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1. Introduction.

In a recent paper* Lord Rayleigh has called attention to the fact of the

instantaneous propagation of a limited disturbance over the surface of heavy
incompressible fluid. This instantaneity occurs in spite of the fact that the
velocity of any simple-harmonic gravity wave is finite, the depth being finite
and constant. As the points thereby raised are of some delicacy, and are
not completely settled in the paper quoted, some further remarks on the
phenomenon may not be superfluous.

2. Solution of the Cauchy-Poisson Problem for Finite Depth.t

In his treatment of this case Lord Rayleigh used the integral form of

solution. There are, however, great difficulties raised in this way on account.
of lack of convergence at the surface. I proceed to obtain a solution in the-

form of a series similar in type to the known serial solution of the problem
for infinite depth.

We have ¢ = ﬁj cosh i (h——y )Sin et o dk,
m), coshkh o
where o? = gk tanh kh.
. _ 9 (“coshk(h—y)sinat . ,
Write X = ’n_jo osh 7 ——sin Feac Ak,

* Lord Rayleigh, ‘ Phil. Mag.’ [6], vol. 18, 1909, p. 1. The paper was brought to my
notice by Prof. Love, to whom I am also indebted for much helpful criticism of the
present paper before communication.

t+ The notation used is that of Lamb, ¢Hydrodynamics, 3rd ed., pp. 344—346,

364—374, where the theory for deep water is contained. The sign of y is, however,.

reversed.

g:]
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Expanding the sine in powers of ¢, we have

w@}ﬂfﬁ‘;?/) iz Il — qt? C()Sh]y(h-—z/) i
jo cosh &h ¢ dyj “oosh i ktanhZh.e* dk+ ..

(=)ryg nlj2n+lj cosh & (h—y) 5, . e ]
i Zn+1)! cosh kh R tanh® k. ¢ dli+- .

The integrals assume a more convenient form by writing
p=y[2h, g =u[2h M
and making the substitution » = 27%A. Thus, if we write

0 10 )
6, = j o U= ok o i @)
osn 5 U
0 2

we have

b+ix = 1[9 16, — <M> 20+ . +(—2%+);)1<—9-E> t2”+19,,+...]. (3)

e g Py i
Further, 0, = | 2o+ At — g i
’ n o g iu it | g du

> 9% dly

= j- (et ere vy g (1 —e ¥y (14 e7%) 7 gt gy,
0
Let (n, 1) denote the coefficient of 2* in the expansion of (1-+4z)*(L—z)~»"*
in ascending powers of z. Then

o o
0, = j {e"’“(]""i@ _|_e—u(1“17‘“'54)} du.—.(n, l)j‘ {g“"(l"‘}"‘i’!) _.|_g_u(2“1"‘7:9)} wdu
0 0

+.. +( )/\ (% )\l)j {e—-u()\+p-zq)+6~u(1+)\-p—-zq)} wdu ... .
Now if the real part of e is positive,
L e~y = ;%
‘Hence, if we write
_ o1, s _____1_ .
@ = ptig = g3 (y+i), B =p—ig =53 (y—w) &)
we have

g‘ny = [ﬁ;—1+(1 )t —(n,1 [(1 +]B)n+1+<2_i)n+l]+ e
+(")A(n,k)[<x+1ﬂ)ﬂi+(l+>i_a)n+1]+... . B
It is convenient to introduce the quantity {=, 2}, which is the coefficient
of #*in the expansion of (1+4z)*(1—z)"" The quantities (n,\) and {2, A}
are positive. It is easily proved that
(m,A)+ (A —1) = (n+1L,\)—(n+1,1v—1),
(m, ) —(, A —1) = {n,\}.

©)
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By consideration of the explicit expressions for the quantities it is not
difficult to derive the inequalities

(n,\) < 22m\7
{,n, )\‘} < 22n—l>\n——1}

which will be useful in what follows.

M

3. Conwergence of the Seraes.

‘We have to prove that the series (5) converges, and to find an upper limit
for 8,. Regrouping the series without change of order, we write

6, 1 [ (n,1) ]-l-[ (n,2) _ (n,1) ]_
’n,_! - Bn+l (1+B)n+1 (1_a)n+1 (2+B)n+1 (O_a)n+1 ‘ "
o (m) (n, A — 1)]
+(—) CF B (vl +.... (8)
Substitute for (n,\) its value (n,A—1)+{n,A}. Then, after some further
transformations, we get
0, _ 1 1 4 1
77/’ Bn+1 (1+B)n+1 (1—-0()"+1

e arar =]
+ argrm =0 grprm— @y

IRV I €799 1 — 1
+H @ mrm= e g e e

Let us write

RN — (W 1 _ 1
uy, = (=) (7\'+B)m, 5 =(—) (n’x){(l+1+ﬁ)7z+l (x+1_a)n+1}'

0, __ 1 1 1

Then ! Bnﬂ a +18)n+1+(1__a)n+1 't%l('”')\'{’”)\)-

~ Consider the w and » series separately. The real part of A+ 8 is positive
and greater than A, so that |[A+B|>2\. Combining this with (7), we get

|| << 277102

The u series therefore converges absolutely and uniformly, and

2 " I <om1 3 %2< % 2, 9, (9)
A=1

_ 7\‘+1+B n+1_()\’+1_a)n+1
Farther, % = (—)A () ((x+1+z3)n+l G ) e
VOL. LXXXIIL—aA. : A 2B
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Since 0 =p =1, it is easily proved that |[A+1—a|?and |)»+1+Bl2 each
exceed A%+ M2, where

M=« =8| = L@y

=)
Again,

()\‘+1+B)n+1_(7\‘+1__“)n+1 — (h__,lg_'_l+p)n+l__(7\‘_7/g+1_p)n+1

= ("1 oy [+ - =p0+(" 5 vy = =T

() Oy [ Y QYT (4 = (=]
Since |A—1g| << (A?+M?2):, while |1+p| and |1 —p| are less than 2, we have
[+ 148 =t Loyt | < (T e Moy 224
+<n+1 J FF MY 2 2
< 2n+2(x2+M2)n/2[<”J1f1>‘+ +\”:f1>+ ot 1]_
< 2 (N2 M2

Making use of (13) and of the inequality

1 1
(X+1+6)n+1(h+1_a)n+l (7\‘2+M2)n+1’
92npn)2n+3 ()\12 + M2)n/2 Qdn+t3

<

we have ]"/)\]< (A2 M2yl A2
Thus él <%),7r2  un+s, (10).

The moduli of 1—« and 1+ 8 each exceed . Hence, using (9) and (10),.
we find that

1 1
n+2 2 92n+1 2 4n+.3
|0|<Mn+1+2 g 22
Cut out the origin by a definite small semicircle, and consider the domain
M>e O=y=h (11).

Then the inequality for 8, shows that within the domain we can choose
finite numbers « and b, independent of », z, 7, to secure that

10,] < at?.n . (12)

The uniformity of the convergence of the z and y derivates of 8, is proved
in the same way, and the derived quantities satisfy inequalities of the-
form (12).
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Returning to the equation (3), we see that the = series for ¢+ 14y converges
absolutely and uniformly in the domain if the series
3 7!
W=o(2n41)!
converges, k being a positive constant. This is clearly the case. It is easily
seen that we can use term-by-term differentiation with respect to x, y, and ¢
everywhere in the domain, even when y = 0, and we are in a position to
verify the solution rigidly.

i (13)

4. Various Verifications.

Taking the solution given by (3) in conjunction with either (5) or (8), it is
easy to verify that the following conditions are satisfied in the domain, these
being the conditions of the problem :—

(1) /o2 +3p/oy? = 0,
(i) O¢p/oy = 0 when y =7,
(i) gO0¢p/dy = 0*p/ot* when y = 0,
@iv) ¢ =0 when ¢ =0,
(v) O¢pfot =0 for y =1¢=0.
The equation (8) may be written

1 6, _ 1 w1l ) ]+
n! (2ApF1 T (y—rz)rt! [(y—ix+2 Ry (—y—imt 2y
—) (n,\) _ (n,A—1)
+( ) (y—m+2hx)n+1 (—'7/"‘"1/{17—]-2}],}\1)”‘1‘1]-_’_"' .

Let us write

Y = 7 cos 0, x = 7sin f,

Y+2hN = p,cos ¢y, T = p,s8in ¢,, (14)

—Y+2h N = o, c08 Y, Z = o, sin vy,

0
Then if w, is the real part of L w1 @y we have
_cos(n+1)8 [(n,1)cos(n4+1) 1 cos(n+1)y
n — ’)"n+] - n+1 n+1 ]+
p1

(m,A) cos (n+1 n,A—1)cos (n+1

+(—-)*[ PA”(“ )b _( )o'A”+(1 LY (15)

The explicit expression of ¢ now follows by observing that -

1 1 !
¢ = ;‘r[gt wo— :3—,925%1 +g“'!/‘355w2— (=)

51
‘When % is large we have
w, = r""lcos(n+1)6,

m,jn+lt2"+lwrl+ .] (16)

2B 2
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and the expression for ¢ passes over into the well-known result* for deep
water. ‘

It is also easy to derive Lord Rayleigh’s expression for the first term in the
surface elevation. The coefficient of #*in ¢ +iy is —g261 /24 h?w. Thus, it J
denotes the real part of [61],=¢, the coefficient of 2 in the surface elevation is

-gd |8 WPar.
From (8) we have
' _ 12 2 w2
[9111/:0—— 92 (1"‘19)24—(2—’0(])2 --.+( ) (K_";g—)Q’f‘

Hence J = -3 [(1+7;q)2+(1_iq)2J+[(2+iq)2+(2——féq)2J

+(_>A[ 1 1

e M
(A9 (A—1g)? +

Differentiating the well-known result

SO SR S ) S S _A_L_i_1
s = oL ive el avaama O el
with respect to 6, and putting 8 = 7g, we see that

__m*cosh (mz /2 h)
sinh? (maf2h)

J =

The first term in 7 is, therefore,
gmt? cosh (mz[2 h)
8 h? sinh? (waf2 h)’
in agreement with Lord Rayleigh’s result. The next term is
__ gPmit 4 hosinh (rz/h)—mw {3+ cosh (mx/h)}
384 0t sinh?® (w2 1) ’

5. The Synthesis of Harmonic Solutions.

Leaving aside for the moment the question of the cause of the instantaneity
of the propagation, let us consider the apparent discrepancy between this fact
and the velocities of simple harmonic waves. Taking a one-dimensional
problem in a dispersive medium, let it be required to determine a quantity ¢
at place # and time £ For the sake of simplicity, take { as symmetrical about
2 = 0 and stationary for £ = 0, and let a particular solution of the differential
equation of the problem be ¢ = cos of cos kz. Here o and  are connected by
an arbitrary functional relation. Corresponding to the initial value /() of g
we generalise this solution into

&= j ¢ (k) cos ot cos kx di,
0

* Lamb, ¢ Hydrodynamics,” p. 365.
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v

where OB ( w([) (k) cos kx dk.

By proper adjustment of ¢ (k) we can make f(») vanish when # exceeds a
certain value. It is not, however, obvious that ¢ will in gen’eraﬂi vanish for
the larger values of z,if o/k remains finite. Thus, in the absence of such
proof we may conclude that the finiteness of the simple harmonic wave-
velocity is not a sufficient condition for finite propagation with a wave-front.
For non-dispersive media, for which o/k = ¢, a constant, it is easily seen that
E=1f(z+ct)+f(x—at), and there is a wave-front advancing with velocity ¢.

The presence or absence of a wave-front can also be investigated in more
general cases. Let wus -start with a limited disturbance, which itself
possesses some degree of discontinuity. Then, if the propagation is finite,
there will be at any subsequent time an undisturbed portion of the medium
and a new field. Between the two there should, therefore, be some degree

.of discontinuity as well. Now the solutions of wave problems corresponding

to arbitrary initial conditions occur mnaturally in the form of infinite

Jntegrals. The -test of a wave-front is, therefore, non-uniformity of the

convergence of the integral. This is otherwise obvious if we reflect that
discontinuity means preponderating effect of short-waved components at the
point in question, .e. importance of the part of the integral corresponding to
large values of %.

In this way we can find out to what extent irregularities of the initial
state are propagated in an advancing wave, in many cases in which an exact
solution is unobtainable. In applying this method to the propagation in a
heavy incompressible fluid, we meet with certain difficulties connected with
the non-convergence of the integrals at the surface. We can, however, obtain
rigorous results by using a non-concentrated symmetrical initial elevation of
triangular form, given by

n=I1l—zif a<l, =0if 2>

It is found that outside the range — ! < 2 < ! the surface elevation is
continuous for all values of x and ¢, as well as its time derivates up to
/o If we had taken ¢ = kc and fitted the solution to the same initial
conditions, we should, of course, have found discontinuity of 31;/815 at the
points z + ¢t =0,z + Il + ¢t = 0.

A very similar case occurs when 7 is small. If we simultaneously take
g large in such a way as to keep gh = ¢? finite, we find that the “ remainder ”
of the integral becomes important near the same points. As % cannot be
regarded as indefinitely small, it is, however, clear that the propagation of
discontinuity can never actually be attained. The continuity of the general
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case is thus brought into contact with the non-dispersive equations of tidal
waves.

The above remarks must not be taken to imply that instantaneity of
propagation is a property of such dispersive media as occur in nature.
Where it is indicated by the analysis it is probably to be traced to some
imperfection in the physical assumptions upon which the analysis is based.

6. Apparent Instantaneity of the Propagation.

It is easy to extend the ordinary methods to treat the problem of the
propagation of disturbances over incompressible fluid covering an attracting
spherical core. The solution has the same features of continuity already
encountered, and thus the instantaneity is not connected in any way with
neglect of the curvature of the bed on which the fluid lies.

The instantaneity can therefore only be ascribed to the fact that the
fluid is taken as imcompressible, as surmised by Lord Rayleigh (Zoc cit., p. b).
In order to see the precise way in which this assumption enters it will
be necessary to investigate the propagation of disturbances in a heavy
compressible fluid.

Taking the pressure as a function of the density, we have

2
(2% 13-2

The equation of continuity is

é%(i”£>+8‘/< gj)> at

For the sake of illustration, assume the law

p = constant +a?p.

Then for small motion we have

a?0p _ 82¢
¢ , PP 13p
: 2y
and 5 3+ay + 8/ ; 37
where 2+ is the value of p~! (0p/dy) in the state of rest, .c.
v=g/2a (18)
Getting rid of p; we have for the differential equation for ¢
PP, (PP a2¢ Jé)
= gty (19)

The boundary conditions and the expression for the surface elevation are
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the same as usual. Consider the case of finite depth 4, and try a solution
¢ = fsin o ¢ cos kxz, where f depends on y only. Then from (19)
S = A+ Bebw,
91 and @, being the roots of the equation
0+ 2040 —k?+a2[a? = 0.

The solution takes different forms, according as y?+7k?—o?[/a? is positive
or negative. If it is positive, put it equal to w®. Then 6, = —vy+p and
0; = —y—pu. The boundary conditions give

A(p—) et = B(p+ry)e ™+ = C(say),
and g{A(p—y)—B (p+y)}+o*(A+B) = 0.

Eliminating A and B, we find that the relationship of u, o, and % is given

by the equations

o?fa? = kE—pul+ o3, (20)
_ k2 + p2___,y2 21
and peoth uh = o i (21)
By proper adjustment of C we find, further, that
_ g wecosh u(h—y)—qgsinh u(h—y)sinat I 99
¢ = 2 pcosh ph—r sinh ph e ovh (22)
corresponding to = cos ot cos kx.

The position of the admissible roots x for a given % is seen most easily by

drawing the curves
y = zcoth zh, y =y (IP+2?—o?) [(k2—2?+ o).

The quantity u may be taken as positive without loss of generality. It is
seen that if sy (A2—4?) <k?4+2 there is certainly one root u corresponding
to k, while if Ay (k2—«?) >/k?+ 42 there ave at least two roots.

When o?+/k?—o?/4? is negative, put it equal to —12. We get a second
set of solutions, which are formally obtained by writing 4 = 4». For a given
k, v is given by the equation

v eot vh = ¢ (I2—12—9?) [(lF+ 12 + 7). (23)

It is easily seen that the roots are infinite in number.

In order to see what kinds of waves are formed in this way, let us take
% large. It is found that one root w approximates to k—r, so that ¢?approxi-
mates to gk. With this mode, the propagation of surface-discontinuity
follows the same course as with incompressible fluids. The remaining root u
and all the » roots approximate to quantities independent of %, and o tends
to ak. The discontinuities are propagated as by waves of expansion.

More definite information is obtained by taking % finite and % large, that is
by investigating the simple waves on deep compressible fluid. It is easily
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proved that one root u approximates to k—r« for 2 = oo, provided £ >ry. We
have o2 == gk as before, and corresponding to » = cos o cos kxz we have
¢ = ge o1 sin ot cos k.

That is, if £ > « there is a “standing ” solution of exactly the same kind as
for an incompressible fluid. This solution is easily verified directly. We
know that it satisfies 0%¢/02%+0%b/0y? =0, and it is easily seen that
0%p[0t? = gop [0y. The equation (19) therefore holds.

Further, it may be shown easily that the normal Canchy-Poisson solution

¢ = %(t&:’i’f% g3 ‘E?’—eJr (= )"(z a%l)" prg2nel C__.—_OS(;fjl 1o >

: (24)

in which % = rcos 6, z = rsin §, satisties the equation (19). It also
satisfies the initial conditions of zero initial velocity and zero initial elevation
everywhere except at the origin of ». But it is not the solution of the

problem of a concentrated initial disturbance in a compressible fluid, because
it implies an initial condensation determined by the formula
<a¢> _ygecost
ot Jt=0" a7
The corresponding initial pressure is given by the equation
a?log [p+ const.Jy= o= const.+ gy + (77)~* g cos 0.

In like manner, the formula (24) implies, in the case of an incompressible
fluid, an unequilibrated initial distribution of pressure according to the
formula

p ' [p)i=0= const.+gy+ (7)1 g cos 8,
so that the fluid is represented as starting to move at once with finite
acceleration. The solution corresponding to (24) in the case of initial

¢ __[0030 1 gt200826+...],

r 2 K ,)12

similarly implies an initial impulsive pressure everywhere, as might be

impulse,* viz. :—

expected in an incompressible fluid. .

The solution (24) is obtained by generalising one that corresponds to a
single root of equation (21). It has been seen to be incomplete in the case
of any actual (compressible) fluid. In any such case the complete solution
must be sought by taking account of the modes of motion which correspond
to the remaining root or roots of equation (21)and the roots of equation (23) ;
and these modes are capable of transmitting pressural effects with the
velocity of sound in the medium.

* Lamb, ¢ Hydrodynamics,’ p. 369.




