 1
(N+1+I8)n+1(h+1_a)n+l (K2+M2)n+1’

22nkn22 72+ 3 (X2 + M2)?z/2 2471+ 3

 

 

<

 

 we have [va I < (k2 +M2)”H k2 .

Thus Ail“ < i!) 77.2 2 247223. (10)

  

The moduli of 1—0: and 1 +6 eaeh exceed 2. Hence, using (9) and (10),.

we find that

1 1 ....1 +2n+2 _ 2 227z+1 _ 2 24n+3.
%M|6I<Mn+1+ +677 +677

Cut out the origin by a definite small semicircle, and consider the domain

M>e, Oéyéh. (111

Then the inequality for 07,, shows that Within the domain we can choose

finite numbers a and 1), independent of: oz, :6, 3/, to secure that

|6n|< 6112.722. (12):

The uniformity of the convergence of: the (c and y derivates 0f (9,, is proved

in the same way, and the derived quantities satisfy inequalities 0f the

form (12). K
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leturning t0 the equation (3), we see that the 72 series for gb+7jx converges

absolutely and uniformly in the domain if the series

00 r
S‘ ,n’ ‘ [on 1:)

91:0(2n+1)1b ( J)

converges, 7:: being a positive constant. This is clearly the case. It is easily

seen that we can use term—by-term differentiation with respect t0 ()3, y, and't

everywhere in the domain, even when 3/ = 0, and we are in a position to

verify the solution rigidly.

4. Vawious Veréfications.

Taking the solution given by (3) in conjunction with either (5) 0r (8), it is

easy to verify that the following conditions are satisfied in the domain, these

being the conditions of the problem :—

(i) 89¢/3x2+32¢/5y2 = 0,
(ii) away = 0 when 3/ = h,
(iii) ngb/ay = 52¢/6t2 when 3/ = 0,

(iv) 9!) = 0 when t: 0,

(V) 895/81? = O for 3/ = t = O.

The equation (8) may be written

 

 

 

 

i ' 6n _ 1 _ (7L, 1) _ 1 ]+
a! (2 h)”+1 _ (y—dm)”+1 [(y—ix+2 h)”+1 (—-;2/—/iac+2h)”+1

_ A (712,)L) _ (%,)\.—1)

+( ) [(y—ix+2h7x)”+1 (—y—im+2‘kh)n+1]+”"
Let us write '

7/ = woos 0, .76 = Tsin 6,

y+2h7x = p,\ cos qSA, .76 = p,\ sin ()51, (14)

—y+2hk=0‘,\1008\[r,1, £13: O‘ASTIIXII‘A.

6n
Then if wn is the real part of—-n'(97)”+1, we have

_ cos (n+ 1) 6_ (n, 1) cos (n+ 1) ¢1_cos (n+1)1,(r1
7‘ _ 702+] p1n+1 0.1n+1W]+m‘

n91 cos n+1 nk— 1 co 1
+(—’)A ( ) P n(+1 >¢A_ ( )0. nS+(in+ )¢A+ (15)

4\ 4\

The explicitexpression 0f gb now follows by observing that “

1 1 21 .(l) = a_[Qt (00— 3792t3w1 +57 g3t5w2_u +(_ )n(‘)7:?’n+ 1)rgn+lt2n+1wn+ ...].(16)

When h is large we have

con 2 7H1"1 eos (7z+ 1) 6,

2132
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end the expression £01th passes over into the well-known 1*esult* for deep

Watel

It18 also easyto derive Lord Rayleigh8 expression £01 the fi1et te1111 111 the

“surface elevation. The coefficient of 253111 (15+le is ~9261/24 71/2712 Thus, if J

denotes, the real part of [61]yz0, the coefficient of t2 111 the surface elevation is

-gJ/8h%w. '
From (8) we have

[61:19:30 == 2 21.1.... + .1 2
92 (1—7602 ('21—’81?

__ AMWMM+( )(xmqjg)2+"" 

  
- 1‘ “ 1 1 + + ”1——J -— ‘—~" w- —"i; , c :j [ ’ ' " ' 9
Hence 92 (1 I 7/92 (1 ‘39)”: (2 + 7,9)3 (2 _._ ’1qu

 

 

 

” 1 1.1. A ,
H > hwwfiemm2 +

Differentiating the weH—-known result

72' 1 1 “1.,l~.*l j

$111726: 1+66J+[2+61—~ 2-—8 “H) 1+616 +"
With respect to 6, and putting 6 2 fig, we see that

___ W772 cosh (7756/2 k).
t _ 8111112 (wx/ 271,) '

The first term in 97 is, therefore,

g'irt2 cosh (71-63 / 2 h)
811? si11h2 (wm/ 2 72,) ’

in agreement with Lord Rayleigh’e result The next term is

__92-mi“ 4 h sinh (ww/h)—~—7r63 {3+eosh (wx/k».
—384: 714 sinh3 (7163/2 h)

 

 

5. The Synthesis of Hcmnom‘c 806112560713.

Leaving aside for the moment the question of the cause of the instantaneity

0f the propagation, let us consider the apparent discrepancy between this fact

and the velocities of simple harmonic waves. Taking a, one—dimensional

problem in a dispersive. medium, let it be required to determine aquantity Z:

at place m and time 15. For the sake of simplicity, take C as ey111metriee1 about

6:: :2 0 and stationery for t z: 0, and let a particular solution of the differential

equation of the problem he § :2 005 at cos 71:63. Here 0' and 76 are connected by

an arbitrary functional relation. Corresponding to the initial valuef(;1) of Q’,

we generalise this solution into '

g; = j 4) (71;) cos 0-25 (308 126: die,

0

’24- Lamb, “Hydrodynamics; 11,365.,
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where f(m) = ~ { 4) (75) cos 7m dis.
-’ 0

By proper adjustment of gt ([5) we can make f(x) Vanish‘when st exceeds a

certain Valiie. It is not, however, obvious that Q’ will in general 'Va'nish for
the larger values ofaz, if a/ls remains finite. Thus, in the absence of such

proof we may conclude that the finiteness 0f the simple harinbnie wave-

Veloeity is not a sufficient condition for finite propagation with a wave—front.

For non-dispersive media, for which 0/73 = c, a constant, it is easily seen that

:: §—f(a3+ at) + %f(w—.-ct), and there is a wave—front advancing with velocity 0.

The presence or absence of a ,wave-fr‘ont can also be investigated in‘ more

general cases. Let us start with a limited idisturbancey'whieh itself

possesses some degree of discontinuity. Then, if the propagation" is finite,

there will be at any subsequent time an undisturbed portion of the medium

and a new field. Between the two there should, therefore, be some degree

\Of .diseontinnity as well. Now the solutions of wave problems corresponding

to arbitrary initial Conditions occur naturally in the form of infinite

_,integrals. _ The test of a wave—front is, therefore, non-uniformity of the

convergence of the integral. This is otherwise obvious if we reflect that

discontinuity meanspreponderating effect of short-waved components at the

point in question, tle. importance of the part of the integral corresponding to

large values of is. _ i _

In this way we can find out to what extent irregularities of the initial

state are propagated in. an advancing wave, in many cases in which an exact

solution is unobtainable. In applying this method to the propagation, in a

heavy incompressible fluid,.we meet with certain difficulties connected with

the non-eo'nvergenee 0f the integrals at the surface. We can, however, Obtain

rigorous results by using a iioii—coneentrated symmetrical initial elevation of

triangular form, given by

770=Z~z13 if x<l, :0 if 06>l.

It is found that outside the range -—Z < 93 < l the surface elevationiis

continuous for all values of ’13 and t, as well as its time derivates up to

8377/8531 If we had taken a- :: kc and fitted the solution to the same initial

conditions, we should, of course, have found discontinuity of an/at at the

p0intsxict=0,xilict=0. ’ V

A very similar case occurs when it is small. If we simultaneously take

9 large in such a way as to keep 9h E c2 finite, we find that the “ remainder ”

0f the integral becomes important near’ the saniepoints.~ As it cannot be

regarded as indefinitely small, it is, hewever, clear that the propagation of

disc ontinuity can never actually be attained. The continuity of the general
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case is thus brought into contact with the non-dispersive equations of tidal

waves.

The above remarks must not be taken to imply that instantaneity of

propagation is a property of such dispersive media as occur in nature.

Where it is indicated by the analysis it is probably to be traced to some

imperfection in the physical assumptions upon which the analysis is based.

6. Appmemf Instantcmeizfiy/ 0f the P720pagazfz'0n.

It is easy to extend the ordinary methods to treat the problem of the

propagation of disturbances over incompressible fluid covering an attracting

spherical core. The solution has the same features of continuity already

encountered/and thus the instantaneity is not connected in any way with

neglect of the curvature of the bed on which the fluid lies.

The instantaneity can therefore only be ascribed to the fact that the

fluid is taken as imcompressible, as surmised by Lord Rayleigh (loo. cit, p. 5).

In order to see the precise way in which this assumption enters it will

be necessary to investigate the propagation of disturbances in a heavy

compressible fluid.

Taking the pressure as a function of the density, we have

s_lp__a¢ 1 ap____B2gb
i7; 57 +992 pa”? 2372'

The equation of continuity is

' a / 81’) ap< ai>= ”axip 8x +87 23/ 537'
For the sake of illustration, assume the law

29 = eonstant+a2p.

Then for small motion we have

(:2 (3p_____a2¢

, 3 52¢ 0:¢ 1 Q9and ., 3932 872 +2 ry%(;= pat

where 2 ry is the value of p”1(0p/a;z/)1n the state of rest, 75.6.

v =3 9/2 012- (18)

Getting rid of p; we have for the differential equation for 9b

8:35.. 2 (82¢ 52¢ 53¢2 — .
872 a 82+83/2 + 783/) (19)

The boundary conditions and the expression for the surface elevation are
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the same as usual. Consider the case of finite depth h, and try a solution

¢—fs1n o- t cos 76.73, Where f depends on 3/ 0n1y.Then from (19)

f: Ae91J+B692J,

61 and 62 being the roots of the equation

62+2 76-k2+a2/a2_—— 0.

The solution takes different forms, according as 724—752 -a2/a2 is positive

01 negative. If it is positive, put it equal t0 #2. Then 61-— —-'y+,u and

62 = —-ry-—,u. The boundary conditions give -

A(M“'Y)e”h = B<t+ry>M = Clean
and g{A(,u,-—ry)-B (#+'Y)}+02 (A+B) = O.

Eliminating A and B,'We find that the relationship (if p, 0', and la is given

by the equations

 

02/612 := 7132—}12+¢72,(20)

‘ ‘ _ ' [Lg +M2"Q/2
and ’11, (30th ,uh——— 7W » (21)

75“ “F“”+7
By proper adjustment of C we find, further, that

__ E. ,u. cosh ,u. (hwy) -—-ry sinh ’11. (71—31) sin at 16 29
‘1’ “ 6w ,1 cosh #h—ry sinh ML 0" COS x’ ( 7)

corresponding to ”'7 = cos at cos km.

The position of the admissible roots ,u. for a given 7.3 is seen most easily by

drawing the curves . a '

y = xcoth sch, 3/ = 7(152+x2—ryz)/(/c2—w2+ryz). ‘

The quantity ,1. may be taken as positive Without loss of generality. It is

seen that if hfy (752—72) < k2+ry2, there is certainly one root ’11. corresponding

to is, while if Ivy (k2_,Y2) >752+ryz there are at least two roots.

\Nhen 72+762—0'2/a2 is negative, put it equal to ~v2. We get a second

set of solutions, which are formally Obtained by writing = 9322. For a given

13, v is given by the equation

12 cot viz, = 7 (752—v2—72)/(752+ 1224—7). (23)

It is easily seen that the roots are infinite in number.

In order to see What kinds of waves are formed in this way, let us take

7:: large. It is found that one root ,u. approximates to kury, so that «:2 approxi-

mates to 97:3. With this mode, the propagation of surface—discontinuity

follows the same course as With incompressible fluids. The remaining root ,u

and all the v roots approximate to quantities independent of Is, and 0' tends

to @713. The discontinuities are propagated as by waves of expansion.

' More definite information is obtained by taking A: finite and h large, that is

by investigating the simple waves on deep Compressible fluid. It is easily



LA
l

S
O
C
I
E
T
Y

P
R
O
C
E
E
D
I
N
G
S
T
H
E
R
O
Y
A

O
F

LA
|

S
O
C
I
E
T
Y

'
R
O
C
E
E
D
I
N
G
S
T
H
E
R
O
Y
A

O
F

Downloaded from rspa.royalsocietypublishing.org

356 Propagation of a, Disturbance in a Fluid under Gwam'ty.

proved that one root ,u, approximates to 76—7 for h = 00 ,provided 7:: >ry. We-

have 02....-- git" as before, and corresponding to 7?.._. cos o-zf cos 7693 we have

(1) = gf’va“1 sin o-zf cos km.

That is, if It > ry there is a “ standing ” solution of exactly the same kind as

for an incompressible fluid. This solution is easily verified directly. We-

know that it satisfies 82¢/aw2+a2cb/ag/2 :2 O, and it is easily seen that}
8295/8252 = gdgb/ag. The equation (19) therefore holds.

Further, it may be shown easily that the normal Cauchy—Poisson solution

'__9 eos6 1 cos36 n at! n n eos(/n+1)6+
¢"é‘r<t 7" 319537371”H)(27:+1)‘29t2+1”—7mmt

 

(24)”
in which 9 -_-__-— woos '6, x z; 9°sin 6, satisfies the equation (19). It also

satisfies the initial conditions of zero initial velocity and zero initial elevation

everywhere except at the origin of 7°. But it is not the solution of the

problem of a concentrated initial disturbance in a compressible fluid, because

it implies an initial condensation determined by the formula

(8(1)):91 cos6
at t=0 72' 7°

The corresponding initial pressure is given by the equation

a2 10g [20 + eonst.]t= 0: const. +gy+ (77'7")~1 9 cos 6.

~ In like manner, the formula (24) implies, in the ease of an incompressible

fluid, an unequilibrated initial distribution of pressure according to the

formula
p”1 [fltzoz eoust. +gy+(777‘)"1g cos 6,

so that the fluid is represented as starting to move at once With finite

acceleration. The solution corresponding to (24) in the ease of initial

1 [cos 6 1 2 cos 26 ]
= H — .._.»-_. t o o o ,

in1pu1se,* Viz. :——-—

 

 

7' 2 1 7’2

similarly implies an initial impulsive pressure everywhere, as might be

expected in an incompressible fluid. 2

The solution (24) is obtained by generalising one that corresponds to a

single root of equation (21). It has Been seen to be incomplete in the case

of any actua1(eompressib1e) fluid. In any such case the complete solution

must be sought by taking account of the modes of motion which correspond

to the remaining root er roots of equation (21) and the roots ef equation (23) ;

and these modes are capable of transmitting pressural efifects — with the

velocity of sound in the medium.

* Lamb, ‘Hydrodynamies,’ p. 369.

 


