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IxTRODUCTION

In all sorts of experiments which are not simple repetitions but have at least
one varying essential circumstance or indefinite variate the experimentalist is
confronted with a choice in regard to the values of that variate. If the ex-
periments be quite simple the question may be without great importance; but
when their requirements as to time or expenditure come into account the problem
arises, how the observations should be chosen in order that a limited number of
them may give the maximum amount of knowledge. It clearly depends upon the
relationship between the observed quantity, which we shall name the primary
variate, and its essential circumstances, the secondary variates, and upon the
variation of the errors of the observations.
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2 Choice in the Distribution of Observations

When we deal with, for example, a linear function which it is possible to ob-
serve with the same accuracy for all values of the indefinite variate we should
not hesitate to put the observations in two equally big groups as far apart from
each other as feasible. But if the standard deviation of the observations be a
function of the indefinite variate and increases with the distance from the middle
of the range, where is then the point in which the advantage of removing the two
groups of observations from each other just counterbalances the disadvantages of
increasing the error of observations? The problem becomes very complicated for
functions of higher degrees.

We shall in this memoir try to contribute to the solution in the case of poly-
nomial functions by examining the standard deviations of the adjusted and more
especially the interpolated values of such functions for different distributions of
observations. Those values inside the working range of observations may be
considered the sum of knowledge acquired by the experiments. The adjusted
values outside the working range may probably in exceptional cases be of interest,
but as only by some other type of experiment we can make sure that the form of
function holds outside the range they arve in ordinary cases without great value,
We shall therefore aim at finding the distribution of observations which within
the selected range gives the most satisfactory standard deviations of the adjusted
values of the function.

To consider the standard deviations satisfactory we must of course demand
that they shall be as small as possible, and since a greater accuracy in one part
may be expected to be accompanied by a smaller accuracy in another part we
want them in addition to be as near constant as possible. In other words the
curve of standard deviation with the lowest possible maximum value within the
working range of observations is what we shall attempt to find. It appears that
the distribution of observations which fulfils this demand consists of specially placed
groups in number just sufficient to determine the constants of the function. We
shall accordingly pay attention also to the desirability usually present of ascer-
taining the form of function by means of the observations. As might be expected
we find that the standard deviations obtained from a uniform continuous distri-
bution of observations increase towards the ends of the range. By choosing a
uniform continuous distribution with additional clusters at the ends of the range
we shall try to find a compromise between the two desiderata of a low maximum
of standard deviation and of a uniform distribution.

The indefinite variate is supposed to have a vanishing error of observation
compared with that of the principal variate. This error may be constant or varying
with the indefinite variate, but in either case it is supposed to follow the typical
law so closely that the method of least squares may satisfactorily be applied to the
observations. After having found first the most advantageous distributions for
observations of functions up to the sixth degree with constant standard devia-
tions we examine the case for observations of functions of the first and of the
second degree which have standard deviations of the form o (1 4 az) and o (1 + ax?).
If it is profitable to use the whole of the working range the latter distributions
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are practically found from the former by multiplying their frequencies by the squared
standard deviations of the observations at the corresponding place. But in cases
where extrapolation is of advantage, and the whole range therefore not to be used,
the law of the frequencies has to be examined anew.

In Section VIII we find for the same two cases of varying error of observa-
tion the distributions which make each single constant of a function of the first
and of the second degree a minimum.

L. Adjustment of o polynomial function of one variable; general distribution
of observations.

(1) Let vy, 95 -..... Yp venens Y be N observations of a function of nth degree
taken at the points z,, , ...... /I Ty,

Y=g+ a7+ a,z®+ ...... F @ L (1).
Let us assume that from earlier experience we know the standard deviation of an

observation of y to be o V/f (z). The method of least squares will then give us the
following system of normal equations in which the sums are to be extended over
all the observations:

S{rtes =S ) s {f—f{;s} “+S {f%‘)} i {fr)} &
S {5{7:—)} =5 {ffm} ot s {ffm} S (gl et ot 8 {}575'3} “
s {7‘?@%} =5 {fg(cm} : {

s{fenl—s {J%w)} “"*‘S{ﬁ;l}“‘*s {/E“}M """ ”51]%;)} n

If f(x) is 1 the sums are the moment coefficients of the places of observations
multiplied by N, and in the general case we shall for brevity put

sl

By elimination of the a’s between (1) and (2) we find

N.y 1 x x® . x"
S {J/ﬁ} m m My eeeens My
S (@) ’ ! 2
| S {}/z’;”)} My My Mg eeeeen Moy e
3 =0 e (3),
S {y”%} m m My enee Moo
f (xﬁ) 2 3 4 +
S {y,,x,, } m, My, Mhpgog oeven Mgy
S (@) o T :

which determines the adjusted y corresponding to the variable x.
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C

(2) To find the standard deviation o, of an adjusted y, it will be easiest to
start from the equations (2). If the first be multiplied by a,, the second by o, and

80 on before summing, and if we choose ag, a; ...... a, so that
agMy + a; My + agMy  + ...... + a,m, =1
apMy + a; My + aghy - ...l + a, My = T,
agMy +a; Mg+ agmy  + ... F Oy Mgy = xf\r ............. (4),
Ay My, + Oy Mpiy + AWMy + oo + a, My, = x;‘)
we find that = S {f( 5 [ty + 012y + 0p@) + ...... + a,x },
2 0'2 1 2
and therefore o} = = Nz 8 Fw) [ag + a1@p + 0 @) + ... + a,®),)
By multiplying out the square this may be written
. 2
a;jT = CZLV {ag [agmy + a;my + aymy —+ ... + a,m, ]
+aq [agmy + ay;my  + agMg  + ... + 0y Mptq]
+ ay [aghiy + a;my 4+ agmy,  + ... + 0 Mopts]
+a, [agMy, + 0y Mty + Ay Mppo+ ..o + a’ann]} s
or applying (4) o = %; (g + a1y 4 0a @) + evne F Uy )i (5).
Hence ajr is found by elimination of the a’s between (4) and (5), which results in
, N ,
Tyt o2 1 z, Tr @y
1 my My My v my,
x, my My Mg enene Mptr | =0 iiiiiiiinnn. (6).
o omy, My My . Miysrn
Ty My Mgy Mgty eeenns Mg

This determinant is of fundamental importance for all the following work and
it will be useful at once to examine it more closely.

(3) First however it may be pointed out that the standard deviation of any

other linear function ¢ — bya, + b,a; + bya, + ...... b,a,
of the constants of the function y may be determined in quite the same way by

, N |

0’1 . ;é 0 bl b2 ...... bn 1

by my My My vvenne M,

b, My My My rene Moty | = 0. v, (7).

b, My My My oernn. Mopytn |

. . . . .

D, Wy Myyq Mopys cennn. Mgy, |
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In particular ‘7(2:,,, is found from

N
@ .5 0 0 o .. 1 .. 0
ap " g2
0 my My My oo My ... My
0 my My Mg oo Mpyq oo My gy
0 my Mg My oo Mprg e Myye =0 e, (8).
1 My Mpyr Mppp oo Moy oo My y
0 My Mppy Mppg oo Mpig oo Moy

(4) Let us call a determinant, identical with that of (6) except that it has 0
instead of the element 02%' g, A, let A, ; be its minor not containing the rth row

and sth column, again let A, , , , be the minor of this not containing the pth
row and the gth column of A.  We then find from (8)

2
g ép+2, 942,1,1

2
T =N N, (9).
With this notation we obtain from (6)
. _ O <_ ,#A> (10)
GVT = N ‘ L) .

In the following we shall drop the index » and indicate by ,o, the standard
deviation of a y adjusted by means of a function of the nth degree.

If we were dealing with a function of (n — 1)st degree and retained the observa-
tions distributed as before we should find
0_2 — C’f (__ An+2, n+2 )
m Ty N An+2, n+2,1,1 ’
and therefore
0% Ayy-Duysngs — AL Ay ntnL1

2 9 __
nOy — n-10y = N

Al, 1 An+2, n+2,1,1

but A is orthosymmetrical and therefore the numerator of this fraction equals
9

A7z+2, 1 a'nd g

— 12 ,An,j'gj,l, _
N A1,1 . An-ILZ, n+2,1,1

2 9
nTy — n-10y

It was shown before that
2
2 =2 Antaniz11
an N Ay,
. 9 .
hence A, ; and A, .5 4 1,1 have the same sign, and , 0}, — ,_, 0} is therefore a square

. p 2
of a function of . In the same way we can express ,_;0, — ,_s0, and thus further

2
down all the differences till jo? = %7 . ;1; by which means ,0? is developed in a sum
0 :

of squares and takes the shape
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(1 my my ?
1 m, |2 X my My
2
x  my 22 m, My
+ 4 e
my My I My My my My My
my .
0 my  my lml My | | My My My
My Mg My
2
Mg My eeenn My _y
r My My ... My,
2 My Mg ... M1
B My Mpyy e Mgp s } ............ (11).
[ my My ... My_y | | My My . My,
| My My My, Wy Mg eennn. Mpi1
Mp_g My eenen. Mop_g | | My Mpyq.eon.. My,

It will be seen that the squared standard deviation of an adjusted y is a function of

the 2nth degree of .

was just seen, is the factor with which

o2

N

The coeflicient of x?" is the square of

A .
n+2,n+2, 1,1 Whlch, as

1,1

should be multiplied in order to give

0., it is therefore positive and can never vanish.

(5) 1If all the m’s with odd indices are zero it is seen from (6) that o, is a function

of x2.

This is, at least in theory, a natural thing to aim at, since our general

purpose is to find a curve for o%, giving as nearly as possible a constant value for

o, throughout the range.

Rearranging the order of rows and columns in (6) we get, when all My, =0

and n = 2p,
o g 1
20~y " 0_2
1 My,
x? My
xt My
T2 My,
z 0
3 0
x5 0
x?2?~t 0

......

S o o v

O e

Map

Mg
Mg

Mypre

R 21

0o ... 0

0 ... 0

0o ... 0

0o ... 0 =0
Mg erenen Myy
Mg weenen Mopys
Mgy weeeee Mapia

Mgpgq «onees Myp_sp
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from which we find
. 0 1 x? O
‘
1 om, My Mg eernnn Mgy
Cat omy omy Mg eeenre Mypyn
Lot omg mg My eeenn Maypig
‘ .
. o2 (| @27 My, Mopiy Mopig eee... My
2= TN my my My eeeenn My
! Mgy My Mg eenes Mapyz |
L omy Mg Mg venen Mopiq
i .
‘ Mop Maprs Mopig eenens My
0 1 x? ¢t L 2272
’ 1 My My Mg veenns Mgy
J x2 omy My My evvers Mapya
at Mg Mg Meg  veeen Mypra
T2 Mgy Mapip  Mopig oo Myp_o
+ 22 - v l ......... (13).
| my My Mg eenen Moy
i my Mg Mg ... Mopio
i Mg Mg Mgy eereer Mopia
1 Map Mopye Mopig oeee Myp—g

For a tunction of the degree 2p — 1 we get the same determinant as in (12)
except that it does not contain the row and column in which 22 is found.

Hence we find

0 1 x? zt A

|

1 o My My eeeen. Mop_a J

x? Mg My Mg eerenn Mgy |

xt My Mg Mg eenn. Myypro i

pq0° = OB @R gy My Moy ... Myp_y |
T N m My My eeene. Mgp_g
My My Mg oenen Mgy
my Mg Mg eennen Mapis
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8 Choice in the Distribution of Observations
1 z? xt oL x2P—2
1 My my Mg vovenn Moy
z? "y Mg mg  .o.oeen Mopie
zt Mg mg Mg cevee- Mopiq
4o T2 Mgy Moprs Mapig ooeeer Map_s | 14)
My U Mg ovonne m2p j‘
My Mg Mg wenene Moprs
Mg Mg Myg «veen Mopta
Mop Mopre Mapigeve-.. Myp_ o

(6) The last two determinant ratios of (13) and (14) are identical, and when
the numerator of the first fraction of (13) is indicated by & we therefore find

2 2 __ @ 8p+2, p+2 o
200y — 2p-10y = A
1,1, p+2, p+2 1,1

or as 8 is orthosymmetrical and therefore
2
81,1 . 8p+2, p+2 3. 81, 1, p+2, p+2 = 81)+2‘ 1?
2 2
o o — g p+2,1
2p% T 2p-10y = RJ7 - o
N 8418040, 012,11
. 9 . .
Comparing 5, 50, and 2p-10, we see that they have the first determinant ratio

in common and that when y stands for the numerator of the other fraction of

2
w-10y WO have 2 2 o? 2 Y p+1, p+1 Y
2910y — gp_90y = 75 L | ——"—— — —— |,
. . N Yr+1, 041,11 Y11
or again, since vy is orthosymmetrical,

2 2
2 2 9% o Yp+1,1
20-10y — 2p—_20y = N T8

Y11+ Vo+1,04+1,1,1

The general formula (11) hence for any #m,,,; = 0 takes the shape

2 2
1 m, 1 my
2 2 2
“o‘z =7 —L 4+ 2 }, + w U > x2 L o NEIIIE
N (m, My | my My | Ly MMy
mc . l ‘] m2 . :
LMy My | My Mg |
1 My My ennenn Moy
x? Wy Mg ennen Moy
-+ 22 z?2 Moy  Mopyg <ooeoe Myp_yg
My My oeneen Mop_g My My eennen Mgy
My Mg enee. Moy My Mg eennen Mypre
Map_g Moy «vene. Myp_g Moy Mappg cvenee Mygp_o
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1 m, Mg vevnen Map—g |
2 i
22 My Mg ... Mgy
2
+ 22 My, Mopye cenees Myp—s | (15)
Mg My ...... Mop_s My Mg ... Moy | )
Mg My oe.... My My My e Mopis
Myp_g Map «eveee Myp_4 Map Mopyg cenres My,

(7) Before leaving the general case and treating special distributions of
observations three auxiliary propositions shall be proved. We shall first prove that

. 2 n41
the curve of o', can mever be entirely below %7 . sz_ .
’ 0

be summed over all the places of observation with the weight J%)’ ie. for a

With that purpose , o’ will

continuous distribution of observations, the expression ? (( 2) o} dx, where i (z

the number of observations, will be integrated over the range of observations.

Looking first at the numerator of the last term of (11) we find that it can be
expanded into

1 my my ... My _q x My My o...... My_q
x Mg My ... M, 22 my My ... m,,
— D)l 22 omy, My ... My | XD1 ni2,01F| 28 my  my ... m
2 3 n+1
T My Mpyq eenne. Myn_1 ™ m, Mg ... Mop_1
xn my My oeene. My _q
|
+1
L my My ... My,
+2
X Aj npo,g1F coeees +lamt? omy,  my ... My 4q XAI,n+2,n+2,1}-
2
23 M, Mg ... Myp_1

Now [ ‘AJSW dx integrated over all the observations is what we have called

N.m,. When integrating the determinants we therefore find that the first n of
them will vanish, two of their columns consisting of proportional elements whereas
the integral of the last determinant is

My, My My ... My 1
|
My My Mg eeene. m, :
N| My my My ...... Mpyy | = (= 1)PNA, ;.

Mypy My Mpyyq enenen Moy_q
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As Ay nionis1 = — Dpisnis1,1, the integral of the last term of (11) equals N.
The integration of the other terms, including the first, gives the same result so that

[t s o2t 1),

)
and as J;b?(i%) dz = Nmy,
the mean value of , o), calculated in this special way is
o (n+1)
N my
It is therefore clear either that ,o) must at all the places of observation be
2
equal to o 1 or ,0, must at some of these places be greater. The first case

N m,
cannot be realised by a distribution of which any partis continuous, as ,,} is proved
to be of the 2nth degree in z. If therefore we could find a distribution consisting
of groups of observations for which at all the places of observation ,o} was equal

2 41 . . :

to %, . 7?7:*, and if further we could choose the places of observation so that ,o,
0

at all other places within the range of observations was smaller than that value,

we should know that no other distribution of observations with that value for m,

could provide a curve of standard deviation with a lower maximum.

If the standard deviation of the observations be constant and equal o, f ()
equals 1, and so does m,. After what we have just proved the maximum of the , o7

2
curve cannot then be lower than %7 (n +1). Now when we choose to distribute our

N observations in (n+ 1) equally big groups the adjusted y at each of these (n+1)
places will be the mean of the observations and its squared standard deviation will

2
be 2 (n+ 1). Hence our problem is reduced to find out how to arrange a table of

N
(n + 1) values of a function of the nth degree to make the squared standard deviation
of any interpolation result inside the range smaller than the squared standard
deviation of the values of the table. It will be seen in what follows that this can
up to n equal 6—that is so far as the problem here has been investigated—be
obtained by one and only one form of grouping.

When the standard deviation of the observations varies over the range, m,
varies with the different distributions, and we cannot use the same method for
finding the best distribution. It even appears that the best distribution has not
always its maxima at the places of observation.

(8) A second problem which we want to consider here is the condition for two
adjusted 1y’s being uncorrelated. In the beginning of this section it has been shown
that the adjusted ¥,

1 Y . n
:l/,,. =5 NS {f((:pj [(lg + (11371) + agwi ’“" ...... + (Z,nxp } N
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when
WMy + ayMy;  +agmy  + ...... +a,m, =1
agy + ay;My  + agmg  + ...... + oMy = %,
QMg -+ a3y + agMy  + ...... 4y Myyg = wf,k ............ (16).
0gMy + 0y My g + Ao My + oenee. + oMy, = T,

Let y, be another adjusted value, then

1 W
?/s=NS{f?(/;)[)’o+71%+)’zxi+ """ +7nxp}’
J Zp

where

YoMy + Y1y + Yoty ...l + VM = %

YoMy + yimy  + yamy A+ ..., + yYam, =1 ]
YoMy + Y3Mg  + YoMy  + ...... + VMg = ws[ ............ (17).

YoMy + Y1Mpiq + YaMlipig + e + YnMap = %
Hence the condition that y, and ¥, are uncorrelated is, since the squared standard
deviation of the observed v, equals o%f (z,),

1 .
S{f( lag + 0,2y + ayz; + ...... + an®p] . [yo + v1%y + v 25+ . +ynx}f}=0,

»)
or S { z/ (a0 + @12, + ay2) + ... + aan]}

f
+S{ﬁiﬁ [0y + a1, + apaf, + ..., +a”x:+l}
+ 8 {?%/_;'j [0«097]2) + alac.f, + azfﬂz + o + anw;;-w]} EARIDLE
»

1

+8 [a0 + @ T apal T L + 0,2t = 0.
f(

Remembering that S{

duces to

q
il } = Nm, and applying the relations (16) this re-
f ()

Yo+ v1% + Y2+ oo + yuy =0,
trom which the y’s are eliminated by (17).

2

0 1 z, Ty eeenn z
: 1 my my My evnnn My
|
LTy My My My ... My ya
- 0 e, (18)
Las omy mg My .. Moo
[
|
DX M, Mgy Mg ... My,

is therefore the condition that ¢, and y, are uncorrelated.
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(9) Returning to the formula (11) for o} written as a sum of squares we shall
now prove that the (p + 1)st term of this put equal to zero determines a set of p abscissae
the adjusted y’s of which are mutually uncorrelated both for a function of the pth and
the (p — 1)st degree.

The condition for y; and y, corresponding to the arguments z; and z, being
uncorrelated is for a function of the (p — 1)st degree

0 1 Ty T . x !

1 My My Mg ... My_y

To My My My ...... My | _
xE my My My ... M1 ’
N My My Mg ... Mop—

and for the same distribution of observations and for a function of the pth degree
the condition is

2 D
0 1 q Ty eeenen x,
1 my my My veune. My
Ty My My Mg ... Mpiq 0
2 =Y
T, my Mg My eeenn. My
»
Ty My My Mppp e Moy
M t
Putting My oy My oeven. My
My My Mg eeenee Mpiq
My Mg My eeenes Mpig D,
My Mpyy Mpyg e Moy |
these conditions may be written
77-1 r S
% A A ) I e | (19)
d S 4o} 6D,y sa}= 0 20
an > {2 25D, 4,601 = 0 (20),

where the sums include all combinations of powers with » and s lying between 0
and (p — 1), and 0 and p respectively.

Now we have for an orthosymmetrical determinant A,
Ass . As’s” —-A. Asss’s” = Ass’ . Ass”‘
If therefore (19) is multiplied by D and subtracted from (20) multiplied by
D, p.1 the coefficient of .z, becomes

D:o+1» L Dr+1,s+1 - D. Dﬂo+1, 4L, 741, 85+1 T Dﬂ+1,r+1 . Dp+1, s+1»
as long as both » and s are smaller than p.
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When one of them, for example s, equals p the term is

r D
@y @y Dyig,pi1 - Doy, pias
which is of the same form and this also holds for 7 = s = p when the term is

- D » 2
A . @ @y Dy e
The total result is thus

P
r S
%9& R VPSR Dp+1,s+1 =0,

or in the form of determinants

1 1
1 my my Mg vevnee Myp_y | 1 1 my my My vvveen Mp—q |
1 {
Ty My My M3 ennen my, | Ty My My Mg eeeen. My |
|
2 5 |
T, My Mg My ... Mopy1 T, My Mg My ... Mpry | = 0.
| . .
vy i .1)
T My Mpyy Mpig eerens Moy | | T My Mppy Miprg eee.. Mgp_1
Hence z, and , must be roots of
1 my my My eennns My q
x My My Mg ... My
@My Mg My e Mppr =0 i, (21)
P My My Mpyg oeeen. Mg p_y

When z, is found from this and substituted in (19) or (20) we get since the

coefficient of #} in the latter is zero an equation of the (p — 1)st degree to deter-
mine @,. It is therefore clear that any pair of roots of (21) determine a pair of
uncorrelated ’s.

II. The “best” grouping of observations with constant standard deviation.

(1) It was shown in the last section under (7) that the mean of the squared
standard deviations of the adjusted y taken over the places of observation and weighted
2
%7 (n + 1) and that there-
fore the curve of squared standard deviation can never be entirely below that value. And
further, that since (n + 1) equally big groups of observations at the places of
observations give the squared standard deviation this minimum, there is the
possibility, .o} being of the 2nth degree in x, that by placing the groups at special

- . . 2
positrons the curve of squared standard deviation could have those values ?V

with the number of observations at each place is equal to

(n+1)
as its maxyme within the range of observations.
Let 2, 5 ... @, ... ., be the places of observations and Ya, the mean of the
observations at x,, the interpolation formula of Lagrange is then
y=13 { (2 — ) (& — z,) e (T — Ty yq) 7/m}' ’
(xp - $1) (xm - w2) ------ (xp - xn+1) o
the sum taken over all the places of observation.
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14 Choice in the Distribution of Observations

From this we find

. d° (Z—2) (B — o) . (x — Xpyq) )2 .
R L o e e R )
2
which for z = ,, %, ... %,,, equals %7 (n + 1), the n terms of the sum being zero

and the (n + 1)st taking the value 1 as it ought to. If z, be the greatest of the
#’s it is hence clear that for z > z,, since

{ (T — ) (& — 2y) on.nn. ( — @ppq) }2 >1,

(wz) - 7/'1) (wao - :L'z) ------ ((E,, - wn+1)

2
N(n+1).

The same applies to any z smaller than the smallest of the places of observation.

2
oy>

2
Therefore as we want o? to be = %V (n + 1) at the ends of the range we have to place

two of our groups of observations there.

Let us take the half of the range within whach 1t ts possible to make observations as
the wnit of x so that the range goes from — 1 to 1.

(2) Hence for a linear function there is no choice left, the two groups of observa-
tions must be at — 1 and 1.

According to (22) we have
2 2
2 _ 9 o {(m-l— 12 (z- 1)2}

]O'y——N.

4 4
2
or 1@:%.2{1-%(1—902)},

which illustrate the well-known fact that by sumple interpolation between two
equally good values of  table, we obtavn interpolated values with less probable error
than those of the table.

(3) Investigating a function of the second degree we have a third group to
place besides the two at — 1 and 1, that is if we do not beforehand suppose the
distribution to be symmetrical. Let the third group be at a, then the interpolation
gives

@—l@—-—a) (@+l)(@—a)_  a®—1_
T 20te T 20-e A1
from which
2O (x—1)(x—a)]? (+1)(z — a)]? o — 17
2Gy-‘N‘3{[: 2(1+O.) ] "‘1“[ 2(1-0«) J +Ija2“‘——1]}.

2
do,

We want this to be a maximum for z = a, but (%) can only vanish for
T=0

a =0, in which case o) is reduced to

2
2 _ O

205 = N.3{1——%x2(1—a:2)},
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which shows that we have succeeded in making ¢} a maximum at =0 and
2
obtained a standard deviation with the maximum value %,

N

(4) For a function of the third degree we find from four groups of observations
at — 1, 1, a and  that

(z—1) (@ —a)(@®—1y)_

3, as we desired.

(+1) (@—a)(@—1y)

A I Ny B R X { S} ()
@=D@=y  (@-De-a,
G IRy R s Ve R
and , o2 (x—=1)(z—a)(@—y)]* [(x +1)(x—a)(@— '}’):]2
s {{2 (I+a)(1+y) J Tl a0 -y
@ —1) (z— V)T [Q&M;@Jz
* [(1—a2><a—-y) ==y }
The condition (%Q =0
requires 302 — 20y — 1 =0,
and (%‘;v) -0
requires 3y2 — 20y — 1 =0,
from which is got ' a? =92,
and, since a Z y, a?=9y2=1,

By introducing this value for a? and y2 in o, we find
s o2 3. 52
30§=N-4{1—”21—(902*%)2(1—962)},
which has the required maxima at 4 /1.

(5) For the functions of higher degree we shall at once assume that the dis-
tributions sought are symmetrical, since it is pretty clear from the symmetry of
y and o, with regard to the sought positions that it must be so.

To determine a function of the fourth degree let us put groups of observations
at &+ 1, + aand 0. The expression for ¢? can be written down at once and is such

that the terms arising from the groups at +1 and —1 can be put together as well
as the terms from + a and — a, then

o s [ ol g Lot Dl ]

a? 1 2 a2(1—a?)|
do? _ . .- 3—"Ta®
(%)xﬂ = 0 provides the condition a (o)~ 0 or

2 __ 3
a?=$,

with which value the squared standard deviation becomes

24
which has the required characteristics.

2 2
4032%.5{1—5'7 x2(x2—%)2(1——x2)},
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(6) Adjusting by a function of the fifth degree six equally big groups of obser-
vations at the arguments 4 1, 4 a and =+ y the squared standard deviation of the
adjusted y is

o ([ ) @], @@= T,
5"”“N'6{2[<1—a2>(1—y2)] (@ +1)+2L(1_a2)(az_yz)} (@ & o)

AlEsnEm e, )

The condition for maximum at ¢ = 4 a is
9at — Ba?y? — ba? + 92 = 0,
which together with the condition for maximum at x = &y
9yt — ba2y? — by? 4 a2 = 0,
since a? must be = y?2 results in
a2+ 2 =% and a2 =4
a?) T4+ 24/7
o | _Ta2vT
When these values are substituted in the expression above for o) this may by
somewhat lengthy algebraic operations be brought into the form
50 = ?\72 6 {1 _ 337257772 (@2 — a2)? (22 — y2)2 (1 — xz)} )
(1) For a function of the sixth degree the observations may be supposed to
be at & 1, +a, &y and 0.
The expression for the squared standard deviation of an adjusted y becomes

s 0 (@ e (@)@ -1)]F 1Te@—y) @17 o,
R B e e R | P e R
1fz@—a)(@—DT , o 1[e@—a)@—y)]
+§[V2(a2—y2)(7/2—1)] ( +7)+2[ (@—=1) (2 —1) ] (x2+1)}.

A maximum at z = + a requires
1lat — 7a?y? — Ta2 + 392 =0,
and a maximum at & = 4 y requires
11y% — Ta%y? — Ty + 3a?2 = 0,
which added and subtracted provide
11 (a2 + y?)2 — 36a2y% — 4 (a? + y?) = 0,
and (a2 — y?) {11 (a® + 9?) — 10} = 0.
Since we must have a? £ 92,
o +y? =19 and ¥y =,

az} 15+ 24/15

or v 33
The expression for o) may after rather laborious operations be brought into the

f 2 3 2

orm 40 = (JTTI X {1 _ ?3,%7‘117 2 (2 — a?)? (22 — y2)2 (1 — xz)} )
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(8) It is thus, as we aimed at, shown for functions up to the sixth degree that
by distributing the observations in (n + 1) equally big groups and choosing the places
of these groups 1 one special way we can manage to keep the standard deviation of any
adjusted y within the possible range of observations less than the standard deviation at
the places of observation. There is every reason to believe that the rule holds for
any degree of function, but as the general proof would be very complicated and as
almost all practical cases will be covered by functions up to the sixth degree, the
problem can therefore be left at this stage.

As we have proved, any other distribution of observations leads to a curve of
squared standard deviation that has a higher maximum value within the range. This
special set of (n + 1) groups has therefore a very conspicuous advantage over all
other distributions of observations. The application of it vs however limited vn that
ot demands that the degree of the function must be known beforehand and thus the obser-
vatrons do not provide any justification for the form of function chosen. If however the
SJunction has been. fully investigated beforehand and there is no doubt about its form,
(n + 1) equally big groups of observations placed as indicated are the most desirable
set of observations possible. The approximate values of the places of the groups
are given in the table below.

TABLE 1.
Degree of function Ist 2nd 3rd 4th 5th 6th
1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
Places of — -0000 4472 -6547 <7651 8302
observation — — — 0000 2852 4689

— — — — — -0000

With rougher approximation the intervals between the observations, still
expressed by the half range as unit, are as follows:

1st degree of function 2

2nd ) . 1 1

3rd » » 8 1 3

4th 7 ” % ?2; % —%

5th R E3) % % % % Ti
6th - LI S T

The six curves of standard deviation are represented in Diagram 1. It will be
seen that the minima of a curve, if it has more than two, are the lower the
greater their distances from the middle of the range, so that the variation of the
standard deviation is greatest in the outermost intervals of the range.

III.  Uniform contenuous distribution of observations with constant standard
deviation. General formulae.

(1) As was pointed out in the last section the lumping up of observations in
groups just necessary to determine the constants of the function in question has
some drawbacks and cannot be recommended as a universal rule. In many cases
it is through the observations themselves that we first get to know the form of the

Biometrika xI11 9
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function, and thus a full investigation may require more groups of observations
than merely a number equal to the assumed number of constants in the formula.
Besides, even when we believe we know on theoretical or other grounds before-
hand the nature of the function « priori we may consider it prudent to distribute
the observations so that they supply us with data whereby we may control our
hypothesis that the assumed function is the right one.

It is therefore desirable to find other forms of distributions which, at the same
time as they make the standard deviation of the adjusted function vary little
inside the range of observations, are more uniformly spread over this range.

(2) A uniform continuous distribution at once recommends itself as the simplest
assumption. As we suppose the observations to have constant standard deviations
the elements of the determinants of (15) are the moment coefficients of the z’s at
the places of observation.

When the N observations are uniformly spread between z = — 1l and z =1,
1
Kar = 5,77 and prgryy =0,
and the expression for ,,0’, is, according to (15),
1 1 p2 1 e |2
o® { a* 2, 2y
o ==41+—+ + & ——— L
TN M2 L g ‘ Fa Fra
9 -
Ko fhy Ka e
l L e pa e Hap—2
L ? T Hap
! :
i x2r—2
+ x2 ! Mop [opip ------ Pap—a
[ M 57 SEEEREE Hap—2 M2 2 SRR Mo
| a Mo weoeee Py 2! Ko  eoeeee Hept2
Mep—2  Hap ------ Map—g | | M2p HMapta ----e- Hap—2
1 1 Ho  eeennn Hop—s |
g Mg weeeee M2p ‘
: P
+ T2 oy fhopis .. Rap—2 } _________ (23)
Pl Mg enenen Mop—s | 1 [T Hap
! Mo g venees Ma2p o I M2pie
! . . . . . . .
| Pap-g Map e Map-a Hop  Mopio -o-eee Hay

: . 2 2 2
By this formula we may evaluate successively 10}, ,0, ... 2,0, When we know
the two general terms of which the sum consists.
2—2
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(3) The determinant of the order p,

| 1 1 1
. Sr1 STy 3
P R .
pA:; g+ 1 2¢+-83 7 2q+2p—1 1,
| 1 1 1
29 +2p—3 2¢+2p—1""""7 29 +4p—5

which includes the two types of the denominators in (23), shall first be evaluated.

We find Ao b aa A 2
o 15T 1 M R T g 1) 20+ 1) (2 + 3)°
and it shall be proved that if
JA vt 9 (p—2)R(p— 1) 2001 T (24)

up to the order p, 1,1?[ being the product of the elements of ,,K, the rule holds
for determinants of any order.

It is clear that
q

q+2 q qQ q q+1
p+1A1,1 = pA’ 1;+1Ap+1, P+l = ,,A, n+1A1,p(_ l)pﬂ = pA
q q+2
and p+18541, 941,11 = 1.

If we therefore in the general relation for an orthosymmetrical determinant
Ass . As’s’ - Ais’
Asss’s’
a
puts=1ands'=p+1and A=, A, we find
a q+2 gl

Ao 288 —,A
DHL= T q+2 ’

A=

) p-1
and, using (24), e o
7 g q

A2 (P =22 (p = D} opppra oIl o1 — Ll
7 {17=2 2973 . (p—3)2(p—2) ) at2 '
Now, according to the definition of IT, i
oo
ey =29 —1) (29 + 1)2 (29 + 3)2 ... (2¢+4p —3)2 29+ 4p— 1)
10+1H 10+1H
% (29 +2p — 1)%,
q-ﬁl2
=20 = 1)*(2¢ + 1)* (2¢ + 3)%...... (29 +4p —3)*(2¢ + 4p — 1)?
p-*—l”2
and
q+2
11

P (90 —1) (¢ + 1)2 (20 + 3)% ... (20 + 4p — 3)% (2 + 4p — 1).
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Hence

o = {17,201 . (p—2)3 (p— 1) 20-0 0y 1T . [(2g 4 2p — 1)?
—(2¢—1)(2¢+4p—1)],

q q
pA = {17,277 | (p—1)2.p32. 200 0 11,
which agrees with (24).

q
(4) Next we have to evaluate the minors of ,A necessary for calculating the
q
numerators in (23). For this purpose we only need the minors ,A, ,, but to carry

through the proof by induction ,,KS,,. for any values of s and 7 is needed.

For 3&2, s we directly find,
q

— 22,9
sBes= 5y 1) (29 + 1) (2q + 3) (20 + 5)
q 2 2
and 3A2,2= 22 .2

(29— 1) (2¢+3)*(2¢+7)’
these both agree with the following formula which will be proved by induction,

q q
pAs,r = (_ 1)T+sﬂm~1,s—i . ﬂp—l, r—1 {lpﬁz . 2773 ... (}7 - 3)2 (}7 - 2)}2 2070 =2 pHs,'r

—1 q
Bp-1,5-1 is the binomial coefficient ]3—’?11——“97‘3 and ,1I, , the product of all the
v R
elements of A, ,.
The relation has to be proved first for » = s, then for » = p and finally for any
combination s and 7.
For the first two proofs we use the relation between the minors of an ortho-
symmetrical determinant
A Agegy - Dgegrgr — Ny o
8 S S B 26).
As’s" As' s Asss' ¢ T As" s g¢ . As’ R ( )
This is found from two relations given by Professor Pearson® by dividing one
of them by the other.

q
(5) Let Abe,, A, s"=1and s =p+1, then

q

2
. z_)ﬂé%; _ ¥‘_7*QIASSI 1 1:+1As‘,rs, p+1, p+1 7)+1Ax, 81, p+1 . (27)
q q q q :
11+1A1, P+1 11+1A1, 1, p+1, +1 p-HAs, 8,1, p4-1 + p+1Ap+1, P+1,8 1" p+1-/~\1, L s, p+1
q q+2
Now 1>+1Assl 1= zuAs—l,s—l »

q q
p+1As, s, 41, p+1 = pAss:

q+1
P+ mzAl,zw

q 9+1
1>+1As,s,1,11+1 = (_ l)p pAs——l,s»

p+1A1,1,p+1,p+1 = (- 1)

* Biometrika, Vol. X1, pp. 232-3.
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q - q+1
p+1A1»+1,p+1,s,1 = (_ Lyr+ pAp,s:

q 1 a+1
p1101,1,5, 041 = (— 1P pA 4 4,

so that all the determinants on the right side in (27) can be evaluated by (25).

They all have the factor
{1772 223 ... (p—3)2(p—2)p2. 2012
in common, when that is divided out there remains
q N N a+2 q o+l
11+1Ass _ (— l)pﬁﬁ:l, s—2 B;)—l,_s:l (pHs—l,s—l . pHss - pH§—1,7s)¢7 (28)
q - q+1 q+1 q+1 q_'_l ooooooooo .
»+1 AI;?H Bﬂ—l,s—-z . /gp—l,s—l (pns—l,l . pnp,s - ptlp,1 - ptls—1,s
Now indicating by C, the product of the elements of the rth column or rth

. a q
row in ,.;A and by e, the element of the ,.;A common for the 7th row and sth
q+2 Cc?

column we find q
10+1Hss = plls_1,5-1 "

9 2
€11-€51
q q 2
— »+1
p+1Hss - ﬂHSS . e 62 ’
2+1, p+1 * “p+l,8
1
A CiCpiy

p+1Hss = plls_y,s- e .
1,041+ 65,1+ €5, pt1

Hence the factor of the numerator in (28) is reduced to

2 2
ﬁz €51+ €5, p41
p+11tss

2
NeRe {e11-€pu1, pr1 — €1 i1}
1-Upaa

For the IT’s of the denominator we find
12[ ekl C,.C

p+1-41, 41 — p'4s—1,1 s

€51:€5,p11-€1,1

1
& at Cpia - O,
P+1 1, p+1 DTED, S

’
€s, p+1 * €p+1, 41 - el,s

q a+1 C....0
— p+1°* 1
+1 HL p+1 ﬂnﬂ, 1

b

3

€1, p+1-€11-€p11, p41
2
lg[ _ a+1 C?
P+1°°L p+1 — pirs—1 s ¢ R
€55-€51.€5 11
.. , . .
the factor containing II’s of the denominator of (28) is therefore equal to

a €5- € e e
2 1s* ¥p+1,8* ~1,1 * ¥p+1, p+1
pRR | L) C,.C,.,.C {15+ €pi1,s— €1, pa1 - sl
' e Vo1 Vs

Introducing these two expressions in (28) and substituting for the one factor
q

11 C,.C e
P the value —12#F1, 25 we hence find
i s €1, p+1
p+1 41, p+1 q 1 1
_ q
B)
FIL__“A“ = (=1)?B B CLpr1 €11-€pi1,pi1 pi1 s
q - »-1,s—-2 Mp-1,5—-1 1 1 . q
p+101, pi1 s Y | CYpeY

€ss-€1, p41  €1,5-€p41,s


http://biomet.oxfordjournals.org/

Downloaded from http://biomet.oxfordjournals.org/ a University of Southern Californiaon March 13, 2015

KIRSTINE SMITH 23

The fraction containing e’s equals

Cg+2p—12—(2¢—1)(2¢ +4p—1) _ P*
(29 +4s—-5)(2¢+2p—1)— 20 +25-3)(2g+25+2p—3) (-1 (p—s+1)’
a q
hence L‘F;As_s — (_ 1)1;5;3)’ 1 p+;HsS
A +1 Al, »+1 »+1 HL »+1
S

q q+1 q
pr1By o =(=1)7 JA = (=1)7{17-1. 272 ., (p—=22(p—1p.220°0 1y pias
we therefore find

q , q
P41 Ag= /37’7, -1 17712772 (p—22(p—1}.27 -1 p+1 I,
agreeing with (25).

q
(6) To evaluate ,,,A, ., we shall in (26) put A=, A, s=1, ¥=s and
§"=p+ 1. Reversing the fractions we then get

q q q q q
Pp+1 As, P+l __ p+1 As, $, p+1, p+1* p+1 Al, 1,8 p+1 + 2+1 Avﬂ, 2+1,1,8° p+1 As, s1, p+1
A A A A
7+1-11 2+12L 1,88 41211, 2+1, p+1 7 p+1 211, 8 p+1
............ (29)
q q
As p+1 As, s p+1, p+1 = Ass ’
q a+2
D+1 Al, 1,8 p+1 = mAs—l, D= (“ 1)p+1 pAl,s—-lx
q q+1
2+1 A17+1, P+1,1,8 = (_ 1)p+] mAs, >
q q-+1
p+1 As, $1, p+1 = (_ 1)ppAs-v1, sy
a q+2
D+1 A1, 1,88 pAs—l, s—1»
Q q
D41 A1, 1, p+1, p+1 = pAl, 1>
the right side of (29) can be evaluated by (25).
We thus get
a a+1 a+1 q q+2
v _ (= 1B By Botion (Solluos T+, T )
q - a+2 q a+1
P+1 AL 1 BIZJ—L s—2 (pns—l, s—1 pHL 1 pni 3—1)
............ (30).

q
We want here to express the II’s of the numerator by , 41, ,,, and those of

the denominator by ,,Jrllgll,1 and we find the following relations
q a+1 C,.C;

11 = Il ——
p+1*+s, p+1 ptts, s—1 ]
' ’ €15-€1, p+1-Css

1
Lo Cpis-Cy
p+1 s, o+l T P ‘e e e s
1, p+1° “p+1, p+1° %1, s
k& Cy.Cpin
»+1 -8, p+1L T prUSs -

b
€s, p+1 - Oss - €pi1, 41
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p+1+48, p4+1 T ptis-1,p ¢ e e e ’
1,1+ %1s* %1, p+1

‘ ate ¢,.C
s+ Us
and p+1H11 = pHS—l. s=1 0 R
ss + €15
¥ i D41
p+1rI11 = pH]1 T
€p+1, p+1 - €1, p+1
q+1 C..C
= s+ Ui
il = I, ——— 7

€ p1 - €1 pi1 - C1s
Substituting the II’s found from these relations into (30) and eliminating the

q
one factor ”iln—‘j”‘-ﬂ by
17+1H11 Y
pialle o O s, p41
a C,. Te
prallyg oroe Tt
we get 1 1 .
pr1Bsprn _ (Z1)PPFB 4y eyserpi1 €11 o1l pia
q . . q b
pr1By Brro-a ; LN - pr1lly s
. . € ni1 CssoCpil i1 ’
or introducing the values of the €’s
q
71':+1As, p+1
q
p+1A1, 1 d
_ (=Dt e (20+425—3)(20+2p—1)—(29—1)20+2p+25—3) pullspu
Bo-1,5-2 © o (2¢+2p+2s—3)2—(29+4s—5) (29 +4p—1) lﬁl .
D+ )

q
= (_ 1)s+:o+1 . Bp 1 1J+1Hs p+1
y O

q
P+1 Hl, 1

Now

q q+2 : q
o1y = pA = {171,272 | (p—2)2(p—1r.220-0 1L ,,
and hence

q
p11l 1= (= 1)sFPHL B {171, 292

q
~~~~~~ (27 - 2)2 (p - 1)}2 2=l p+1Hs, 7+1
in agreement with (25).

(7) It now remains to prove that (25) holds for , +13M when both s and 7
are different from 1 and p + 1, and 7 different from s.

For this shall be used the relation
A Asss’ s = Ass . As’ s Ass’ . Ass"

between an orthosymmetrical determinant and its minors.

Putting A = , 4A, s=p+ 1, ' =7 and ¢’ = s and solving the equation with
regard to ,,,A, ; we have
1

p+1 Ar,s = A
P+1=9+1, p+1

(1o+1A . 10+1Ap-i~1, p+1, 7, 8 =+ IH—IAﬂH—L’I‘ . 7’+1A17+1, s):

where p118011, p41,m s = 0B
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Evaluating this by (24) and (25) we get

A (= 1)r*e 1 2 2 2 (p—1
pialy, = {1771 272 (p—2)2(p—1)i2. 27 »-1
o1
. q q q q
X [477 Bzz—l, s—1° Bp—l, r—1* p+1H 'pHr,s + Bp, s—1° Bm, r—1-* p+1Hp+1, T 17+1Hp+1, s](?’l)
a 9 e e e
»+1, p+1 * ¥r, 241 Ys, P41
But pHr,s = 1)+11—'[7'>S 2 )
p+1
ﬁ _ ﬁ Cs  erpn
p+1tto+1,r T o+l S C . 7” >
) p+1 T8
q q (2
and pprll = 1T 2%,
€p+1, p+1

ﬁ _ ﬁ Coin Cs i1
p1iiptls = ptb Ty T
8 p+1, p+1

Substituting these values in (31) we find

q

q
pr1ly o= (= 1), 1271 202 (p — 2)2(p =120 PV By 1-Bogr1-P ol

1
4 R . - .
\: (p—s+1)(]?—7'+1)er,s-ep+l,p+l}
1 1 ’

x

€r.p+1 €5, 041

and as the last fraction equals
1

(p—s+Dp—r+1)’
q q
P+1A7'ys = (—- 1)r+sBﬂ; s—1* Bﬂy r—1 {1?-1 * 27"2 A (p - 2)2 (p - 1)}2 * 2’7(17_1' 17+1H7'; 85
with which the proof by induction for (25) is carried through.

(8) We shall now return to (23). It consists of 2p 4 1 terms of which the
(2r + 1)st originally was found as (50% — ,._10}) so that

1 |2
1 1 o 57 |
1
? ‘l T !
’ ’ ’ 2r 41 |
x2r __1_, ,Jh ) 1 j,
o% — 02=9_2 2r+1 20437777 r—1
TN 1. 1 | 1 1 T
s 2”'-—'1' F eeeees 27+1L
% B ceeese —1—~" 1 1 1 g
27’~|—1 3 T eesees 27‘-}.-3;
: : i : . i
: : * i . : : [
: ! 1L 1 1 1
Sr—1 a1 & —3| |%rl 43" dro1 |
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26 Choice in the Distribution of Observations
and 1 N 1 12
1 S T
1
2 1 1
x £ o o1
' H . :
A lm2r—2 _i_ **1_‘ """" __1_,_
ot — PP 2r+1 2r+3 4r — 3
2r—1%y 2r-2%y N ! 1 1 __}w_ ‘ . N ] r,]‘,,
| 3 B eeeees 5 — 1 | 3 B e o+ 1
o i L 1 o L
} ® oo 2r+1 . ° ' 2r +3
| : ‘J : :
: : : 1 .
1 111 1
=1 217 4r—5 | | 2r+1 2r 43777 dr—1

With the notations later adopted we therefore find
1 2
{ S [‘T r+1 s+1, r+1]}

2 02 =9
270y — 2710 N 1 1
TA . r+1A
s=r—1 2 2
R PR
and 2r—1 0'?/ — 990y = ./ﬁ L s=0_ 3 3

)
r 1 =) 2
2 - L S \ . s r+1 s+ 7‘+] I
2ray 21‘—100 N . 227« . ([7)2{ S ! 1\ lgr X - J

8=0 \/ H 1
and - 2 22
2 o?z? s=r~1 | . . |
2r-10y — 27—201/ N 221 2 |7‘ ‘72 5, (— 1)'57._1’3{)32‘ I_—%Ij—?l y
- B AVANY | A
or, as
1,
el o O hr 1 (25 1) (25 3) e (25 + 27 — 1)
1 Coty . \/€r+1 r+1
II . 1"}-1
and
2
4£_;;_2_: — 63“\/’" o =VAr —1.(25+3) (25 +5) ...... (28 -+ 2r — 1)%,
\/,,,_ln i Coa - Ve
) 4r + 2
9r 0y — 9y 0y = o——(l;)—z—zm { S [(— 1), ;2 (25 + 1) (28 +3) ...... (28 + 2r — 1)]}
......... (32),

* The ¢’s and C do not of course have the same value in the two equations as they represent columns
and elements in two different determinants.
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and

s e otUr—lj@d el 2
2010}~ 2120} = 1 gers | S, [0 DBraa® (254 3) @5 4 5)

(25 + 27 — 1)]}2 ............ (33),

2
. . . O
which enables us to form ,0? by successive summations from o} = N

Before investigating the curve for ,o? for a special » we shall first look at ,¢*
for =0 and o=+ 1.
(9) From (33) we see that when =0

2r-10} = 21200
2»0% is for 2 = 0 most easily evaluated from the formula (13).

. . 1 .
Remembering that in our case #,, = ri"e find from this
1
2=0 0%y
200 = 1
} PIRTAN
and hence by (24) and (25)
=0 z=0 452 (3 5 7 2p + 1)2
2p+10;/: 21,0'5:N {Q Z:.é ...... 2p } .................. (34).
(10) To evaluate ,0? for =+ 1 we use (32) and (33). The sum in (32) may
be considered as d1d 1d{a2r-1 (22 — 1)}
T Tade e Ao

with a number  of differentiations. If these operations are undertaken directly
upon z2-1 (22 — 1)7 the result is
a, (22— 1)+ a, 4 (@2 — 1)1+ ... a; (22 — 1) + ay,
of which only ag=2r(2r—2)...... 4.2=1|r.2"
remains for x = + 1.
Corresponding to this the sum in (33) comes out from
3 B i 1 i i 1 d {x2-1 (22 — 1)-1}
1 dy xde T dz x dz
by taking (r — 1) differentiations and therefore
S,,_q equals, for 2=+ 1, (2r —2)(2r —4)...... 4.2=|r—1.271

x2=1 x?=1 o2
2 2
Hence 2% 219 = (4r + 1)
x2=1 zi=1 52
2 2
and 2r-10) ~ 20207 = 3 (4r — 1),
. , a2
or since 00 = 3

=1 2
noh = AL+ 3454 @0+ 1)),
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(11) In Section I under (7) it was found that

f’% 202 dx = 0% (n + 1)
when the integration was taken over the places of observation. For the present
distribution f(z) is 1, 4 (z) constant and [y (z) dz = N, hence the mean of ,¢? in
the range of observations is for a uniform continuous distribution

2
%m+u

For the grouped observations in Section II we find by integration of the
formulae for functions from the first to the sixth degree that

11 5 a? 1
§f~1n01,dw—w(n+ 1) (]. —2,"&——{:—1) .
IV.  Uniform continuous distribution of observations with constant standard
deviation. Special formulae.
(1) Let ,0% — ,_;0) be indicated by S,, then the formulae (32) and (33)
give us o2

S; = N 32
o 5
_ _ 22
S, = Vi (1 — 32?)
o 7
S; = == .- 2% (3 — Hx?)?
N4
o2 O e (36),
S, = N 6d (3 — 3022 4 3bxt)?
2 2
Sy = 3 T (15 — 7022 + 63042
o 13 5 B2 5 yd 6)2
from which we form ,¢? beginning with
2 02
00y = N
2
105 =g (1+322)
2 O 2 5 22y _ 9 9 2 | Byt
and further in the same way
, 00 1 2 4 6 L. (7).
89 =N 1 (9 + 4522 — 1652* + 1752%)
;2 20 2 t_ §44at 4 44128
4cry=N.m(9~36w + 2942* — 8 + x8)
500 = %7 . 8% (25 4 17522 — 175024 + 65102 — 955528+ 4851219)
60 = %;. 5";.6 (175 — 105022 + 17325x* — 9366028 + 22522528 +

— 245322210 4+ 99099212)
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(2) Since ,0% = ,—y0°+ S, the curve for ,o? is entirely above the ,_ 0% curve
except where S, = 0.
Solving the equations S, = 0 the following roots are found:

For §;=0 zx=0
» Sp=0 = +Vi=+ 5773
w S3=0 =0 z=4+V3=4-T746
15 + 2V/30 8611
» Ba=0 ”:i\/T j3400
B _ o 35 £ 2V70 (9030
» By=0 v=0 ”“i\/” 63 T 548
-2386
5 Sg=0 =+ 1-6612
l-9325

Since all the roots are rational and all lie between — 1 and + 1, ,0% therefore
equals ,_;0? for n values of z all of which are inside the range of the observations.

The adjusted values of the functions at these abscissae appear to be of special
interest since they are uncorrelated as was shown in Section I under (9).
(3) Looking at Diagram 2, representing the curves of , o, up to n = 6, it is seen,

=0 x2=1
as was also clear from the formula for ¢ and o} given in the last section, that

while the standard deviation in the middle of the range increases slowly with the
degree of function it increases very rapidly at the ends of the range. At =0
the curve has a minimum when the degree of function is odd and a maximum when
it is even. Besides that the curve has (2n — 2) maxima and minima between
—1land 1. As the curve for ,o? is of the 2nth degree, ,o? is therefore increasing
for x increasing above 1 or for z decreasing below — 1.

The abscissae of the maxima and minima are given in the following table.

Degree of
function Abscissae of maxima Abscissae of minima
1 0
2 0 +V1i= 4 4472
- 0
3 £ VL= & 4472 {i\/-?-: 6547
0 / 7 57277 {-7651
4 - A ——=
(£ VE = 4 -6547 -2852
5 \/7 + 2\/7 { 7651 15 :I: 2«/13 +8302
2852 = £ {4689
][ ——0— 8718
6 15+ 2VI5  (-8302 :
ty/ gy == { 4689 + 15917

-2093
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Hence the curve for ,,,;07 has a maximum for the abscissae at which ,,0? has
a minimum. A comparison with the results in Section IT shows that the abscissae
of the maxima found here are the same as those of the best places of observation
for (n + 1) equally big groups of observations of a function of the nth degree.
These places tally with the places where ,0? was a maximum. Thus if we
imagine that we had started the investigations with a uniform distribution of
observations, and to lower the maxima of the curve of standard deviation had put
clusters of observations at those maxima and at the ends of the range we should not
get the best curve of standard deviation till all the observations of the continuous
distribution had been distributed at the n — 1 places of maxima and at 1 and — 1.

The minima of the standard deviations obtained from a uniform continuous
distribution and the (n + 1) best groups of observations do not fall at the same
abscissae.

(4) The curves are very far from our ideal of a constant standard deviation
throughout the range. To obtain the same maximum of standard deviation as
(n + 1) groups could give us we should have to limit the part of the range used to
the following fractions of the range:

for 1st degree -58
, 2nd 73
» 3rd -80
» 4th -84
» Dth -83
, 6th -73

It is not likely that the range of values of the function which we investigate
would only be of interest inside a range so much smaller than that within which
we might actually observe; further it seems likely that observations all of which
were taken inside the smaller part of the range would give better information for
that special interval. I shall therefore examine in the following sections if a uniform
distribution of observations to which is added clusters of observations at the ends
of the range will not possibly give a more satisfactory curve of standard deviations.

V. Uniform continuous distribution of observations with additional observations
clustered at the ends of the range; constant standard deviation of observations.
General formulae.

(1) Suppose we have N . 1_—.Il—ma observations uniformly distributed from — 1

to 1 and besides %] _a_a observations at — 1 and the same number at 1. We

1+
then have 1 U‘l Na2r @ + Na
Par =N U120+ o) I+a
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or

and

Moy

+a)

_L(_L,
T 1l4a\2r+1

Maryy = 0.

According to (13) and (14) we find,

Chotice tn the Distribution of Observations

0 1 X2 x2?
1
1 1+a F4+a 2P+1+a
2 1 1 : 1
x 3+ a gta ... ‘)p+3—|—a
id ,,1 — W.l— + a 1 + a
., —o*(l+a) p+1 ¢ 2prg T dp +1
21701/“"-—AN } 1
1+a T+a 2p+1+a
1 1 1
t+a tta 2p+3—l—a
I 1 + L_;_a UVL—I—a
121)_1—1 a 2p+3 ...... 4p+1
0 1 I 202
1 1 —1
1 ++a t+a 7211‘)—{—1.*-&
2 1 1 1
x 3+a 7—+0. ...... 2;})¢3+d
1 1 1
2p—-2 . —
x 2p+1—|—a, 2]7_{_3—5—(1 ...... 4p~1+a
+ a? 1
1 1
+a g ta ... 2p+1+a
1 1 1
g—l‘a 7+a ...... QPTS“I‘CL
1 1 n 1
2p+1 2p+3 a...... 4])_1-1*(1
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and
0 1 2 L. 2202
1 14 1 ! +
a 3 +ta ... -1 a
x2 lia R ”L”-i‘
L t+a . 2+ 1
1 1 1
2p—2
. —ot(l+a) z 2p—1+a 2p+1—i—a ...... 4p_?,—l—at
2p-10y = N L 1
l+a g+a . 2p_1+a
1
t+a t+a ... 2p+1+a
1 + 1 T+ ‘1‘4—
5 — 1 a o+ 1 a.eeens ip—3 a
0 1 N 22
1 t+a 1+a . 1 +a
1 l+a ... 511
2 Liq 14+ a ﬁ_lﬁ_}_a
1 F+a % 13
gz 1L Lo L,
2p+1 2p + 3 4p — 1
+ x? - 1 }
%"l-(l %—I—a ...... 2—})—_i_——1—l—a
t+a tHa 1 +a
2p+3
*ﬁlw*Jr = + L +
2p+71 %+ 3 areens prop a
............ (39),

Biometrika x11 3
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and, according to I under (6),

Choice in the Distribution of Observations

Y 9 02
200y ~ 20-10y = (I+a) %
. . ] 1 2
+ a gta ... 2p_1+a
x? f+a l+a ! +a
3 3’ ...... 2p+1
1
4 1 1 -
r 5t a r+ta 2p+3+a
X2 ! +a L ! —+
a1 o LS =1 a
L+ 3 : + 1 1 771—~l—a
a g ta ... 2])—-1 a + a zta ... 2]7+1
1 1
1 1 1 1
3—["(1 5+CL ...... 2p+1+a 3+a 5+a ----- 2p+3+a‘
1 1 1 1 1 1
2p—1+a 2p+1+a ...... 410__3+a 2']0—_|_—1—|-a 227+3+ ------ 4]?-1-11_“
............ (40)
and
,_ ot (l+
204+10% — 9,0} = 7 (N %) z? X
1 1 ! ’
3+ a =+a ... 2p+1+a
1
X2 %+u, - +ta 2p+3—!—a
1
xt 1 FHa
T T a 5 +a 210—I-5+a
1 1 1
2p N
x 2p_|_3+a 2p+5+a ...... 4p+1+a
1 1
1ita F4a o 27_-1_“14—11 t+a T4+a 2p+3+0,
1 1
1 Ldha ... — 14 )
5 a Pt a 2}94—3_‘& ; 5+ a L4+a ... 2p+5+a
: | :
|
1 1 ' 1 1 1
s——=4a ——=+a.... — —
2})_!_1 a 2})+3+a 4]0_1—{—& ’ p_|_3+a 2])'1"5 [o A 4p+3+a
............ (41)
(2) For the reduction of these formulae we have to evaluate the determinant

of pth order
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L 1 N 1
—“29—1 -——29_1_1 o ... 2———(]+2p_3+a
a *1——[*(1 L—!—a = 1 +
S= . 2q+1 2+37 % 2q+2p—1"°%
QU S +a —~—1H+ S +
2 +2p—3 2q+2p—1 "% q+rdp—p5"*

By subtracting from the elements of each row the elements of the proceeding

and leaving the first row as it is, it is transformed to
q
p0 = (= 1)P~1 x

1 1 1
‘Q“q‘*:-i'—l-a ——2q+1+a ...... §q+2p_3+a
2 2 2
(2¢—1)(2¢+ 1) (2q+1)@2¢+3) 77 (2¢+2p--3)(2¢+2p—1)
2 ) 2 ) 2
(29+2p—-5)(29+2p—3) (2¢+2p—3)(2¢+2p—-1)"""" (2¢+4p—T)(29+4p—5)

which when the columns undergo the same process takes the form

q
p8:
IR 2 2 2
2¢—1 (29 —1) (29 + 1) (2¢+1)(2¢+3) " (2¢+2p—5)(2¢+2p—3)
2 2.4 7 2.4 2.4
(27-1(2¢+1) (2¢—1)(2¢+1)(2q+3) (2¢+ 1) (2¢ + 3) (2¢ + 5) " (2¢+2p—5)...(29+2p—1)
2 2.4 2.4 2.4

(2 + 1) (20 +3)  (2¢+1)(2q+3) (2¢+5) (2¢+3) (2¢ +5) (20 + 1) (2¢+2p—3)...(2¢+2p+1)

2 2.4 2.4 2.4
(2q+2p—5)(2¢+2p—3) (2¢-+2p—b)...(2¢+2p—1) (2¢-+2p—3)...(2¢+2p+1) " (2¢+4p—9)...(2¢—4p—b)
Let us introduce the notation '
1 1 D
(2¢—1) (29 + 1) (2¢ + 3) (2g+1)2¢+3)(2¢+5) T(2g+2p—3)...(20+2p+1)
1 1 1

O
I

2g+1)(2¢+3) 2¢+5) (2¢+3)(2¢+5)(2¢+7) T (2¢+2p—1)...(2¢+ 2p+3)|.

1 1 1
(2¢+2p—3)...2¢+2p+1) 2¢+2p—1)...2¢+2p+3) " (2¢+4p—5)...(2¢+4p—1)

q q
Then, since for a = 0 ,8 equals the determinant ,A, we have
q q

S Ada 2300 Do) 42),

and the problem is reduced to the evaluation of pil).
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(3) It shall be proved by induction that
D |

- 119, 20-1 |, (p ~1)2. p}2. 200=3) (p+ 1)
T (20 -1)(2¢ + 1) 20+ 8)% ... (2q +2p — 5)P (2 +2p - B)P(2¢ +2p — 1)P (2q +2p + 1) (2¢ -+ 2p + 3)P 71 (2 +4p - 8)* (2 + 4p — 1)

(43).

It contains the 2p - 1 different factors of the elements with indices increasing
from 1 at the extreme to p in the middle so that the three factors of which the one
diagonal line of the determinant consists occur with the index p.

For p =1 the formula gives
b 1
g1+ 1) (2¢+ 3)

as it ought to.

As the determinant is orthosymmetrical the relation

A Ay —A

2 0
A * holds.

sss's
Applied on 17+1-5 for s =1 and s’ = p+ 1 it may be written
g gq+2 qfl
paD = 222D =l (44).
-1
Looking first at the numerator of (43) we see that it has the same value for the

two terms of the numerator of (44), and divided by the corresponding factor of
q+-2
»—1D it becomes

{lzp e (p—2)°(p—1)p22 (p + 1)? 92p (p—-2)—(»=1) (p—3)
17—t 202 p—22(p—1) § p
|
={lz+1. 27 ... (p—2(p—-1°p* @+ 1)}2:;, . 278,

q

To evaluate the factor in ,,,D arising from the denominator of (43) we shall
give a table of the indices with which the different factors occur in the I’s and
their ratios.

2q-120+120+3 ... 20+2p-5 20-+2p-3 20+9p—12¢-+2p+120+2p+3 20+2p+5 20+2p+T ... 20+4p—12¢+4p+1 Ja+dp+3

D 1 2 3 .. op-1 p » p p-1 p-2 p-3 .. 1 — -
q+2

b — — 1 ... p-3 p-2 p-1 P P P p-1 .. 3 2 1
a+2
p~1£ — — 1 .. p-3 p-2 p-1 p-1 p-1 p-2 p-3 .. 1 — —
a

pD:H— 2 4 ..2(p-2) 2(p-1) 2 2 2 2(p-1) 2(p-2).. 4 2 —
a
D PP_ 1 b £ 2

pae) 2 3 ... p-1 P P p+1 P D p-1 .. 3 2 1
p—1

q+1

pD? .

ar — 2 3 .. p-1 P p+1 p+1 p+1 P p-1 .. 3 2 —


http://biomet.oxfordjournals.org/

Downloaded from http://biomet.oxfordjournals.org/ a University of Southern Californiaon March 13, 2015

KIRSTINE SMITH 37

Hence the factor arising from the denominator of (43) is

i (2¢+2p-1) (29 +2p +3) - (29 -1) (2g +4p+3)
(2¢-1) (29 +1)*... (2¢+2p - 3)" (20 +2p - 1)PT1 (29 +2p + 1)P¥1 (20 + 2p +3)PF1 (20 +2p +5)7 ... (2¢ +4p +1)2 (29 +4p +3)

The numerator of this equals 4p (p + 2),
multiplying with the factor previously found we therefore get

17+1D
{1p2 90 | (p—1) p? (p+1)}2. 201 -1 (p+ 2)

:(2q —“D(2g+1)2... (2¢+2p —-3) (2¢+2p - 1)PT1 (2 +2p+ 1)PT1 (29 +2p + 3)P+L (29 +2p +5)" ... (2 +4p+1)2(2¢+4p+3)’
which is what we wanted to prove.
(4) When the values of A and D are introduced in (42) we get
¢ {1p-1 9p-2  (p—2)2(p-1)}2.20(0~D)

0=
P (2q-1) (2q+1)E . (2¢+2p — 51 (2 +2p —3)P (2q +2p — 1P ... (2q +4p —1)2 (29 +4p —b)
+a. 230071 x

{10-1 2072 (p—-2)2(p-1)}2.20-H(P-3)  p
(2¢-1)(20+1)2... (20 +2p—T)P2 (2 +2p —b)" 1 (20 +2p —3)P L (2g+2p —1)P 2 (2¢ + 2p + 1)~ 2 ... (2q +4p —7)? (2¢ +4p — 5)
{1r=1 272 (p-2)2(p—-1){2.2P("U[] +ap (29 +2p - 3)]

p
or b= = (P pq+2p=S)l .. (45).
(29-1)(2g+1)*...(2¢+2p—-5)P"1(2g+2p -3)? (29 +2p —1)P71 ... (29+4p - T7)% (29 +4p - 5)

The denominators of the formulae (38)—(41) for ,o% are now known since they
2

only consist of the factors 8 and 0. To beable to write down the general expression
for ,02 we should have to evaluate the minors of 8, but their form is so complicated
that a direct calculation of the determinants for the degrees of function in question
appears to be simpler. With the material in hand we are however able to deter-
mine 02 for £ =0 and 22 = 1.

(5) From (38) and (39) we see that

3

2

2 o0 (1 + a), and with the 8’s as given by (45)

2 _ 2
299y = 2p+10y = N

x=0 =0

ac:é) ac=;)
200y = 2p+10y =
P (1+a) [1+ap (2p+3)]1.32.5°. 7. 95... (2p = 1)? (2p+ 1)+ (2p+3) (2p +5)71 ... (4p — 1)* (4p +1)

N{1.2.3.p2. 22 [l+a(p+ 1) (2p+1)]15.72.93 ... (2p - 1)P2(2p+1)1 (sz)n(gp“)p U (dp- TR dp )
o2(l+a)32.52...2p—1)22p+1)2.[14+ ap (2p + 3)]
N{1.2.3...p12.222 [1+a(p+1)@2p+1)]
;V{s 5 2p—1 2p+ }( ta)ltap@p ] g

N T e T N5 g3y —2 2p | [I+a(pt1)@pt 1)
a?=1
(6) To find ,0? we have to evaluate the determinant of (p + 1)st order,
) 0 1 r 1
T T I
9—1"¢ g+ 1% 2 +2p—3
T — ot
2¢+1" 2g+3 b 2+ 2p—1
S S S — e
2q+2p_3 a 2¢]+2P"1 Aounnns 2q+4p—5 a
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q
Treating it as ,0 was treated under (2) of this section, except that now two
rows or columns are left unaltered, it takes the form

1 0 0

...... 0
1. 2 2 2
2¢-1 (29-1)(2¢+1) (2¢+1)(2¢+3) 7 (2q+2p -5) (29 +2p -3)
2 2.4 2.4 2.4
(29-1) (29 +1) (2 —1) (29 +1) (29 +3) (2¢+1) (29 +3) (2¢+5) (2¢+2p-5)...(2¢+2p-1)
2 2.4 7 2.4 2.4 -
(2g+1) (29 +3) (29 +1) (2¢ +3) (2¢ +5) (29+3)(2¢+5) 2¢+7) (2¢+2p-3) ... (2¢+2p+1)
2 2.4 2.4 2.4

(2¢+2p-5)(2¢+2p-3) (2q+2p-5)...(2q+2p-1) (2q+2p=3)... (2q+2p 1) g +ap_9) ... (2 +4p ~b)

[/}
= — 923(p—1
923(p )p—1D-

Hence we find from (38),
1 2
@=1 g2 9% ) 93p-1__ ]
o= (1) {7270 4 2
az»+18 118
Now from (43) and (45) we get

aq
2*,D _ (p+1)(2¢+2p-1)

g [1+0L(]9—|— )(2{]_1_21)_1)] ..................... (
p+1

and therefore

x?=1

L lta(p+D)@p+1) " 1+ap@p+ 1)f
x2=1 P

;. o® p+1 |
or 2poy - N (1 + a) (217"1‘ 1) {1’!“7‘;(]94“ 1) (2p+ 1) + T'{*—O«p(ém} (4:8)

In the same way we get from (39),

1 2

m?:ql 2 (23(;0—1) _ D 93(p~1) B D

29107 = (ZIV (1+a) Jl 7,1,?,,,1 g 2 1 } )
0 8

D

) . . ’] ([ . .
which by the relation between ,D and ,,,8 just found is reduced to

x?=1

il PCr=1)  p@p+])
29—10y N(1+ ){1_[_ p(2]0—1)+1+ap(2])+ )} ......... (49).

Both (48) and (49) are covered by the formula

2 —
x=1 o2

;. of a no n+2
=yt )(n+1){2+an(n+) 2—|—a(n—l—1)(n—]—2)} (80).

(7) The evaluation of ,¢? for special values of # can be made easier by a trans-
formation of the determinant
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! + 1 ~+ 1 +
2q——1 a 2q+1 a ... 29_'_2})—3 a
1 1 1
2 T _ I _ S
X 2q+1%a 2q+3{—a ...... 2q+2p_1+a
q
d= 1 1 1 i
p+1 a L L
2q+3—|—a 2q+5—]—a ...... 2q+210+1
1 1 1
2D B —
Sgrop—1"% grop 1l o rap =3 *

Leaving the first row unaltered and subtracting from each of the others the
proceeding we get a determinant the first column of which is

1, 22— 1, 22 (22— 1) ... 22772 (22 — 1),
while the other columns are identical with those of the determinant 8 previously

treated in the same way. When next the two first rows are left as they are and

from each of the others is subtracted the proceeding one the result is

q
piad = (= 127 x

1 1 1 ,
1 ﬁ"l—a Qm*l-a ‘E-ﬂfrp_g-fa
1—22 2 S S - 2

(2¢—1)@2¢+ 1) (2¢+1)(2¢+ 3) (29+2p—3) 2¢+2p-1)

(1= a2 2.4 ,, 2.4 2.4
27—1)2¢+1)(2¢+3) (2¢+1)(2¢+3)(2¢+5) " (2¢+2p—3)...(2¢+2p+1)
22r4 (1 — g2)2 2.4 2.4 — 2.4
2g+2p—5)...2¢+2p—1) Cq+2p—3)... 2¢+2p+ 1) (2¢+4p—T)...2¢+4p—3)

Leaving now three rows unaltered, next time four and so on, it is clear that we
shall at last after p of these sets of operations get

‘ »@+1)
p+1d = (_ 1) 2 X
1 1
g2 2 2 o 2
| (2¢—-1)(2¢+ 1) (29+1) 29+ 3) (29 +2p—3) (2¢+2p—1)
i o 2.4 2.4 2.4
=2 o 1) 2g 1)@+ 3) 1) @g ) g 5) 2 2p—9) ... Gg+2p 1)
(1—a2)7 2.4...2p 2.4..2p 2.4...2p
; (2¢—1)...... 2q+2p—1) (2¢+1)...... 2q+2p+1) " (2¢+2p—3) ...... (2¢+4p —3)

By treating the columns in the same way, leaving first two then three and so
on unaltered, we find after the first set of operations
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pal = (— 1) D
\ 1, 2 2
2-1 (29 —1)(29+1) "(2¢+2p—5) (29 +2p—3)
o 2 2.4 2.4
2¢—1)(2¢+1) 2¢—1)(2¢+1)(2¢+3) " (2¢+2p—5)...(2¢+2p—1)
(1 a2y 2.4 2.4.6 2.4.6

2g—1)(2¢+1)(2¢+3)  (2¢—1)(2¢+1)(2¢+3)(2¢+5) " (2¢+2p—5)...(2¢+2p+1)

(1= 2% 2.4...2 2.4..2p(2p+2) 2.4..2p2p+2)

(2¢—1)(2¢+1)...2¢+2p—1) (2¢—1)(2¢+1)...(2¢--2p+1) " (2¢+2p—5)...(2¢ - 4p—3)
and after (p — 1) sets of operations

q
prad = (—1)» x

) L 2 2.4...2p—2)
20— 1 20— 1)(2¢+ 1) " (2g—1)(2¢+1)...(2¢+ 2p—3)
e 2 2.4 2.4..2p—2)2p
(29 —-1)(2¢+1) (2¢—1)(2¢+ 1) (2¢+3) " (2q-1)(2¢+1)...(2¢+2p—1)
(12 2.4 2.4.6 2.4..2p(2p+2)

2g—1)(2g+1)(2¢+3)  (2¢—1)(2¢+1)(2¢+3)(2¢+5) " (2¢—1)(2¢+1)...(2¢+ 2p+1) |
(1—a2) 2.4...2p 2.4..2p(2p+2) 2.4...(4p--4)(4p— 2)
(2¢—-1)(29+1)...29+2p—1) (29—1)(2¢+1)...2¢+2p+1) """ (2¢—1)(2¢+1)...(2¢+4p—3)
. p(p+1)+(p—1)p
since (-1 2 2 =(=1)7
Here the first element of the last p — 1 columns is seen to occur as factor for
the whole column so that we can put outside the factor

99-1 4v-2  (2p— 4)2(2p — 2)
(2¢—1)771 (2 + D=1 (29 + 3)?72 (2¢ + 5)P~* ... (2¢ + 2p — 5)® (2¢ + 2p — 3)

p(p-1)

_ 17-1 272 (p—2)2(p—1)2 2
(29 — 1)P1(2¢ + 1)771 (29 + 3)»=2(29 + 5)?3 ... (2¢ + 2p — 5)2 (2¢ + 2p — 3)’
the resulting expression being

|
|
|
|

p(p-1)

4_ (— )7, 191 202 (p—2)2(p—1)2 2 y
PHET (2 — 1)p 1 (2 + 1)P1 (29 + 3)72... (20 + 2p — D)% (20 + 2p — 3)
| 1
i 1 5 — 1+a 1 1
| 1 I 4 %
| (2¢—1)(2¢+ 1) 29+ 3 2¢+2p—1
Qw24 4.6 2p (2p + 2)
| (2¢— 1) (29 + 1) (2¢ + 3) (20+3)(2¢+5) 7 (2q+2p—1)(2¢+2p+ 1)
E(l—x2)1’ 2.4..2p 6...(2p+2) 2p ... (4p— 2)

4.6..
g—-1)(2¢+1)...2¢ +2p—1) (2¢+3)...2¢+2p+1) " 2g+2p—1)...2¢ + 4p— 3)
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In our formulae the two cases ¢ = 1 or ¢ = 2 only occur for which according to
this we find

p-1)
J_(=LP 10t 92 (p— 22 (p— 12 *
pa %= ST Bemr 705 (2p— 3)2(2p — 1)
1 1+a 1 1 1
2 4 6 2p
— 2 I — _
1-@ 1.3 5 7 2+ 1
(1— o8 2.4 4.6 6.8 2p(2p+2)
1.3.5 5.7 79 T @p+1)@2p+3)
gty 246 4.6.8 6.8.10 2 (2p+ 2) 2p + 4)
1.3.5.7 5.7.9 7.9.11 U @2p+1)@2p+3)2p+ D)
gty 2:42p 4.6..2p+2) 6.8.2p14)  2p(2pr2)..(4p—2)
1.3..2p+1) 5.7...2p+3) 7.9..Cp+5) " @p+1)2p+3)..(dp—1)

......... (51)
and
p(p-1)
Fo(Dmartere (p-22(p-1)2 ?
PR 301 Bl ez (2p — 1)2(2p + 1)
1
1 gt 1 1 1
2 4 6 2p
—m2 R - — &
1-2 3.5 7 9 2+ 3
(aye 24 4.6 6.8 2p(2p+2)
3.5.17 7.9 9.11 Tt (@2p+3)(2p+b)
(1—g2p  2:%:6 4.6.8 6.8.10 2p(2p+2)(2p + 4)
3.5.7.9 7.9.11 9.11.13  ""(2p+3)(2p+5)(2p +17)
(1 a3 2.4.6..2p 4.6..(2p+2) 6.8..2p+4) 2p(2p+2)... (4p—2)
3.5.7...(2p+3) 7.9...(2p+5) 9.11...2p+7) " (2p+3)(2p+5)...(4p+1)

VI. Umiform continuous distribution of observations with additional clusters at the
ends of the range; constant standard deviation of observations. Special formulae.

(1) Our first task shall be to work out the formulae for 0% — ,_ 02 for values
of n up to 6, the next to find what values should be given to « in order to make
202 as flat a curve as possible within the range of observations.

With the notations just introduced (40) and (41) take the form

2
S, =, g — gﬂzo;(l_{_a) 1’+1,,dz
2p 2%y 2p-1%y N 1 1

20 10
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2
vd S — 2 __ 2:,0_21 2 p+1d2
an 2p+1 = 2p+19%y — 200y N( +a)x 0] 9
108‘10+18
From these formulae we find, after applying (45), (51) and (52),
o2 3 (1+ a) z?
1‘N7+3a ........................................................................... (53),
1 1+4al?
PR 1.32.5 T
(Lt 1+1.1a 221 +2.3a) | 1 — g2 %
o 5[2+3(1+a) (@~ 1P
=% o T P (54),
1 2
o2 3 3.50.7 ‘ Logte
Sy = 5 (1 +a)2? Ty B
N I+1.3a 22(14—2‘5&)1 , 2
1 —a? 57—
3.5
0 T (L+a)a?[2+5(1+3a) (22— 1) (55)
=% 5 TSy Te) ,
1 l+a 1 iz
2 4
1.32.5 1.32.5%.72.9 (22| 1—a® 3 =
3 5
Sa= N( T2 30 25,2 (1 4 3, 5&)(3)
(1—gme 2ot 4.6
K 55 5.7
02 9 (1+a)[8+20(2+ 9a) (22— 1) + 35 (1 + 6a) (a2 — 1)°P (56)
T N2 (I+6a)(1+15a) v .
1 %4—& 1
o? 3.58.7 3BTl 2N, o o 2 4
Sf’_N(Ha)22(1+2.5a)'22.26(1+3.7a)(") 1—-2 3.5 T
2.4 4.6
— 7r2)2 B -
(=2 3757 7.9
_o® U (1+0)a[8+28(2+150) (+°— 1) + 63 (14 100) @ = 1PF sy
N2 (1+10a) (1 + 21a) ’
1 14+a 1 1 2
8= (1) BT 1.8 T G123 2. 90 o4 46 68
NV TTV22.96(14-3.5a) (22.3)2.212(14-4.7 (32—5> g 2t 20 00
(1+3.5a) "(22.3)%.2%(1+4.7a) (-2 5% g% 75
| gy 2:4.64.6.86.8.10
(1=2% 55 75.7.97.9.11

_0® 13(14+a)[16 4168 (1+10a) (2% —1) +126 (34 40a) (a2 —1)2+ 231 (1+ 150) (22— 1)*]2
TN (1 + 15a) (1 -+ 28a)
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(2) We shall now look at ,o for special values of n and as a first attempt at
z=0 =1
finding a flat curve for ,o? try to make ,0% = .0

ny -
For a linear function we find, since
10y =00y + Sy,
z:f< 3(1+a) 2) |
19 =% 1+ 148 &) sroreeeereeeens JRPRRIen (59).

r=0 x2=1
As o is positive it is obvious that we cannot make ;0% = ;07 which indeed we

knew beforehand. This follows because we have proved that ,o? is of 2nth degree
and never lower.

For 2 =0 we find =0 g2
10y = Z—V— s

which holds for any symmetrical distribution of observations with constant
standard deviation. a is the ratio between the number of observations at the ends
of the range and the number uniformly distributed through the range, it may
therefore vary from 0 to «o. As %—1(—%@ decreases when a increases we get the

a

flattest possible curve when o = o, that is when the distribution of observations
consists of two groups at the ends of the range. Then the curve is, as already shown

in Section I,

2
105 =% (1+2%).

To get a check on the degree of the function and at the same time a flatter curve
of o2 than that obtained from a uniform distribution we may choose something
between the two extreme cases and take for example 1N observations at each end
of the range and N uniformly distributed through the range.

Then o = 1 and, according to (59),

, o2 .
O,!z/ = N(l + %$2),
with the maximum ol 7 _.1-581
aximu o, =N 1.

(8) For a function of the second degree we find, from (46),
=0 g2 9(1+a)(l+ ba)
VSN 1460
and from (50), ot %23 (1 +a) {iﬁ + T-fﬁ} .
We want to make these equal and this requires
3(1+5a)(1+3a)=4{1+6a+2(1+ 3a)}
or 15a% — 8a — 3 = 0.

This has only one positive root a = -7873500.
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For this value ——— YIS (1 ) which is the ratio between the number of observations

at one end of the range and the total number of observations, is -2202562.
As y0% = ;0% + 8, we find, from (59) and (54),
3(1+a) , 5[2+3(1+a)(@*—1) )
20 N (1 -+ 1T 3o x i 1 + ba ) e
for o = -7873500 the curve is

2
008 = %\7 {3-46837 — 6-27862x2% + 6-27862x%},

which has minima at r=4 V3
The extreme values in the range of observations are therefore

18624 for o — {0
41

1-3779 for z= + -70711.

Oy =

\/N

and oy = \7N .
(4) For a function of the third degree we have, from (46),
=) 0® 9(1+a)(1+5a)
CIENL 146
w=1 g2 3 5
and from (50), 30;/:7\?2(] + a) {1—|—6a+ Tor T0a e (61).
Hence the condition that they are equal is
. 9 (1 + 5a) (1 + 10a) = 32 (2 + 15a)
or 90a? — 69a — 11 = 0,
with one positive root a = -9021461.
From (60) and (55) we find
3 a 524+3(1+4+a)(x?2—1
37 = N(1+*'1'(+is) 2+4[+ (1++éo(u =
T(A+a)2?[24+5(1+ 3a) (22— 1)j2>

T4 (1430 1+ 10a)
which for a = 9021461 becomes

2
50 = 3’—\7 {3-67775 + 17-787992 — 48-5665124 + 30-77852x5}.

Besides the minimum for = 0 this curve has other minima for z? = -815820
and maxima for z2 = -2361366.

The maxima and minima are as follows:

+1

For z— |

or ¥ U o oy = \/N 1-9177,
s = 4 48594 oy = \/N 2-3612,
. = 4 90323 Oy = 1-6055.

\/N
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By choosing a = -9021461, that is by taking -237139 x N observations at each
end of the range, we seem therefore to have overshot our aim since the result is that
we have got inside the range a maximum for o, greater than the value obtained for
rz =+ 1.

(5) Our next attempt shall be to make

z2:91 z=0
305, = 2300,
It requires 9(145a)(1+10a) =16 (2 + 15a)
or 450a? — 105a — 23 = 0.

The only positive root is a = -3710723 which gives the curve
2
300 = gN— {2-730117 + 12-8974122 — 37-07612x* + 26-90882z5}.

The maxima and minima are:

For z=  -0000 o,= j‘N 1-652,
» w=+ 4828 01,:&/07\7.2'016,
, ®= £ 8279 ay=\%\,. 1-678,
., %= =+ 10000 oy=\% . 2-337.

This distribution of observations makes o, for & = 4 1 greater than the
maximum at z = 4 -4828. By interpolation between these two cases we shall
now try to find an a, lying between those of our two trials, for which o, for
x = 4 1 equals the maximum value of o, which still may be expected at about
x = -48.

(6) In our first attempt we foundmcr@,1 = ?/GTV . 1-918 and its difference from the

z=1
maximum - . -444, in the second attempt ¢, = g .2:337 and its difference from

VN RV
. ag
the maximum —W. 321.

If the relation were linear this difference would be zero for
x=1 o

0'7, = W .
=1
The a for Whichxay takes this value is found by (61) which leads to
8(1+a) (2 + 15a) = 2:1612 (1 + 6a) (1 + 10a)
or 160-2a% — 61:28a — 11-330 = 0,
with the positive root a = -519.

2-161.

For this value (62) becomes

2
408 = (ziv {29866 + 14-236422 — 40-005824 + 27-4521%}.


http://biomet.oxfordjournals.org/

Downloaded from http://biomet.oxfordjournals.org/ a University of Southern Californiaon March 13, 2015

46 Choice in the Distribution of Observations

The maxima and minima are:

For z=  -0000 o,= \/N 1-728,
, T=+ 4843 o, =\7N .2-116,
yy L= + '8585 Oy = ,\%V . 1.655’
,, x= 4 1-0000 U“’:VQN'Q'ML

and this distribution which has -1708 x N observations at each end of the range
may be considered satisfactory.

(7) TFrom (46) and (50) we find, for a function of the fourth degree,
@=0 g 225 (1 +a) (1 + 140)
TN 64 1+ 1ba
x?=1 o2

2 3
29 : ,
and 40?’—N5(1+a){1+1Oa+1+15a}’
which are equal when

9(1 + 14a) (1 + 10a) = 64 (1 + 12a)
or 126002 — 5520 — 55 =0,
that is when a = -5217564.
The formula for 40%, found from (62) and (56), is

, o 3(14a) , , 5243(1+a)(@—1) T (1+a)a?[245(1+ 3a)(@—1)]?
4% = N{1+1+ vy 1+ 6a 4 (143a) (14+10a)
9 (1+a)[8+20(2+ 9a) (22 — 1) + 35 (1 + 6a) (2* —1) 3]3} (63)
64 (1+6a)(1+15a) [ :

For a = 5217564 it becomes
2
105 = %,{5-03367 — 19-7277222 + 133-01711z% — 235:96817x5 + 122-67868x5}.

The maxima and minima are as follows:
0

For x:{il oy = \/N 2-244,
»y T=4-3130 o,= \/N 2-041,
, T=+-06844 o, = \/N 2-575,
» T=+£-9361 o,= \/N 1-856.

x:=1
We have again as for the function of the third degree brought ¢, down below

one of the maxima of 40, although since 40, has a maximum at = 0 the demand
=0 x’=1
that o, = o, is not so exacting as for jo, which has a minimum at z = 0.
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x? x=0
£

(8) We shall next make so — 1-2671861 52 *.
The condition obtained from (46) and (50) is
9 x 1-2671861 (1 + 10a) (1 + 1da) = 64 (1 + 12a)
or a2 — 30957730 — -032940969 = 0,
with the only positive root a = +3933269.

Introducing this value of o in (63) we get
2
400 = %7 {4-61918 — 18:0238822 + 122-71833x* — 220-340992° + 116-88078}.

The maxima and minima for this curve are:

At 2= 0 Uyzv%.2'149,
, =+ -3116 ””:\701‘\7"1'958’
5, = % -6839 Oyz,\%\f'Z’4:675
» T=+ 9214 ay:\_;N_l.glg,
, ©=+ 10000 o, :Vqﬁ 9-419.

We have thus for a = 3933269, that is by taking -141147 x N observations at

x*=1
each end of the range, succeeded in bringing ,o, down to be approximately equal
to the highest of the maxima of the curve, thus fulfilling our purpose.

(9) After our experiences in the cases of the functions of the third and fourth
degree we cannot expect for a function of the fifth degree by making
x?=1 x=0
505 = 50y
to find a curve which has not a greater maximum than that value. We shall
therefore start with the attempt

a2=1 xr=
2
50y =25

0
2
2.
The condition found from (46) and (50) is
95 (1 -+ 14a) (1 + 21a) = 64 (2 + 35a)
or 735002 — 13650 — 103 =0,
with the only positive root a = -2433100.

* The ratio 1-2671861 results from consideration of a special sz%/ curve. It was determined as

that curve obtained from three groups of observations for which the standard deviation of a%’s within
the range of observations was a minimum. It is not mentioned elsewhere in this memoir as it does not
seem to have the interest I at first assumed it to have.
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For 502 we find, from (63) and (57),
o {1 i 3(1+a) o 5[2+3(1+a)@ =D T +a)a[2+5(1+3a)(@?— D]

2 __ S
50y = N -

1+3a 4 1+ 6a 4 (1+3a)(1+ 10a)
9 (1+ ) [8+20 (2 + 9a) (42— 1) + 35 (1 + 6a) (2? — 1)2]2

64 (1 + 6a) (1 + 15a)

11 (1 + o) 22[8 + 28 (2 + 15a) (22 — 1) + 63 (1 + 10a) (a2 — 1)22
A Thae (T 100) (1 + 21a) fo80).

Introducing a = -2433100 we get

2
505 = EZTV {4-14228 - 28-4703022 — 258:05238x* 4- 853-0448x° — 1095-921x8

+ 476-5990x10},
from which we find the maxima and minima:

At 3= 0 %:\7‘%.2-035,
, T=+ ‘2953 o,= ﬁ.z-m,
» T=+ -5004 0,,=;;TV.2'155,
, &=+ 1853 0y=\7G«N.2-762,
, T=+ 9418 %:\;’—1\7.2-231,
. &= -+ 1-0000 ayzvi . 2-878.

2=1

xo-z, does not differ much from the greatest maximum and we may thus consider
the distribution with -097848 x N observations at each end of the range for which
a = 2433100 as satisfying fairly well our aim.

(10) Considering our previous results we must assume that for a function of
x?=1 [x=0
the sixth degree o) |/ o% ought to be made somewhat smaller than 2 which was
the value that gave a satisfying result for a function of the fifth degree.

x?=1

Let us assume o)

— 1-75'0% or, substituting from (46) and (50),
256 (1 + 24a) = 1-75 x 25 (1 + 21a) (1 + 27a)

from which 567a2 — 92-434300 — 4-851429 = 0

and a = 2048019

are found.
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For 402 we get, from (64) and (58),
. 02{1+3(1 +a)x2+§[2+3(1+a)(x2—1)]2

TN 1+ 3a 1 1 + 6a
LTl a) 212+ 5 (14 3) (22— P
i (1 + 3a) (1 + 10a)
9 1+a 2 2 272
6 (158 (11 T8y (820 2+ 99) (22— 1) 4 35 (1 4 6) (22 — 1)
11 1
e 10a)+(la+ 1[0 + 28 (2150 (0 — 1) + 63 (1 +10) (o2 — 11
LB lta [16 -+ 168 (1 + 10a) (2% — 1)

256 (1 + 15a) (1 4 28a)
+ 126 (3 + 40a) (22 — 1)2 + 231 (1 + 15a) (22 — 1)3]2} >
which for a = +2048019 becomes

607 = == {5 58984 — 33:1423422 -+ 504-4523x* — 2512-673x° 4- 552418628 +

— 5452-650x1° + 1974-020x2}.
The maxima and minima are:

Atz= 0 oy = VN 2364,
, m=+ 2216 o, = «/N 2216,
,T=+ 4826 o, = VN 2:515,
, m=+ ‘6194 VN 2497,
o &=+ ‘8445 o, = \/2‘\7 3-149,
» Z=+ ‘9615 o, = VN 2-485,
s @ = £1:0000 o, = \/N 3-128.

It thus appears that this distribution which has -08499 x N observations at

2?=1
each end of the range fulfils our demand that o, shall be approximately equal
to the greatest of the maxima.

(11) We bring together our final results in the following table. It giires the
distribution of observations, the maximum of o, within the range, the value of

Vn + 1 or the lowest maximum of % VN possible, which can only be obtained
(o)

by distributing the observations of the function of the nth degree into (n + 1)

groups, and the value of » -+ 1 which is the maximum of ~~”~\/— for a uniform

distribution.

Biometrika x11 4
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TABLE II.
Ratio of number of | .
Degree of | observations at each | Maximum of JiT 1

function end of the range to oy /N NVn+1 %+
the total number I

1 -2500 1-581 1-414 2

2 [ -2203 1-862 1-732 3

3 } -1708 2-161 2-000 4

4 ! 1411 2-467 2-236 5

5 | -0978 2-878 2:449 6

6 | -0850 3-149 2-646 7

A comparison between our maximum and v/n + 1 shows the price we have to
pay for information about the degree of the function. For lower degrees the
maximum only differs quite insignificantly from v/n + 1, but with increasing
degree the difference grows relatively greater for the sixth degree, being about
one-fifth of Vn + 1.

The curves of standard deviation for the three sets of distributions are given
in Diagrams 3—8, while Diagram 9 represents the six curves just reached.
It seems likely from the form of the o, curves that two clusters of observations
placed at the outermost of the maxima besides the two clusters at the ends of the
range would produce a ¢, curve with a lower maximum than the one we have
succeeded in getting for the functions from the fourth to the sixth degree. But
then again the position of these new clusters would depend on the degree of the
function and thus make the proceedings more complicated ; and what is more at
the same time as the maximum of the curve approached vV + 1 the distribution
of observations would incur the disadvantages of the grouping in (n + 1) clusters.
On the whole the distribution arrived at seems to be satisfactory and certainly
marks a great progress from the uniform distribution.

VII.

(1) InSection I we have already given the formula for the standard deviation o,
of an adjusted 4 when the standard deviation s, of an observation is ¢ vV f (z).

Observations with varying standard deviation.

It is
N

.

ol. = 1 z 7N "
v 0.2
1 my my My wenne. Moy,
T My My My eeenen Mty | =0,
22 my My My eeneen Mopto
x" My, Mpry  Mpgg eeenns Mgn
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58 Choice in the Distribution of Observations

where m, =¥ f x? T 4 x) dx, ¢ (#) dz being the number of observations between
x and z + dz and the 1ntegrat10n being extended over the range of observations.

It is clear that if we have found a suitable curve of squared standard deviation
for adjusted y by taking a distribution ¢ (z) of observations with constant standard
deviations a corresponding curve can be derived for observations with varying
standard deviations by using the distribution

B (@) = kP (@) F () oreeeeeererereeernns (65).
As [k (z) . f (z) de = N the constant k£ must be
N
b (@) f (@) do
Hence we find My = fa?. qS(ac )d N

[$@).[@de™ [$(2).f (@) dx’
where p, is the pth moment coefficient for the distribution ¢ (), and as
My N

it e S———
po  Jé(@).f(2)de
for any p the determinant may be written
2 Eg k1 z 2 . "
(ox
1 1w Bg eeeenn Un
x B M g eeenen Pot1 | =0 (66)
2 py s Pg eeennn Pt
T fn fntr Motg ceeees Ban

We thus find the same determinant as.the distribution ¢ (z) would give for
observations with constant error of observation except that the factor £ has come
in, that is to say the expression for o2 has been multiplied by

= %H (@) F@) AT oeveeeerereeeeceerree, (67).

The goodness of the distribution therefore will partly depend on the value of —]E

and because we have found ¢ (x) the best distribution for observations with constant
standard deviation it does not follow that

b(2) =k ().f(2)
is the best distribution for observations with the standard deviation oV ().
But the deriving of ¢ (x) from ¢ (z) is nevertheless useful as a means of simplifying
the investigations and will be applied in the following special inquiries.

We shall consider two forms of f(z) and try to find the best distributions for
functions of the first and of the second degree.
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(@) f@) = (1 + aa?)?, where a > — 1,
for errors of observation increasing or decreasing in both directions from the middle
of the range.

(d) f(@)=(1+ ax)?, where 1 >a 20,
for error of observations increasing in one direction.

These two forms will roughly cover two distinct and important types of cases,
such as occur in practice.

(2) When f(x) = (1 + az?)? we find, according to (67),

1
b= 1T 2ape g,
and as (66) for n =1 gives
ot S k=

Y 0,2

; — 2u @ + a?},
) f{lfvz 1 }
we have for a function of the first degree

o _ 0% 1+ 205 + aPpy

oy, = — —2mx 2% 68).
v N g — P {1ro 551 } (68)
This curve has a minimum for # = p; and the maximum in the range is, if
>0, at = —1, and if p, <0, at x=1; it equals in both cases
0;2 2 (,1:‘_ [:“1])2]
¥ (14 20uy + a2uy) {1 + g g [ s (69),

[p1] being the numerical value of u,.

Now (69) is a minimum for p, = 0; we therefore ought to choose that value
for u; and we then get, from (68),

, o \ 22
0?,=N~(1+2a,u,2+ay4) 1—[—’72 ........................ (70),

we and p, may vary between 0 and 1 independently of each other and are only
bound by the conditions that

Ha = o
and ;92=‘;%§§1.

For any set of values which satisfies these conditions we may determine a
distribution consisting of ?2(N observations at x = 4+ v and (1 —y) N at z =0,

since from any two such values we could determine

and o "

By introducing »? and vy for u, and u, we get two quite independent variables
and (70) then takes the form

2

=2 (1 + 20902 + ayv?) (1 -+ 3327)
Y N Y2
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@=1
We now have to determine y and v2 so that the maximum value o2 is as small
as possible. We find

[doy]  _ (o 2. 94 L
_dyLl_ a (2a1, + gt — yzvz) ........................ (1)
[ do?, o o o 9 1
and _ii?qu“ - <2a'y+ 2a2y2? + a __yv"> .................. (72).
[do? . 9 1
el = e 73).
Clearly i dyL:l 0 leads to y*= — @+ ard) (73)

Introducing this value into (72) we obtain
do%} @ ( 1
— = 57 . ]. —|' ‘7—J"‘:>> 5
[d”2 z=1 N * Va (2 + av?)
which is > 0.

Hence the minimum for constant »? determined by
1] o
d’)’ =1

But when v2 decreases, y?, as given by (73), increases and the lowest value of v2,
for which it is real, is that determined by

1
2:——~——— =3
YTt (2 + av?) L

decreases with 2.

For »2 smaller than this (73) gives 2> 1, and as long as y2=1 we therefore

have
da?,]
— =0.
[d’y z=1

z=1
Hence the minimum of ¢ is to be found for y2=1.

For this value (72) may be written as

do* 2 ]
[&%J - 07\'7 (1 an®) (200 + @t — 1) s (14),
=
148
which is zero for =1+ —16—“ .............................. (75)

and > O for »2 greater than this value.

When the v? found lies between 0 and 1, that is when a > %, we have thus found

2
the minimum sought. When a = %, then {g%;’] as given by (74) is <0 and the
z=1

minimum of 0?, is found by giving »? its maximum value, that is 1.
Returning to the variates u, and u, we see that in all cases

U

}’«4—/82—
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from which it follows that no distribution of observations other than those arrived
at consisting of two equally big groups can give u;, u, and u, the values required.

We accordingly reach the result that: when observing a function of the first degree
for which the standard deviation of the observations is o (1 + ax?), symmetrical about
the middle of the range, we get the best function for o’ by taking two equally big groups

a> 1.

(3) According to (70) the maximum of ¢ for this distribution is

x=1 2
%= (1+a1)2)2(1—|—3—2),
v being equal to 1 for a = 1 and v being determined by (75) for a > }.

We shall next consider the distributions (i) for which ¢ () is constant from — 1

to 1 and (ii) for which ¢ () consists of 3 observations uniformly distributed from

—1to1land %V into two clusters.

(i) For a uniform distribution from —1 to 1 we have p,=1%, uy=1% and,
according to (67), 1
z=1+ Fa+ }a?

k

the actual distribution is hence, as ¢ (z) = % 5

N (14 ax??
b =31 + %0+ La?’
and the maximum o? as given by (70) for x = £ 1,

=41

ol =12(1+2a+l~a2) 4
K N 3 5 e

(i) When ¢ (z) = %IV with the additional clusters %ZV at + u we have

—_ 1,2 — 1 1,4
pe= 1§+ 3u* and py =5+ zut

According to (70) the maximum ¢ is then

o=l o 2 2 (1 1,2 6

o = L+ )+ a o+ 3] (1 g )

We shall now determine « so as to make this a minimum. We find that
x=1
doj o* 1 9 2 N

requires
45a2u + 150 (3 + 5a) ud + 5o (6 + Ta) u2 — (90 — ba + 9a2) =0 ...(76),
the root u? of which is > 1 for a < -b576.

z=1
For a = -5576 we hence get the minimum o? by taking the clusters at w = &1
and for a > 5576 at the places + u determined by (76).
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Table III contains for a series of values of a the values of v, (14 av?) and w
of the two distributions above and the maximum o, for the three distributions.

TABLE III.
. NN
Maximum of | Maximum of Maximum of 7 K2
N ; oM from from distribution
) oy ——— irom o . N
a v 1+ av? besg diste. | distribution u for which ¢ (z) =7
bution for which and clusters of
N N
# () =3 7t Eu
0 1-0000 1-000 1-414 2-000 1-0000 1-581
X 1-0000 1-167 1-650 2-113 1-0000 1-760
1-0000 1-333 1-886 2-231 1-0000 1-944
% -8836 1-390 2-100 2-352 1-0000 2131
g -8071 1-434 2-284 2-477 -9289 2-316
2 71510 1-470 2-448 2:603 -8502 2-483
1 7071 1-500 2-598 2-733 1797 2-637
2 -5559 1-618 3-330 3-540 5762 3438
3 4782 1-686 3-908 4-382: 4925 4-173
4 4278 1-732 4-404 5-241 4612 4-899

The difference between the maxima from the two first distributions taken as.a
proportion of the maximum of the first decreases from 41 per cent. at a = 0 to the
minimum 5 per cent. at a = 1, and then again increases to 19 per cent. ata = 4. For
small a, that is in practice « = 0, and again for a > 3, for which the difference is
greater than 12 per cent., the third distribution may therefore be useful as giving
a much smaller maximum value than the purely continuous distribution and at
the same time offering some justification for the form of the function.

(4) We shall next, still assuming that f (z) = (1 + az?)? consider the choice
of observations for a functton of the second degree.
According to (66) and (67) we find

, o> 1
o, = Z_V . 7& X
(&2#4 “‘."«H‘ 2 (papby — g pa) @+ (g — 303 -+ 2y pg) @2+ 2 (g pro — pg) @° + (o — 1) 9341
Mafhs = W5+ 2phafiafls — [hifha — B3 J
............ (77),
and 716 =14 2apu, + a’uy,

where the u’s are the moment coefficients about z = 0 of the distribution ¢ (x)
which is connected with the actual distribution ¢ (x) by the relation
(@) =k () . f (x).

From any distribution ¢ (z) which has p; and u; = 0 we can form a symmetrical
1{¢ (@) + ¢ (— x)} which has the same u, and p, as ¢ (z). We shall prove that
the maximum o? obtained from the symmetrical distribution is always lower than
that obtained from the skew.
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Let the factor in curled brackets in (77) be F, for a skew distribution ¢ ()
and F, for the corresponding symmetrical distribution.

We then have

_ Mty + (g — 3pd) 2 + ppzt
Fy= . .
B2 (pa — p3)
The condition for a maximum or minimum other than that at = 0 is
3l — pa >0,
or By <3,
and as the denominator is positive we have in that case the maximum at z = 0.
It is thus clear that the maxima of F, between — 1 and 1 must be either at z = 0
oratx=4 1.
We shall show that
[Fs]x:O = [Fo]a:=(]s
and that either [Flo=1 OF [Foloe1>[Folo=x1-
According to what has been proved in Section I (4) the coefficient of z%in (77) is
positive, the denominator of (77) is therefore positive and we have
2
F._F o = : (”2”’:?- —,"«111’«4) : >0,
s el = ) i — i 2paapais — i — )
We shall next compare ¥, and F, for z = + 1.

Putting [Fylo=1= ZZY)
N -3
we have [Fs]le = ﬁ:’e »
where O = i — Zpapes + i £ 24y (1 — o) — pug (e — )}
and € = i — i1 pophs + ity

For 2 we find

= (s = pa)® = 2t (1 — o) — paa (1o — )}

c (15— prapaa)® + pad (o — ps3)
Looking first at the case H1 20, we have
Ms

(s — 11)® < (g — p1p)?
and if we choose the value for which the other term of the numerator is < 0,

> <L
€
When % < 0 we see, from considering the form
3
§ =1— pi (1 — pa) — 2paps (1 — pp) £ 2 {us (1 —pp) — #1777(#{'{2"7_ B}
€ (s — papeo)® + it (pog — i) ’

that for eitherz=1orax = —1

é}<1.
€
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As e > 0 we have hence for any u; and pu,, remembering that ZI\; being a squared

standard deviation multiplied by the number of observations is = 1,
D—¢c" D™ &
that is, for either x =1 or — 1,
F.>F,.

We have thus proved that the maxima of F, are below those of F,.

(5) Our problem is hence reduced to finding the best curve among those repre-

sented by
,_ o® (1+ 2aps, + a?uy)
o= T + (e — 3ud) @ + paxtt ...l 78).
Y s (4 — 1) {tapes + (g — 3p3) 2% + iy (78)
As was stated in (2) of this section we get all sets of possible values for u,
and p, from three groups of observations symmetrical about z = 0, and we may

therefore limit our search of the best distribution to these.

Let the observations be 7—2/N at t==4v, at (1—9y)N at x =0. The inter-

polation formula of Lagrange gives, when 7, represents the mean of the observations

at z=1p,
2—2_  x(r—ov)_ x(x+v) _
— 2 Yot (202 )y_”+ a2 v

Y=
from which we find

o 0% 1 ((@®—0%?2  2?(a®+ %) (1 + avz)z}
‘”“N'@{l—y + I e (79)
It is obvious that if for a certain distribution we have
w=20 aﬂ;l
oy > 0y

we can get a better distribution by taking more observations at 0. If on the other
hand

=0 x?=1
gl <,
x2=1
the curve cannot be the best unless o? is a minimum for the present values of »

and y. From (79) we find

do? ot 1 {(1 =03 (1+9%)(L+ av2)2} (30)
bl TNl R
d do?, et 1 2(1—0%) (2+P—a)(l+ av?)|
an dT)z:]xz:l—N”l)G{ 1—’)/ b4 J'
from which we obtain the conditions for maximum or minimum
, 1+2Va
Y= —
a

and v _2Va(l£Vap
l—y  aF2Va—1
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The lower sign requires 3 — 2v2=Za =} and the upper sign o >3 +2v/2 to
make 0Z¢*= 1. The case a <} has no interest, as we have seen that when a <}
extrapolation is not even for a linear function advantageous. We have therefore

. x*=1
seen that for a < 34 24/2* ¢* has no minimum and we have thus proved that
=0 z*=1
the best distribution requires o? = o3, that is

92— 1 (1+0%) (1 + ar?)?

I—y y ’
1 (14 ?) (1 + av?)?
or . 1:—:)‘/ = ]_ + 202__ 1 ........................ (81)
The maximum of the curve is
w;zl) 02 1
GU = N . ’]:;—’y .
To find the minimum of this value we differentiate (81) and get
do? 1 o? . s o
[dﬂsz:0~ (mz {4(1'0 — av® — Zﬂ. 3},
which is zero for
02=1<1+_\/33+4§> .............................. (82)
8 o

and positive for greater v2, so that we have found a minimum.

For a = 3 we find from (82) »% = 1, hence for a = 3 we have to choose v? =1,
from which, according to (81), follows

1 2(1 + a)

— 2 — -
1_y7—1+2(1+a) or vy TF2(+ap
5 1 48\ . .
When 3+2V2>a>3, vzzg (1 +a/ 33+ A> is < 1, and for the corresponding
a
vy we have
174
(I+av®)?  1+9*  Ba+4+Va(33a+ 48) (83)
T @)~ S@ry .

Returning to the ¢ (x) distribution, which is found from this distribution by
dividing the frequencies by % . (1 + az?)?, we therefore find, when %N is the number
of observations at # = + v and (1 — €) N, that, at z = 0,

€
2 1+ 02
T_c 20@-1)
a1
* A further examination shows that for a>3+242 U?, has a minimum but this is smaller than
x=0 x?=1 =0
of/ when « <6-7. Up to this value we therefore have 012, = oi for the best curves. For a>6-7 the

2?=1
minimum of cr;i determines the best distribution.

Biometrika x11 5
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or e
C € = 32
Hence e = L (1+®) ]
A TP (84)
and H4=§(1+02)J

For a = 3 we have found v? = 1 which according to (84) involves u, = py, S0
that only the distribution above consisting of three groups can realise the requisite
conditions.

When a >3 we have v <1 and therefore u, <pu,, so that it must be possible
to satisfy the equation (84) by a continuous distribution of observations. However
v? is decreasing so slowly for increasing a that practically the distribution deter-
mined by (84) cannot differ much from three groups of observations.

Our results are accordingly that for a function of the second degree, of which the
standard deviation of the observations is o (1 + ax?), we get the best function for o
when o = 3 by taking three groups of observations at the middle and the ends of the
range, each group proportional to the squared standard deviation at the place, and when

3+ 2V2>a> 3 by taking three groups of observations determined by (82) and (83).

(6) From (78) we find
x=0 2
2 7 ¢ s
ob =2z (1 + 2ap, + a®uy) - ,
VTN ( fhz La) g — 122
which, when p, and p, are found in accordance with (82) and (84), determines the
maximum o, arrived at from our special three groups of observations. Besides the
numerical evaluation of this standard deviation, we give in Table IV below the
maximum of o, obtained from a distribution for which ¢ () is constant from — 1 to
1, that is, since, according to (67),
1 5 . a2
757 (1"1— ga"l‘ 5’),
(1+az?? N
_'_E . 7 .

the distribution & (x) =
1430+ %
)

o

That maximum is determined by

2 23
ofj:(;—v<1+ 20+ %) .9,
2
EN . 9 being the maximum ¢? obtained from a rectangular distribution of observations

with the standard deviation o.

The last column of the same table gives the maximum o, arrived at when ¢ (x)
=0 x?=1
is the rectangular distribution with clusters at — 1 and 1 for which ¢? = ¢ . For

this distribution consisting of -22026 N observations at 4+ 1 and at — 1 and
-5595 N = 2¢N uniformly distributed from — 1 to 1, we have found as given in
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Table II (p. 50) the maximum \%\7 . 1-862. Hence when u, and p, are the moment

coefficient of this ¢ () the maximum is found from

2
o = % (1 + 2042, + o2u,) . 1-862.
1

We find p, = 6270, u, = -5524 and A

The actual distribution is hence
27975 (1 + ax?)?

¥ (%) = T 125400 1 552402
together with the clusters

= 1+ 1-2540a + -5524a2.

22026 (14 aff
1+ 1-25400 -+ +552402" "’
at — 1 and 1.
TABLE 1V.
axi . N
M‘L‘\i/nll\lrlm °f | Maximum of o z/\"/cr— Maximum of a,,*g for
o v for for distributilc\)rn distribution with
the best ; 4V ¢ (x) =c and clusters
distribution with ¢ (z) 2 at =1
0 1-732 3-000 1-862
1 3-:000 4-099 3-120
2 4-359 5-310 4-453
3 5745 6-573 5-810
4 7-135 7-861 7-178
5 8-522 9-165 8:551

The difference between the first and second maxima taken as a proportion of the
first varies from 79 per cent. at o = 0 to 8 per cent. at a = 5, while the difference
between the first and the third maxima varies from 8 per cent. at o = 0 to 0-4
per cent. at o =25. The continuous distribution with clusters is therefore
especially useful for smaller a.

For a = 4 we find from (82) v = -9816 and for a = 5, v = 9700, both of these
values of v are so close to 1 that if instead of using them we take the observations
at 1 and — 1 and let the numbers of the three groups of observations be proportional
to the squared standard deviations we get the maxima 7-141 and 8-544 which only
differ quite insignificantly from the corresponding values of Table IV.

(7) TFor a function of the first degree, of which the standard deviation of the
observations is o (1 4+ az), where 0 = a < 1, we have, according to (66) and (67),
0?1+ 2au, + a?u,
(T?l = N —_}Lz——lp,?—é{”? — 2}(«1@ -+ xz} ..................
For pu, = — ¢? the maximum of this function is at =1, and for u, = ¢% at — 1.
As the maximum of (u, — 2,2 + 2%) has the same value in both cases it is clear
5—2
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that the negative p, gives the lower maximum for ¢j. We therefore only have to
find the conditions for [¢7],., being a minimum when p; < 0.
We have
w5t 0P [+ apg)® 4 o (g — pi)] p
e 5 o — i+ (L—p)? e 86),
=% p— T (
and differentiating with regard to u.,
{dﬂ;"/] _o® oy — pd)? — (1 — ) (1 + apy)?
Az )a1 N (e — pi1)? '
Asa <1, we have (1 — pq) (1 + apy) > 0 and
a(py = pi) = (1 — py) (L 4+ appy) = (apy — 1) + pa (1 — @) <O,
from which it follows that
[d"ﬂ <0
[T P

The greatest value u, can take for our range — 1 to 4 1 is 1, the minimum of

for any p, = 0.

a=1
o) must therefore be found for u, = 1, for which value (86) passes into

) o _(1~a)2}
[oy]x»=1_ﬁ2l2a+ [

2
which, since u; = 0, is & minimum and equals 2.2 (1 + o?) when u, = 0.

N

The ¢ () distribution ought accordingly to consist of two equally big groups
at the ends of the range and the actual distribution to be chosen for a function of the
Jirst degree, the standard deviation of which is a linear function of the variable, should
be two groups at the ends of the working range with numbers proportional to the squared
standard deviations at these places.

(8) For a continuous distribution from — 1 to 1 with frequencies proportional
to the squared standard deviations we have

p1=0 and p, =3,

i =1 g2 o?
and the maximum ol = ¥ (1 + ,g) 4,
_ 2
the actual distribution is P (z) = (Cal0) axz) . al .
1+ % 2

Table V contains besides the maxima of o, from these two distributions those
obtained from a distribution for which ¢ (z) is constant with two additional clusters

at — 1 and 1 each consisting of %7 of the observations.

The actual distribution is, since

_2
23] =%

__|.
+az)?® N
4:,

QI

= o

¢(m)=(1+ o2

colto
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; (1-0a) N : _
with 173 4 observations at — 1
2
and (Il‘ig%z %V at + 1 in addition.

The maximum of ¢? is

2
F+ia g

TABLE V.
Maximum of . 4/N| Maximum of o, \/—N for
VN i Maximum of 5, ¥— o 4
oy — for | L. distribution with
a 7 i for distribution N
best distri- | . N ¢ (x)= 1 and clusters

bution with ¢ (z) = 5 o 1
-0 1414 2-000 1-581
-1 1-421 2-:003 1-587
-2 1-442 2-013 1-602
-3 1-477 2-030 1-628
4 1-523 N 2:053 1-663
5 1-581 2-082 1-708
-6 1-649 2-117 1-761
7 1-726 2:157 1-821
-8 1-811 2:203 1-889
9 1-903 2-254 1-962

(9) For a function of the second degree we found in (5) that when the standard
deviation of the observations was s, = o (1 + a2?) and a = 3 it was advantageous
to use the whole working range of observations, much more must this be the
case when s, = o (1 + az) and 0 = a < 1. We shall therefore try to find the three
best groups of observations taken at — 1, v, and 1, supposing » unknown. We do
not venture to assert that another form of distribution might not lead to a curve
of standard deviation with lower maximum, but the solution of the general problem
would involve a more elaborate investigation into the possible variations of uy, p,,
wg and p, for distributions with limited range than seems desirable in this con-
nection. We shall further limit our problem by assuming that the best distribution

r=1 a=-1
will be found among those which make o? = o? and both also equal to a maximum
situated between 2= —1 and z=1. This would obviously be right if the

maximum were found at z = v; this in fact is not the case, but still the maximum
value is likely to be chiefly determined by the number of observations at = v and
there is therefore every reason to believe that our assumption is justifiable.

Let there be N8 observations at — 1, N.y at 1 and N (1 —8 — ) at v. The
interpolation formula of Lagrange then gives

(--v)(@—1) (—0)(z+1)

_ x? _
Y=g Y sy M
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from which we find
2 {(x—v)2(w— 1) (1—0L)2Jr (—0?@@+1)? (1+a)?

W= N £ +oE 8 f1—v2 o
(@2 — 1) (1+ av)? }
+ .
@1 1-8—y
g=1 a=-1
The condition for o =d
o (ERVEr
y 3
=1
Eliminating 8 we obtain for o} — o2 the va]ue
9 —.T 1 2 (1 x2_ 1 { xZ _771)77
% U”_N vz«l y (1 + a?)
[1+02 Va2 + 20 (1 — ¥z + 2 — 5o? + vﬂ}
or
=1 2 2
2 o _ O 1+ a)3(«®—1) 2) _ 9 — 2\2] 92
%y OV“N‘(Uz_l)z[(l%_ @) — 2y(1 ]{((1*'0‘) (I +0%) —2y(a—v)f]a
+20(1—®) [(1+ )m2y(1 )] @+ (1 + a)? (2 — 5v? + oY)

— 2 [(1+ a2) (2 — B2+ o) + (L + av)?} eoeeeene. e, (87).

z=1
Our assumption that the maximum o2 shall be equal to o? requires that the
expression in curled brackets shall be a perfect square for which the condition is

2[( ] {a* (1 + a?) 0% + 2a (1 + a?) 05 + (3 — a2 — 3a?) v* — 4a (3 4 202) 03
+( 2+ 9a? 4 Bat) 1? + 2a (3 + a?) v — a® (3 + 2a2)}
+T§}-/7)é{“ a?0® — 2av® + (— b + 202) v*+ 12a0% — (2 -+ 9a2) 0* — 2av

(
F 344} + v+ 202 — 1 =0 oot (88).
a=1 2 2
Now ¢? = o @ —I;/a) - is the maximum which we want to make as low as
possible, hence we have for a certain a to find the » for which (1 + - oy as given by

(88) is a maximum.
We shall examine the cases a = +5 and a = -9.
(10) For a = -5 (88) takes the form
’y,i 2. 5916 Db L 519594 — ()3 . R . — 1.
{(1 g a)zJ {-625v5 + 2-5v% + 5-125v% — 1403 + 1-1252 + 650 — 1-75}
(T v——)~ 5 12008 — 0% — 4Bt - 6v® — 42502 — v+ 4} + 02+ 202 — 1 =0,
which differentiated with regard to v gives
[(iiiﬂ) 1 {3-750v8 + 12-5v* 4 20-5v% — 4202 + 2250 + 65}
,,}_

it a)2 {— 1:5v5 — Byt — 1803 4 180% — 85w — 1} + 4o (2 + 1) =
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We find that these two equations have for v = — 190 the root =+2936

Y
(1+a)*
in common which represents a maximum.

2
The maximum of the curve is hence %7 . 3.405, which value occurs for # = £ 1
and for z = -064 determined by (87).

The distribution of observations is

‘6607 N at 1,
‘0734 N at — 1,
and 2669 N at — -190.

For comparison we shall consider what would result from taking for the ¢ (z)
distribution three equally big groups of observations at — 1, 0 and 1. This would
for observations with the constant error ¢ make the maximum of the curve equal

2
to ‘Z’V .3 and that multiplied by
35
14+ 2ap, + a?py = g
. o
gives v 3:b.
The actual distribution  (z) would be
6429 N at 1,
‘0714 N at — 1,
and -2857 N at 0.

This last distribution only makes the maximum o about 3 per cent. greater
than the value which we obtained by our special distribution and it will therefore
for most practical cases be as useful.

(11) When a = +9 we find for (87),

2
[ﬁ] {2-932208 1 6-51605 |- 443404 — 33-2640% + 17-14102 4 13-T16v — 7-4844}

T »(rz’—»)é {— 8106 — 1-805 — 3-38v* -+ 10-80% — 9-290% — 1-80 -+ 6-24}
T a
Lot 22— 1=0,

which differentiated with regard to v gives
12
{H—?’))ZJ {17-59320° -+ 32-58v% + 1-7736v° — 99-79202 + 34-2820 + 13-716}
+ a

+ Y {— 4-860°5 — 9v* — 13-5203 + 32-402 — 18-58» — 1:8} + 4o (v + 1) = 0.
(1+a)?
~ For v = — -354 these two equations have the root (lil‘a)_z = -23214 in common

. : £ Y .
which is therefore the maximum o (1 4 ay
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The maximum of the corresponding o? is hence
o> (l+a)* o
z. (,7 F o 308,
From (87) we find that it occurs at @ = -125 as well as at « = + 1. The dis-
tribution of observations is then
8380 N at 1,
‘0028 N at — 1,
and ‘1597 N at — -354.

Comparing again with a distribution consisting of three groups of observations
at — 1, 0 and 1 with frequencies proportional to the squared standard deviations at
these places we find that the distribution would be

7814 N at 1,

‘0022 N at — 1,
and 2164 N at 0,
and the maximum of ¢? would be

2 2
3 (14 2au, + a?u,) 4-62.

o -7
N’ N
We thus find that by our special distribution the maximum of o? was 7 per cent.
lower, the choice of that distribution would thus permit us to reduce the total
number of observations at the same rate without raising the maximum of 3.

(12) The result of these investigations is that the mazimum o, obtained from
the best three groups of observations differs so litile from that obtained from three groups
at — 1, 0 and 1 that the first grouping only in quite exceptional practice would be pre-
ferred.

We shall therefore in Table VI give the maximum o, arrived at from the

following three distributions: (1) three groups of observations at — 1, 0 and 1 in
numbers proportional to the squared standard deviations at these places, (2) a

distribution for which ¢ (z) = ZQX, and (3) a distribution for which ¢ (z) = -2797T N

with additional clusters -2203 N at + 1 (see Table II, p. 50).

Both in Table V and in Table VI the difference between the two first maxima
as a proportion of the first decreases with increasing a so that the distribution with
uniform ¢ (z) is more profitable for a > 0 than for observations with constant
€IToTs.

VIII. Best distribution of observations for determining a single constant
of the function.

(1) Our choice of observations has hitherto aimed at giving within the working
range of observations a determination of the function as accurate and uniform as
possible.  We shall now consider what is the best choice of observations for
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TABLE VI.
Maximum of Maximum of o, \/_N Maximum of o ﬂ Maximum of
/N I [ VN

a Ty from  from distribution from distribution for| 7Y ¢ from
three groups : _ N |which ¢(z)=-2797N| best three
at 0 a,%d jI:) 1 for which ¢ (z) T2 |and cl({)lgt‘)ars at +1 groups

-0 1-732 3-000 1-862 —

-1 1-738 3:005 1-868 —

2 1-755 3-:020 1-886 —

-3 1-783 3:045 1914 _—

4 1-822 3-:079 1954 —

5 1-871 3:122 2-003 1-845

-6 1-929 3175 2-062 —_

-7 1995 3-236 2-129 —

-8 2:069 3-:304 2:205 —

9 2-149 3-381 2-287 2:076

73

determining a single constant of the function. The investigations will be carried
out for functions of the first and of the second degree for which the standard
deviations of the observations are
a>—1
1>a20.
We have in (3) of Section I given the formula (8) for 0., and shall here give only
the form to which it is transferred by putting
(2) =k (x) f (@),
1 1
16 @) f@) e

The formula analogous to that given for ¢? (66) is

sy =0 (1 + az?),

ot 8y =0 (1l + ax),

ol .=k 0 0 0o ... 1 0
P g2
0 I J77 Mp  eeeeen fn
0 My M L Hptr  eeeees Mo t1
0 He M3 Hg o eeeeee I Fntz =0 ...(89)
1 tp Hpty1 Kotz coenee Hzp  eeeeee Hntop
0 Wy tpgl  Mngg  eeeees Poppn  oveees Hon

(2) For a function of the first degree
Y=+ a7,
for which the standard deviation of an observation is
sy=0(l+ax?), a>—1,

and therefore =1+ 2ap, + o?uy,

!
k
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we find, according to (89),

o, = ‘Z’Tj (1+ 2ap, + o) (1 -+ H—Z’f M\) ..................... (90),
and 0% = %‘: (1 4 Zap, + a?uy) gl s (91)

As for any skew distribution of observations we can find a corresponding
symmetrical distribution with the same u, and p,, both these expressions are a
minimum for u, = 0.

We have already shown in (2) of Section VII that any possible values of u, and

pq can be produced by three symmetrical groups of observations, so that by intro-
ducing the variables v and y determined by

Mo = ?)2%
and Mg = ”4'}’:
and limited by =1,
0=y=1,

we do not leave out any possibilities.
From (90) we then get

2
0':“;0 = (ZLV (1 + 2a920% + ayv?),
2
which for a > 0 is a minimum when y = 2= 0, and for a =0 is % for any y
and 2.
For o < 0 we find, since
dol, o* 0 . 1
E‘;z"ﬁ2a7(1+a@) and v <-4

that for a constant vy, o has the least value when v? is as great as possible, that
is for v2=1.

The minimumn of ¢%, is then
2
o, = {1+ 2+ ap),

which, since a (2 + a) < 0, is a minimum when y takes its greatest possible value 1.
The minimum is thus
2
ol = %7 1+ a)2
Hence we conclude that:

2
. .. g .
when a > 0, 7, is a minimum and equal to N for N observations at = 0,

2
when o = 0, o2, is a minimum and equal to 2 for any distribution for which y, =0,

N
and
2

when a <0, o, is a minimum and equal to CZTV (1 4+ a)? for two equally big groups

of observations at -+ 1.
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(3) When we introduce p, = 0, u, = yv? and u, = yv* in (91) we get

— Oj 2 24 94 _17
o = 37 (1 + 2ayv +°‘7’”)yv2'
This for constant ¢? is a minimum when y = 1 and then equal to

o2

1
of, =7 (1 200% 4 a2f) 5 o, (92).
dot, o*(, 1
As = (=)

1 . . . .. .
v = + - when possible, that is for a =1 determines a minimum, while for

a <1, ¢ reaches its lowest value for 2= 1. From (92) we find for o =1 the
minimum
ol = 12 4o,
ay N . $
and for a < 1 the minimum
0.2

0% = b (1+ a)?,

2
both formulae giving o2 = ?\7 .4fora=1.

Our results are accordingly :

)
oy

2
is a minimum and equal to o . 4a for two equally big groups of
q qually pig group

N

observations at = :1:2 or for any distribution with the same u, and y,,

when a > 1, ¢

2

and when a = 1, ¢% is a minimum and equal to (ZTV (14 a)? for two equally big

groups of observations at x = + 1.
We see that for o = 0 two equally big groups of observations at + 1 make both

o2, and ¢, minima and these groups in addition form the distribution for which ¢
has the lowest maximum within the possible range of observations.

(4) For a function of the second degree
Y=g+ T+ ay2?,
with the standard deviations of observations
sy=0(l+az?), a>-—1,

and therefore L 1+ 2ap, + o®uy,

we find, from (89), ’
ol = ‘Zf\: (1 + 201y + aPuy) S _H;fi_z fum TR (93),
ol = 3’—\:(1 + 20ty + oy e L‘;; 2“31#2#3 e (94),
and ol = %:(1 + ey + au,) Ty :;_; 5}‘?«1#2!‘3 R 95).
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We shall prove that the last factor of each of these formulae is a minimum for
. pa = pg= 0.
To prove this for (93) we consider the difference

Pala [ Pa (Hhafty — pha fh)® =0,

Popta — Py i — 2puapiaps + pipha o (g — 3) [(g — prapee)® + i (g — )]~
from which follows
Maofbg — l"g Hafly .U%
3 2 2 > 3 > 2 2 M
Moply — (5 — B3 + 2y oy — Hila  Mofts — B3 M5 — 2 flapis T Uik

For (94) it is at once clear that

‘ B — 15 o BT

patra — B — (s — papa)® + pi (g — pd)] ™ pops — p

For the case of (95) we compare

He B

3 8 29, 2y
Hofly — B3 B3 — 2 papha + i py
and we find the difference
1 1
py— i (1 i >0,
4 M R o
Ha = p - { o Hz)

and hence
Tl Y U M _
Mabba = 15— 15+ 2ty popis — pipa T Pafta — P37 p5 — 2papiaths + Btk
It is thus proved for the three formulae that a distribution of observations for
which p; = pg = 0 gives lower values than any distribution with the same u, and

My as the former and with p, £ 0, u; = 0.

Hence our problem is reduced to finding the u, and p, which make the following
expressions minima :

ok = o (1 + 20uy + a2py) B (96),
" N Pha — 45
o8 — % (1 -+ Qapuy + a2puy) - (97)
w =l Mo W T s
ol = o (14 200y + 02uy) —— i (98)
N Pra —
(5)  Introducing p, = y? and p, = yv* in (96) we get
: _ 0 Y 2)2
ot =5 (1+ 1_y(1+a'l))>,

2
which is seen to be > %7 except when y = 0.
2
Hence the minimum value of o2, = % can only be obtatned by taking all the
observations at x = 0.

(97) is identical with (91) for u; =0. The conditions for a minimum of ¢ are

ay
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therefore the same for a function of the second degree as for a function of the

2
+ . . . .« . g
first degree. That is, when a > 1, ¢ s ¢ manvmum and equal to ~ . 4a for two
b [ q

N
equally big groups of observations at x = =+ é, or for any distribution with the same

2
s and p,, and when a = 1, 0%, 25 @ menimum and equal to 21+ a)? for two equally
"L 1 6q N q

bug groups of observations at x = + 1.

With the variates y and v (98) takes the form
2
2 _ 9 2 204
o, N(l—l—?ayv +ayv)v4y(1_y).
By differentiating with regard to v? we get
do;, ao* 2

BTN =TT
which is negative for any a, v and y within our limits.

For constant vy, o2, is therefore least when v2= 1 and the minimum value is

2 /1 1
2 9 (4 2)
0%, N('y+2a+a)l—y ........................... (99).
This is again & minimum when
doj,  o® 1

Ty T 2 I L
dy N~y2(1_7)2{a(2+a)7 +2y -1} =0,
that is for y = 211; which gives a minimum both for positive and negative a.

Thus the distribution that makes o, a minimum has a ¢ (2)-distribution

. . N . 1+a .
consisting of 5+ a) observations at — 1 and 1 and 9+a N observations at 0.
1
We have Mo = g = m
and % = (14 a).
The relation J(x)=ko (x)f(x)
N
i ; =
then gives us p0) =35 i
_l+a
and l/l(:!:l)-—m.N
From (99) we find the minimum value
2
ot = %, 2+ ).
2
Our result is thus that 67 s & minimum and equal to (ZTV (2 + a)? for a distribution
.. N . l+a
conststing of 91 a observations at 0 and 7@+ a) N at + 1.
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78 Chotce in the Distribution of Observations

(6) When the standard deviation of an observation is
s,=0(l+az) and 0=a<]1,

we have %c: 14+ 20u, + au,,
and according to (89) we find for a function of the first degree
a® M
2 = o (14 2apy + a2g) — 5 e 100
00 = 7 ( aply a#z)M_M (100)
and s %1 4 Q0 + apg) (101)
0}, = 77 o ) — S e ).
N e
By differentiating (100) we find _
dog, 0 2y (1 + ap) (1 + ap)
dwy N (12 — p)?
and doy, 0% (apy — 2ap] — p) (pn + apy)
dp, N (b2 — pi)?
Both of these can only be zero when
Myt ape =0 . (102),
2
which is seen to determine a minimum of o the value of which is 20\7. The
condition p, = — ‘;—1 can be fulfilled by an infinity of different distributions. From
0=p =1
follows the condition Osmys—a

We shall confine our attention to those distributions which consist of two groups
of observations. Let there be Ny observations at v, and (1 — ) N at v,, we then
have

pr =y +y (V3 — ),
pe = v+ y (0] — 0)),
from which by means of (102) is found

N S Sl SN S
— (L4 avy) 0y (14 avy) (v — ) {1+ a(vy + 0,)}
1 (1 tavy) 1+ avy)
I=1 S it VA Sl Bt
and k + Ay 1 T+ a (,01 i Uz)

Thus we find that the ¢ (z)-distribution consists of

 mwn(ltan)
(vy — o) {1 + & (v + v,)} N ab o,
and ) ,,,}i(ﬁ_ivl,)f, - N at Vg,

(v — ) {1 + a (v - 772)}
while the actual distribution
I+ a(vy+ vy)
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consists of w N at 01}
2 b e (103).

MN%@.J
vy — Uy 2

and

We thus see that for any two points v, and v, of which one is negative and the other
2

positeve we can choose the numbers of observations so as lo make o2, = % as it of
course would be by taking a single group of observations at x = 0.
(7) By differentiating (101) we get
' do? a? 2
0 — 14 a FAs) e, 104
Ay~ N (g — e 1 o) Gt o) (104)
2 2
and d%! -2 (1 + apm)

Ay N (g — p)®

As the latter is always negative o2 is for constant u, least when wu, has its
greatest value, that is 1.

Introducing this in (104) we get as condition for a minimum,

) S #+a=0.

There is only one distribution for which u, =1 and u; = — a, and it is that
consisting of two groups of observations at — 1 and 1 included in the distributions
examined in (6).

From (103) we find that the actual distribution consists of ! ;

N at 1. The minimum of o is from (101) found to be %j.

The minimum % ¥ of oy, can thus only be obtained by taking two groups of observa-

a .
N observations

at — 1 and

tions at the lumits of the range with numbers proportional to the standard deviation
of observations at these places. This distribution makes also o2, a minimum, but it
us not, except when a = 0, the distribution which gives o* the lowest mazimum value
withen the possible range of observations.

(8) Tor a function of the second degree,

Y =y + T + ay,?
with the standard deviation

o, = o (1l + ax),
where O=a<l1
we have % =1+ 2ap, + ou,,

and from (89),

2

. _ O Moty — 143

o, = (1+2a 0Ppg) ———— 2 ..(105
N TR g KR AP ping 109
0.2

o4 =2 (1 + 2ap + o) M 5 (106
N ! Y bt — 15— g 2 piapty — iy 100D

, o2 — ui
of, = 5 (L4 2aps; + a%uy) — Tl o)

Moty — B3 — 5 + 2uq oty — uipy
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80 Choice in the Distribution of Observations
(105) may be brought into the form

92 | 2 1 9 )
2 [ o+ (Hapty — (413) (a &1> +— (ui — mua)z}

s O 11 ) Mo
0q, =77 |1+ . ) :
N Moty — 13— 5 + 2t iy g — ipy
where the denominator and p,u, — ui are always positive. Hence the condition
2
for o2, taking its minimum value 3\7 , 18
prtapy =0 and pf— ujps =0
1

or B e e (108).

M2 a

We shall examine the possible distributions consisting of three groups of
observations with the frequencies y,, v, and y; at v;, v, and v5. The conditions
(108) require

Y1Vl + yat8 + ')i?,_”é _ Y1Vl + Y205 + v} _ Yz”g (v — v1) + 303 (v3 — vy) _ 1

ViVit vale + Ysls YiVT A+ patit ysts yat (Ve — ) F a5 (s — ) @

V1 (L o) ety (L4 avy) _ yy03 (14 aty)

oo e SAfE s e ST T (109).
Vg — Vg Vg — Vg vy — Uy

Now — 1 , 2 and —"*  can never all have the same sign and (1 + av)
Vg — V3" V3 — Vg vy — Uy

is for any v =2 — 1 positive, from which it follows that (109) leads to negative

frequencies. Nor can (109) be satisfied by two groups of observations as y, = 0

requires v; = v, = 0, that is one group of observations at © = 0 which of course
2

N-.
(9) We may write (106)
: =2 ( : + L (g — p3) (g + ape)® + (s — M1M2)2)

. .
gives o, =

TN e e (g — ) (2 — ) — (g — pagsa)®

where the last ratio is seen to be positive unless
prt o, =0 and py — ppe =0 .ol (110).

If therefore any distribution of observations can give P 1ts minimum value 1
2
and at the same time fulfil those conditions it will make ¢2 a minimum and equal
2

to %V' But p, = 1 together with (110) lead to

. Mg = g = — Q, 1
1ta N observations at — 1 and -~ N at 1, whereas the actual

2 2
distribution must consist of 1_2_;&N observations at — 1 and 1»;;(5 N at 1.

2
Thus the only distribution which makes o7, a minimum and equal to (—IN s that

which require

consisting of 1—_2—3N observations at — 1 and 1—¥N at 1.
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(10) The general minimum conditions for o,, cannot be found without more
elaborate investigations into the possible variations of the moment coefficients
than are at present available and we shall limit our research to the case of three
groups of observations.

Let us suppose y; N, y, N and (1 — y, — y,) N observations taken at z,, z,
and zg, and let the corresponding means be 7, 7, and 7;.

We then find, when
A = (T — @) (Ty — @) (03 — 7y),
1 _ _
Ay = 5{2/1 (T3 — @) + Yo (T — @) + s (T2 — 24)},
and

g,

s 0% ((x3— T)? (14 amy)® | (T — 3)2 (L 4 amp)? | (2 — @9) (1 + azy)?
TNl * H v
. 1 Ye Y1~ Y2

Differentiations first with regard to y; and then with regard to y, give the

minimum conditions
yi Vs _ A=y =)

(@5 — @2 (L + amy)? (@ — @)? (1 + a2 (% — @) (1 + og)?’

or, when we suppose 2; <, <23,

71 _ — e _ L=vi—v, _ 1
(@ —2,) (Lt+azy) (29— @5) (L +amy)  (2y—2) (1+ams) 2 (25— p) (1 + amy)
............ (112)
With these values for ¢, and y, we get from (111)
PR LIRS o M TR S
“ N A N (zy — 21) (x5 — @)
This for constant z, is obviously a minimum for ; = — 1 and z; = 1 and is then
equal to
| o (2(1+any):
=N 1—a )

From this we find
do,, _ o 2 (a8} + 20, + a)
dey, /N  (1—a)? 7

1 1

, @
a = N
and the frequencies found from (112) are

AVI—a(ViFa—VI=a).N at — 1,

which shows that

determines a minimum.

The minimum value is

a,

(1+ V1=,

Biometrika x11 6
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4%\/1 FaWTFa—Viza).N at 1,
1

and PN at — (1 —V1—a?).
IX.  Adjustment with regard to both of two variates connected by
a linear relation.

(1) The case often occurs when both of the variates observed have errors of
observations of the same order so that adjustment only of one of them is unsatis-
factory. We shall therefore in this section consider adjustment with regard to
both of the variates and give the adjusted relation between them and the standard
deviations of the constants.

Let 2’ be observed with the standard deviation Vac and %’ with the standard
deviation Vyo, we shall then for the sake of greater perspicuity exchange the

v and y = ¥ $o that both of our variates have the same
a

%

standard deviation o. Let %E {x"y°} taken over the N pairs of observations be

variates for x =

denoted by w, ., we then find, by adjusting only the y’s according to (3),

y 1 =z
por 1 pi |=0,
M1 Mo Moo
or §— gy =PI () (113).
K20 — Mio
By adjusting only the «’s we get
Moz — Hin
el el (Al T BN 114),
Y — oy Jaz — forfiao ( H10) (

which only coincide with (113) when

(20 — mio) (o2 — 1) = (a1 — Ho1ft0)®s
that is when there is perfect correlation between x and y and no casual errors of
observation.

(2) Adjusting at the same time with regard to « and y may be transformed to
the problem of finding the straight line for which the sum of the squared distances
of the observed points (z, ¥) is a minimum.

Let the line sought be
zcosv 4 ysinov 4+ p = 0.
The sum which we want to make a minimum is then
S = gy COS2 ¥ + gy SIN2 0 + 2uy; €08 ¥ 8in v + 2ppyy COS O + 2Py Sin v + P2,
as

dp = 0 requires P = — 1p COSV — gy SIN V,

indicating that the line passes through the mean (uyy, pg); this determines a
minimum for constant v,
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The corresponding S is
S = (g9 — i) €082 0 + (1gy — ;) 8IN2 0 + 2 (g1 — foqfbyo) COS D SIN V... (115),
which differentiated with regard to v gives
as .
do =~ {120 — 1o — (o2 — pr)} 8I0 20 + 2 (pgg — prgy pgp) €OS 20.

It thus follows that

2 _
tan 20 = - = (1“%1 Fo1f10) = 2 tan 12) ,
Moo — Mo — (moz — por) 1 —tan®o
or
tan v — % {op — pir — (120 — o) =+ \/[an — 1 — (oo — pio) 1> + 4[pas — Baotor 3

11 — Mo1Mio

determine a maximum and a minimum of S.
Substituting in (115) we find

S = § {pa0 — o+ pron — b =V [i20 — 1o — (o — p)* + 4 [11 — Boa a0l »
so that the minimum corresponds to the negative sign of the root in (116).

The adjusted function connecting « and ¥ is hence a line through the general
mean forming an angle » with the z-axis which is determined by

tanu = — coty — Moz — ,“'?)1 - (Mzo - ,U«%o) + \/[Mzo — ,U;fo - (.“02 “‘,U«%l)]z +4 [:“'11 - :"'01:“«10]2
2 (k11 — Mo1t10)

For the variates " and ' there must to this value of the tangent be added the

factor \/ g, expressed by the moment coefficients of " and y" we therefore find

15— 7 s~ )+ e — ) — e 0+ Ay
2a (H’{l - H’(,)l IJ«{o)

tanu =

(3) We shall prove that the line is situated between the two regression curves
(113) and (114).

Making (p49, po1) the zero point of the coordinates, the three tangents to be com-
pared are

RS R
o’ P and 2mr {0z H20+\/(M02 ao)® + dpuis} nu,

where the u’s now are the moment coefficients about the mean.

According to pqy = 0 we have

P < oz
M20  M11
since i < Mg - Moo+
As V ( oz — o) + 4ptdy < oz + Hhao>
we have tan u < 02,
M1
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It rests to compare tan u and “2 we find
H20
K11 1 2ph \/!: _— 2#?1J2 4,“411 - }
tan oy — M = N i — Poo — + )
oo 2pas Koz — 20 Lo Hoz — Hao thao (Mozl"zo M
The factor in curled brackets is hence positive and we have tan 4 > or < 51—1
20

according as My > or <0,
we have thus proved that
Zv: S tanw < Z—:i
(4) In order to find the standard deviations of the constants of the line we
shall express the observations, the standard deviations of which are vac and
Vyo, by a parameter 7 to get an equation for each observation.
Suppose T x;=a+ r;co8u,
Y;=0b+ r;sinu,
and suppose we have a good approximation for a, b, u, ry, 5 ...... 7y from which is
calculated = and y corresponding to the observations. The differences between
observed and calculated z and y can then be expressed by
Az; = Aa — r;sinw . Au + cos u. Ar;|
Ay; = Ab + r;cosu . Au + sin u . Ar,|
and we can carry out an adjustment, A, Ab, Au, Ary, Ar,... Ary being the
elements.

The normal equations are:

1 N 08 U >
EZ{xi}zzAa+O.Ab—2{r} -——A T*Aﬁ + o+

1 sin %
S 2} =0. Aa+NAb+ (red %‘A Y N bk ‘T~Am,

S U oS U
z {n[— 12 xz+— A%:P’

sinu

cos U

Aa+Z {ry}

2 2 1 .
—— AD+ 2 {r;}? {£}+COS v Au+rl<$—;>cosusmum‘1+
a ¥

[

+7y (— - —) cosu sinuAry,
Y a

cosu sin %
OB Ay + 22T A
o " Y1

1 1 . os2y  sinZuw
C—OiylAa hm—uAb +7y <— ——> cosusmuAu-Ir(ﬁ— + ! >Arl+...+0.Ar‘\v,
a Y Y a v

...................................................................................................

cosu sinuw

_— v

Ay .y

COS u sm u
Y Ag
a

1 1 cos u sin?u
Ab +7ry <— - ~> cosusinuAu+0. Ary +... + < + >A7;\r
Y oa a v

Eliminating 7y, 75 ... 7y from the first and the third of these equations by means
of the last N equations, we obtain
¥ {sin uAx; — cos uAy,} = N sin uAa — N cos uAb — X {r;} Au...... (120),
and

3 {r; [sin uAz; — cos uAy, ]} = X {r;} sin uAa — X {r;} cos uAb — Z {73} Au...(121).
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By eliminating the ’s from the second of the normal equations we get an equation
identical with (120), which shows that we have one more element than we can
determine. '

From (120) and (121) we are however able to find

(sinwAa — cosuAb) and Au; we get

. 1 .
sin uAa — cos uAb = m 2 {(mg — mq7y) (sin ulAz; — cos uly,)}
1 .
and Ay = N (m 2'—771%%) 2 {(my —1;) (sin uAz,; — cos uAy,)},
1 1 9
where my = 3 {r} and my = ¥ ().

For a point of the adjusted line corresponding to r, we find, according to (119),
Pq = 8in uAz, — cos uAy, = sin uAa — cos uAb — 7, Au.
The standard deviation of p, is seen to be the standard deviation of the position
of the adjusted point (x,, ¥,) in the direction at right angles to the line.

We find
1

Py = N (my = ) X {[mg — myr; — 1, (M — 7)] (sin uAz,; — cos uAy,)}
2 _ 2
and o, = (ZLV (asin?u + vy cos? u) {1 + %} .

This standard deviation is quite analogous to that obtained for an adjusted
ordinate when the abscissa is errorless and gives the same indications for the dis-
tribution of the observations.

For o, we find

» 0% (asin®u + vy cos? u)
TN ()
again emphasising that the standard deviation of the 7’s ought to be a maximum
to give the best determination of the line.

In conclusion I should like to express my thanks to Miss H. Gertrude Jones
for the care she has devoted to the preparation of the diagrams in this paper.
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