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In all sorts of experiments which are not simple repetitions but have at least 
one varying essential circumstance or indefinite variate the experimentalist is 
confronted with a choice in regard to the values of that variate. If the ex­
periments be quite simple the question may be without great importance; but 
when their requirements as to time or expenditure come into account the problem 
arises, how the observations should be chosen in order that a limited number of 
them may give the maximum amount of knowledge. It clearly depends upon the 
relationship between the observed quantity, which we shall name the primary 
variate, and its essential circumstances, the secondary variates, and upon the 
variation of the errors of the observations. 
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2 Choice in the Distribution oj Observations 

When we deal with, for example, a linear function which it is possible to ob­
serve with the same accuracy for all values of the indefinite variate we should 
not hesitate to put the observations in two equally big groups as far apart from 
each other as feasible. But if the standard deviation of the observations be a 
function of the indefinite variate and increases with the distance from the middle 
of the range, where is then the point in which the advantage of removing the two 
groups of observations from each other just counterbalances the disadvantages of 
increasing the error of observations? The problem becomes very complicated for 
functions of higher degrees. 

We shall in this memoir try to contribute to the solution in the case of poly­
nomial functions by examining the standard deviations of the adjusted and more 
especially the interpolated values of such functions for different distributions of 
observations. Those values inside the working range of observations may be 
considered the sum of knowledge acquired by the experiments. The adjusted 
values outside the working range may probably in exceptional cases be of interest, 
but as only by some other type of experiment we can make sure that the form of 
function holds outside the range they are in ordinary cases without great value. 
We shall therefore aim at finding the distribution of observations which within 
the selected range gives the most satisfactory standard deviations of the adjusted 
values of the function. 

To consider the standard deviations satisfactory we must of course demand 
that they shall be as small as possible, and since a greater accuracy in one part 
may be expected to be accompanied by a smaller accuracy in another part we 
want them in addition to be as near constant as possible. In other words the 
curve of standard deviation with the lowest possible maximum value within the 
working range of observations is what we shall attempt to find. It appears that 
the distribution of observations which fulfils this demand consists of specially placed 
groups in number just sufficient to determine the constants of the function. We 
shall accordingly pay attention also to the desirability usually present of ascer­
taining the form of function by means of the observations. As might be expected 
we find that the standard deviations obtained from a uniform continuous distri­
bution' of observations increase towards the ends of the range. By choosing a 
uniform continuous distribution with additional clusters at the ends of the range 
we shall try to find a compromise between the two desiderata of a low maximum 
of standard deviation and of a uniform distribution. 

The indefinite variate is supposed to have a vanishing error of observation 
compared with that of the principal variate. This error may be constant or varying 
with the indefinite variate, but in either case it is supposed to follow the typical 
law so closely that the method of least squares may satisfactorily be applied to the 
observations. After having found first the most advantageous distributions for 
observations of functions up to the sixth degree with constant standard devia­
tions we examine the case for observations of functions of the first and of the 
second degree which have standard deviations of the form a (1 + ax) and a (1 + ax2). 

If it is profitable to use the whole of the working range the latter distributions 
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are practically found from the former by multiplying their frequencies by the squared 
standard deviations of the observations at the corresponding place. But in cases 
where extrapolation is of advantage, and the whole range therefore not to be used, 
the law of the frequencies has to be examined anew. 

In Section VIII we find for the same two cases of varying error of observa­
tion the distributions which make each single constant of a function of the first 
and of the second degree a minimum. 

1. Adjustment of a polynomial function of one variable,. general distribution 
of observations. -

(1) Let Yl' Y2 ...... yp ...... YN be N observations of a function of nth degree 
taken at the points Xl' X 2 ...... Xp ...... XN, 

Y = ao + alx + a2 x2 + ...... + anxn ........................ (l). 
Let us assume that from earlier experience we know the standard deviation of an 

observation of Y to be a vf (x). The method of least squares will then give us the 
following system of normal equations in which the sums are to be extended over 
all the observations: 

S {1r;I7)} = 8 {1(~vJ ao + 8 {f~;v)} a l + 8 hf;v)} a2 + ...... + 8 {f~;v)} an 

8 {}(::)} = 8 {f~;pJ ao + 8 {f ~;p)} a l + 8 {f ~;J a2 + ...... + 8 {l~:~)} an 

S{ypx!} -8 {~l {~l {~} 8{X;H} 1 (xv) - f(x p)Jao+8 1(x17)r a1 + 8 1 (X p) a2 + ...... + f(x p) an 

8 {}(::)} = 8 {f~;p)} ao + 8 {;~:;)} a l + S {;~:] a2 + ...... + 8 h~~I7)} an 

............ (2). 

If f (x) is 1 the sums are the moment coefficients of the places of observations 
multiplied by N, and in the general case we shall for brevity put 

8h~;pJ=N.mr. 
By elimination of the a's between (1) and (2) we find 

N. Y 1 X x2 ...... xn 

8 hr;p)} mo 

8 {}(::J m1 

8 {ypx~} m2 
f(x p) 

8 {}(:;)} mn mn+l mnH ...... m2n 

= 0 ............... (3), 

which determines the adjusted Y corresponding to the variable x. 
1-2 
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4 Ohoice in the Distribution of Observations 

(2) To find the standard deviation a1lr of an adjusted Yf it will be easiest to 
start from the equations (2). If the first be multiplied by ao, the second by al and 
so on before summing, and if we choose ao, al ...... an so that 

ao mo + a I m I + a2 m 2 + ...... + an 1nn = 1 ) 
aOml + a 1 m 2 + a2ma + ...... + anm n +1 = xrl 

aOm2 + alma + a2 m 4 + ...... + anm n+2 = X:. ( ............... (4), 

m + m + m + + a ~ = ~n) ao n al n+1 a2 n+2 ... ... n 2n r 

we find that 

2 a2S { 1 2 nJ2} and therefore aYr = N2 ](xv) [au + alxp + a2 xp + ...... + a nx 1J • 

By multiplying out the square this may be written 
~ a 2 

a!r = N{ao [aomo + aIm] + a2 m 2 + ...... + anmn 

+ a l [aOm] + al m 2 + a2 m a + ...... + anmn+J 

+ a2 [aOm2 + alma + a2 m 4 + ...... + anm n+2J 

or applying (4) 
9 

a~ 2 n) (5) a 2 = N (ao + alxr + aaXr + ...... + anx" .................. . 
Yr 

Hence a~r is found by elimination of the a's between (4) and (5), which results in 

N 2 n a2 - 1 Xr x,, X,, 
YT' a2 

1 mo m1 m2 mn 
m l m2 ma ...... mn+l = 0 .................. (6). 

m 2 ms 

" x" rnn m n+l m1'l.+2"· . .. mzn 

This determinant is of fundamental importance for all the following work and 
it will be useful at once to examine it more closely. 

(3) First however it may be pointed out that the standard deviation of any 
other linear function .1 b + b + b + b ~D = 0 ao I a I 2 a2 • ... .. nan 
of the constants of the function Y may be determined in quite the same way by 

2 N 
aq, ';;-2 bo bI b2 bn 

bo mo mI m 2 mn 
bl m1 m 2 rna ...... m n+1 = 0 .. " .............. (7). 
b, m 2 m3 m4 ...... m n+2 

li .. tit" mn +1 rn"+2 ...... rn2n 
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In particular a2 is found from 
all 

2 N 
aa,,·~ 0 0 0 1 o 

0 mo m] m2 

0 m1 m2 ma 
0 m2 m3 m4 m"+2 ... m"+2 = 0 ............ (8). 

1 m" m,,+l m"+2 

o 
(4) Let us call a determinant, identical with that of (6) except that it has 0 

instead of the element a2 .!i2'~' let ~r s be its minor not containing the rth row 
Yr a ' 

and 8th column, again let ~r, I, 2/, (/ be the minor of this not containing the pth 
row and the qth column of ~. We then find from (8) 

2~ -
a2 = aN __ fJ+~fJ+2'1.1 ••••••••••••••••••••••••••••••••• (9). 

a" 1,1 

With this notation we obtain from (6) 

a~r = ~ (- ~~J ................................ (lO). 

In the following we shall drop the index r and indicate by "ay the standard 
deviation of a y adjusted by means of a function of the nth degree. 

If we were dealing with a function of (n - l)st degree and retained the observa­
tions distributed as before we should find 

2 a 2 ( ~'H2' n+2 ) 
n-lay= N - ~ , 

n+2, n+2, 1, 1 
and therefore 

2 2 0 2 ~1, 1 • ~n+2, »+2 - ~. ~n+2, n+2, 1,1 
n all- n-lav - -------

N . ~1, 1 • ~n+2' n+2, 1, 1 

but ~ is orthosymmetrical and therefore the numerator of this fraction equals 

~~+2, 1> and 

a 2 ~ 02 = __ ~+2, n+~!.l,} 

an N· ~1,1 ' 

hence ~1, 1 and ~n+2,n+2, 1, 1 have the same sign, and n a~ - n-l a~ is therefore a square 

of a function of x. In the same way we can express n-l a~ - n-2a~ and thus further 

down all the differences till oa~ = ~ . ~o by which means na~ is developed in a sum 

of squares and takes the shape 
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6 Ohoice in the J)istribution of Observations 

:1 mo ml 
2 

l: m r x ml m 2 

u 2 {I m: + x 2 m 2 ms 
u 2 =- -+ + ...... n 'Y N mo I mo mIl I mo ml \. 

mo ml m 2 

mo· ml m 2 I ml m 2 m1 m 2 ms 
m 2 ms mol. 

1 mo m1 ...... m n- 1 
2 

x m1 m 2 mn 

x 2 m 2 ms m'Hl 

+ , ___ -"'-_x_n_m-:.;.n _m_n~+""il_._ .. _._ .. _m_2::.::n;...-~1 ""----or} .. , ......... (ll). 
! mo ml ...... m n- l mo ml mn 

i m1 

Im~, 
It will be seen that the squared standard deviation of an adjusted y is a function of 

the 2nth degree of x. The coefficient of x2n is the square of L\n+2.n+2.1,1 which, as 
2 L\l,l 

was just seen, is the factor with which ~ should be multiplied in order to give 

u!n' it is therefore positive and can never vanish. 

(5) If all the m's with odd indices are zero it is seen from (6) that u! is a function 
of x2• This is, at least in theory, a natural thing to aim at, since our general 

purpose is to find a curve for u~ giving as nearly as possible a constant value for 
2 

u y throughout the range. 

Rearranging the order of rows and columns in (6) we get, when all m2q+1 = 0 
and n = 2p, 

2N 
21JUy'~ 1 x 2 X4 x 2p X Xs x 5 X 2p- 1 

1 mo m 2 mol. m 21J 0 0 0 0 

x 2 m 2 mol. ms •••••• m Z1J+2 0 0 0 0 
X4 mol. ms ms ...... m 21J+4 0 0 0 0 

x 2p m 21J m 21J+ 2 m 21J+4 •••••• m 41J 0 0 0 0 =0 

x 0 0 0 0 m 2 mol. ms m 21J 

x 3 0 0 0 0 mol. m6 ms ...... m 2P+2 

x 5 0 0 0 0 m6 ms mlO ...... m 2P+4 

X2p- 1 0 0 0 0 m 21J m 21J+2 m 21J+4 •••••• m 41J- 2 

.................. (12), 
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from which we find 

0 

1 
x 2 

X4 

2p o-! -~{ x 2p 

0 

x2 

X4 

KIRSTINE SMITH 

1 X2 X4 x 2p 

mo m2 m 4 m 2p 

m 2 m 4 ms ...... m 2P+2 

m 4 ms ma ...... m 2P+4 

m 2P m 2P+2 m 2P+4 .. • .. · m 4p 

mo m2 

m 2 m 4 

m 4 m6 

m2P m 2P+2 

x2 

m 2 m4 

m 4 ma 

ms m8 

m 4 ...... m 2p 
I 

ms •..... m 2p+2 

ms ...... m2p+4 

m2p+4 ...... m 4P 

X4 X 2p- 2 

ins m 2P 

ms ...••• m 2P+2 

mlO ...... m 2P+4 

ms ...... m2P+2 

mlO ······1n2P+4 

7 

For a function of the degree 2p - 1 we get the same determinant as in (12) 
except that it does not contain the row and column in which x2p is found. 
Hence we find 

0 1 x 2 X4 ...... X 2p- 2 

1 mo m 2 m 4 ...... m 2P - 2 

x2 m2 m4 ms ...... m2P 

X4 m 4 ms m8 ...... m 2P+2 

0-2 ( X 2p- 2 m 2 f>-2 m2 f> m 2ll+2 •••••• m 4ll- 4 
2P-IO'! = - N- \--r----~-=:.-......::;:;...--=:.~"---......:"'i'I......;;.-

( mo m2 m4 • ••••• m2ll- 2 

m 2 m4 ms ...... mall 
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8 Choice in the Distribution of Observations 

0 1 x 2 X4 •••••• X 21'- 2 

1 m 2 m4 mo ...... m 21' 

x 2 'ln4 m6 ms ...... m 21'+2 

X4 ms mg m10 ...... m21'+, 

(6) The last two determinant ratios of (13) and (14) are identical, and when 
the numerator of the first fraction of (13) is indicated by S we therefore find 

2 a2 - 2 la2 = a 2 ( 01'+2, 1'+.2_. _ ~) 
l' Y 1'-y N 0 oJ 

1,1, 1'+2, v+2 1, 1 

or as 0 is orthosymmetrical and therefore 

0 1,1 • 0V+2, v+2 - 0 • 0 1 ,1,1'+2, v+2 = 0:, +2, l' 

2 c;,2 
2 2 a 01'+2,1 

21' a y - 21'-1 au = N . 0 0 • 
1,1, 21+2, 21+2,1,1 

Comparing 2P-2a! and 21'-la~/ we see that they have the first determinant ratio 
111 common and that when Y stands for the numerator of the other fraction of 
2f)-la~ we have 2 2 a 2 2( YV+1,v+l Y) 

2V-l a y - 21'-2ay = - x - - J 

N Yv+l, 1'+1, 1, 1 Yl,1 

or again, since Y is orthosymmetrical, 
2 2 

2 2 a 2 Y1'+l,l 
21'-l a y - 21'-2 a j/ = N x . 

Yl, 1 • YV+l, v+l, 1, 1 

The general formula (11) hence for any m2H1 = 0 takes the shape 

.' ~ .' {'_ h' ~ + I:, mo 12 
I :2 m2 ( 

m2 1+ X2 
m, ,+ ...... 

2p Y N mo m I mo m2 I 

m2 • : 
m2 'ln4 

mo' i m2 m, I I m4 m6 

1 m2 'ln4 ...... m2v- 2 
12 
I 

X2 m4 m6 m2V 

+ X2 
X 2p-2 m21' m21'+2 •••••• 1n41'_ 4 

m2 m, ...... m2V- 2 m 2 m4 m2v 

m, ms m21' m, m6 ...... m2P+2 
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1 ...... m27J- 2 :2 
i 

(7) Before leaving. the general case and treating special distributions of 
observations three auxiliary propositions shall be proved. We shall first prove that 

,; 2 b' l b l a2 n + 1 W' h h 2 '11 the curve OJ nay can never e ent~re y e ow N·-- . -- . It t at purpose nay WI . mo 

be summed over all the places of observation with the weight f tX)' i.e. for a 

continuous distribution of observations, the expression j (~1 na~ dx, where if; (x) is 

the number of observations, will be integrated over the range of observations. 

Looking first at the numerator of the last term of (11) we find that it can be 
expanded into 

1 mo ml m n- l x mo ml ...... m n- l 

x ml m 2 mn X2 ml m 2 mn 

(_1)n+l{ x 2 m 2 ma mn+l X AI, n+2, 2, 1 + xa m 2 ma m n+l 

xn mn mn+l ...... m 2n- l x n+l mn m n+l ...... m 2n- 1 

xn mo ml ...... mn-l 

x n+l .ml m 2 ...... mn 

x Al,n+2,3,1 + ...... + xn+2 m 2 ma ...... m n+l x AI, n+2, n+2, I} . 

X2n mn m n+l ...... m 2n- l 

Now Iif; )~~r dx integrated over all the observations is what we have called 

N. mr • When integrating the determinants we therefore find that the first n of 
them will vanish, two of their columns consisting of proportional elements, whereas 
the integral of the last determinant is 

mn mo ml m n- l 

m n+l ml m 2 mn 

N m n+2 m 2 ma m n+l = (- l)n NAl, l' 

m 2n mn mn+1 ...... m 2n- 1 
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10 Choice in the Distribution of Observations 

As AI, n+2,n+2, 1 = - An+2,n+2,1,1, the integral of the last term of (11) equals N. 
The integration of the other terms, including the first, gives the same result so that 

r 2'" (x) d 2 ( 1) 
,I nay J (x) x = a n + , 

J'" (x) and as J (x) dx = Nmo, 

the mean value of na~ calculated in this special way is 
a2 (n + 1) 
N' -m;;-

It is therefore clear either that na~ must at all the places of observation be 

a2 n+1 2 
equal to -N'- or nay must at some of these places be greater. The first case 

mo 
cannot be realised by a distribution of which any part is continuous, as "a! is proved 
to be of the 2nth degree in x. If therefore we could find a distribution consisting 
of groups of observations for which at all the places of observation na~ was equal 

to ~~ . n + 1, and if further we could choose the places of observation so that na! 
J.V mo 

at all other places within the range of observations was smaller than that value, 
we should know that no other distribution of observations with that value for mo 
could provide a curve of standard deviation with a lower maximum. 

If the standard deviation of the observations be constant and equal a, J (x) 
equals 1, and so does mo. After what we have just proved the maximum of the na~ 

2 

curve cannot then be lower than 'N-(n + 1). Now when we choose to dist~ibute our 

N observations in (n+ 1) equally big groups the adjusted yat each of these (n+ 1) 
places will be the mean of the observations and its squared standard deviation will 

a2 
be N (n + 1). Hence our problem is reduced to find out how to arrange a table of 

(n + 1) values of a function of the nth degree to make the squared standard deviation 
of any interpolation result inside the range smaller than the squared standard 
deviation of the values of the table. It will be seen in what follows that this can 
up to n equal 6-that is so far as the problem here has been investigated-be 
obtained by one and only one form of grouping. 

When the standard deviation of the observations varies over the range, mo 
varies with the different distributions, and we cannot use the same method for 
finding the best distribution. It even appears that the best distribution has not 
always its maxima at the places of observation. 

(8) A second problem which we want to consider here is the condition Jor two 
adjusted y's being uncorrelated. In the beginning of this section it has been shown 
that the adjusted y, 

1 S { Yv [ 2 . nJ} Yr = N J(x;j ao + a1xV + a 2xp + ...... + anxp , 
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when 
aomo + aimi + a2m2 + ...... + anmn = 1 ) 
aOml + aIm2 + a2m3 + ...... + anmn+1 = xr 

a,m, + a,m, + a,m, + ...... + .,m;,., ~ x~Jl ............ (16). 

aomn + aImn+1 + a2mn+2 + ...... + anm2n - Xr 

Let Ys be another adjusted value, then 

1 S { yp [ 2 nJ} Ys = N f(xp) Yo + yIxp + Y2 Xp + ...... + YnXp , 

where 
Yomo + yimi + Y2 m2 + ...... + Ynmn = 1 1 
yomi + yIm2 + Y2m3 + ...... + Ynmn+1: x; 

yom2 + y Im3 + Y2 m4 + ...... + Yn m:n+2 - ~sr ............ (17). 

Yomn + yImn+1 + Y2mn+2 + ...... + Ynm2n = X~L 

Hence the condition that Yr and Ys are uncorrelated is, since the squared standard 
deviation of the observed yp equals a 2f(xp), 

S {j(~p) [ao + aIxp + a2x~) + ...... + anx~J . [Yo + yIxp + Y2X! + ...... +YnX~J} = 0, 

or S {fr;p) [ao + aIxp + a2 x! + ...... + anX~J} 
+ S { YI [ 2 3 n+1J} f(xp) aoxp + aIxp + a2 xp + ...... + anxp 

S { Y2 [2 3 4 n+2J} + f(x p) aOxJI + a1xp + a2xp + ...... + anxp + ..... . 

+ S { Yn [n n+l n+2 2nJ} 0 f(x p) .aOxp + UIXp + U2 XjJ + ...... + anxp =. 

Remembering that S {f ~;pJ = Nmq and applying the relations (16) this reo 

duces to 
Yo + YIXr + Y2 X; + ...... + Ynx~ = 0, 

from which the y's are eliminated by (17). 

0 1 Xr 
2 X,. n 

x" 
1 mo mi m2 mn 

x" mi m2 m3 ...... l1~n+l 
2 =0 .................. (18) 

Xs m2 m3 m4 ...... m'n+2 

n 
Xs mn mn+1 m n+2 •••••• 11~2n 

is therefore the condition that Yr and Ys are uncorrelated. 
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12 Ohoice 1:n the Distribution of Observations 

(9) Returning to the formula (11) for a~ written as a sum of squares we shall 
now prove that the (p + 1 )st term of this put equal to zero determines a set of p abscissae 
the adjusted y's of which are mutually uncorrelated both for a function of the p th and 
the (p - 1 )st degree. 

The condition for Yl and Y2 corresponding to the arguments Xl and X 2 being 
uncorrelated is for a function of the (p - l)st degree 

0 1 Xl 
2 1)-1 

Xl Xl 

1 mo m l m2 m 1J- l 

x2 m l m2 m3 m1J 
= 0, 

2 
X2 m2 m3 m4 1n1J+ l 

X~--l m 1J- l m1J m 1J + l ...... m 21J- 2 

and for the same distribution of observations and for a function of the pth degree 
the condition is 

0 1 Xl 
2 

Xl 
1) 

Xl 

1 mo 1nl m2 1n1J 

x2 1nl 1n2 1n3 ...... '/1~1J+l 
=0. 

X2 1n2 m3 m4 ...... 1n1J+2 2 

1) 
Xz 1n1J 1n1J + l 1n1J+ 2 ...... 1n21J 

Putting 1no 1nl 1n2 ...... 1n1J 

1nl 1n2 1ns ...... 1n1J+ l 

1n2 1ns 1n4 ...... 1n1J+2 =D, 

1n1J 1n1J+ l 1n1J+2 ••· ••• 1n21J 

these conditions may be written 
p -1 

~ {X;. x~D1J+1'1J+1,r+1,s+1} = 0 ........................ (19) 
o 

and 
P l' .c.: 

~ {Xl' x2 D r +1,s+1}= 0 .............................. (20), 
o 

where the sums include all combinations of powers with rand s lying between 0 
and (p - 1), and 0 and p respectively. 

Now we have for an orthosymmetrical determinant A, 

Ass· As' s" - A . As"s' s" = Ass' • Ass'" 

If therefore (19) is multiplied by D and subtracted from (20) mUltiplied by 

D1J+!, 1'+1 the coefficient of x~ . x~ becomes 

D 1J + l ,1J+l' D,'+l,s+l - D. D 1J+1,1J+l,r+l,s+l = D1J+l,r+l' D1J+1,s+l' 
as long as both rand s are smaller than p. 
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When one of them, for example s, equals p the term is 

x~ • x~ • Dp+1. P+1 • D r +1, P+1' 

which is of the same form and this also holds for r = s = p when the term is 

xi . x~ • D:)+l. pH' 
The total result is thus 

p 

~ x~'. x~Dp+1,r+1' D p+1,s+1 = 0, 
o 

or in the form of determinants 

1 mo m1 m 2 m p_1 1 mo m1 

Xl ml m 2 m3 mp X2 1n1 1n2 

2 2 
Xl 1n2 m3 m 4 m p+1 X2 1n2 1n3 

Xl) 
I mp m p+ 1 m p+2 ...... 1n2P-l 

Xl) 
2 1np 1np+I 

Hence Xl and X2 must be roots of 
1 1no 1nl m 2 1np-l 

X 1nl 1n2 m3 1np 

1n2 ln p- 1 

1n3 1np 

m 4 m p+1 

1np+2 ...... 1n2P-1 

13 

= O. 

X2 m 2 m3 1n4 m p+1 =0 .................. (21). 

xP 1np lnp+1 m p+ 2 ...... 1n2P _I 

When Xl is found from this and substituted in (19) or (20) we get since the 
coefficient of x~ in the latter is zero an equation of the (p - 1 )st degree to deter­
mine X 2 • It is therefore clear that any pair of roots of (21) determine a pair of 
un correlated y's. 

II. The" best" grouping of observations with constant standard deviation. 

(1) It was shown in the last section under (7) that the mean of the squared 
standard deviations of the adjusted y taken over the places of observation and weighted 

2 

with the number of observations at each place is equal to N (n + 1) and that there-

fore the curve of squared standard deviation can never be entirely below that value. And 
further, that since (n + 1) equally big groups of observations at the places of 
observations give the squared standard deviation this minimum, there is the 
possibility, nU7, being of the 2nth degree in x, that by placing the groups at special 

u 2 
positions the curve of squared standard deviation could have those values it (n + 1) 

as its 1naxima within the range of observations. 

Let Xl' X 2 ... Xp ... Xn+1 be the places of observations and Yx the mean of the 
» 

observations at Xp , the interpolation formula of Lagrange is then 

~ { (x - Xl) (X - x 2) ...... (X - xn+l) _ } 

y = (x;=-X;)(x~-~ x;):~~.~(x~- xn+l) Yx,. ' 

the sum taken over all the places of observation. 
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14 Ohoice in the Distribution of Observations 

From this we find 

2 ~ ( 1) '" {jX - Xl) (X - x2) ...... (X - Xn +1) )2 (22) 
ay = N n + "" ( ) )f ......... , Xv - Xl) (Xv - x2 ...... (Xv - xn+1 J 

2 

which for X = Xl' X2 ... Xn+1 equals N (n + 1), the n terms of the sum being zero 

and the (n + l)st taking the value 1 as it ought to. If Xv be the greatest of the 
x's it is hence clear that for x> Xv, since 

{. (x - Xl) (X - x2) ...... (X - Xn +1) }2 > 1, 
(xv ~ Xl) (Xv - X2) ...... (Xv - Xn+1) 

a 2 
a~ > N (n + 1). 

The same applies to any X smaller than the smallest of the places of observation. 
a 2 

Therefore as we want a; to be ~ N (n + 1) at the ends of the range we have to place 

two of our groups of observations there. 

Let us take the half of the range with~:n which it is possible to make observations as 
the unit of X so that the range goes from - 1 to 1. 

(2) Hence for a linear function there is no choice left, the two groups of observa­
tions must be at - 1 and 1. 

According to (22) we have 

a2 = ~ 2 {(X + 1)2 + (X -~ll~} 
I Y N' 4 4 

a2 
or I a; = N . 2 {I - i (1 - X2)}, 

which illustrate the well-known fact that by simple interpolation between two 
equally good values of a table, we obtain interpolated values with less probable error 
than those of the table. 

(3) Investigating a function of the second degree we have a third group to 
place besides the two at - 1 and 1, that is if we do not beforehand suppose the 
distribution to be symmetrical. Let the third group be at a, then the interpolation 
gives 

(X - 1) (x - a) _ (x + 1) (x - a) _ X2 - 1 _ 
Y = 2 (1 + a) Y-I + 2 (1 _ a) Yl + a2 _ 1 Ya, 

from which 

2a~=;.3{[(X;(~)~~a)r + [(Xi(~)~~a)r + [::=~r}. 

We want this to be a maximum for X = a, but (~~).,=a can only vanish for 

a = 0, in which case a! is reduced to 

a2 
2a~ = N . 3 {I - i X2 (1 - X2)}, 
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which shows that we have succeeded in making u! a maximum at a; = 0 and 
z 

obtained a standard deviation with the maximum value iT 3, as we desired, 

(4) For a function of the third degree we find from four groups of observations 
at - 1, 1, a and Y that 

(a; - 1) (a; - a) (a; - y) _ (a; + 1) (a; - a) (a; - y) _ 
y = - 2 (1 + a) (1 + y) Y-l + 2 (1 - a) (1 _ y) Yl 

(a;2 - 1) (a; - y) _ (a;2 - 1) (a; - a)_ 
+ (a2 _ 1) (a _ y) yo. + (y2 _ 1) (y _ a) J/'Y 

2 = ~2 4 {[(a; - 1) (a; - a) (a; - Y)J2 [(a; + 1) (a; - a) (a; - Y)J2 
3 U y N' _ 2 (1 + a) (1 + y) + 2 (1 - a) (1 - y) 

and 

[ (a;2 - 1) (a; - Y)J2 [(a;2 - 1) (a; - a fJ2} 
+ (l-~)(a-=-y) + (1-y2)(a-y) , 

The condition (du!) _ 0 
dx "'=0.-

requires 3a2 - 2ay - 1 = 0, 

and (~!) - 0 
da; "'='Y-

requires 3y2 - 2ay - 1 = 0, 

from which is got a2 = y2, 

and, since a :;: y, a2 = y2 =-!-' 
By introducing this value for a2 and y2 in u! we find 

2 _ u2 4 {I 3,52 (2 1)2 (1 2)) 
3 Uy - N ' - ~ a; -"5 - a; J' 

which has the required maxima at ± vi. 
(5) For the functions of higher degree we shall at once assume that the dis­

tributions sought are symmetrical, since it is pretty clear from the symmetry of 
y and u~ with regard to the sought positions that it must be so, 

To determine a function of the fourth degree let us put groups of observations 
at ± 1, ± a and 0, The expression for a! can be written down at once and is such 
that the terms arising from the groups at + 1 and - 1 can be put together as well 
as the terms from + a and - a, then 

2 =?~ 5 [{(a;2 - 1)(a;2 _a2)}2 ! {a;(a;2 _a2)}2( 2+ 1) +! {a; (a;2 - 1)}2( 2_ 2)J 
4 U y N' a2 + 2 1-a2 x 2 a2 (1-a2). a; a , 

(du;) 'd h d' , 3 - 7a2 

da; ",=0. = 0 provl es t e con ltlOn a (1 _ a2) = 0 or 

a2 = f, 
with which value the squared standard deviation becomes 

u2 = ~ 5 {I _ 5 , 72 a;2 (a;2 - 1l)2 (1 _ a;2)} 
4 Y N' 24 7 , 

which has the requir~d characteristics. 
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16 Oholce in the Distribution of Observations 

(6) Adjusting by a function of the fifth degree six equally big groups of obser­
vations at the arguments ± 1, ± a and ± y the squared standard deviation of the 
adjusted y is 

2 _ ~ {! [(X2 - 0.2) (X2 - y2),J2 2 ! [ (X2 - y2) (X2 - 1) J2 2 2 
5 all - N . 6 2 (1 _ 0.2) (1 _ y2) (x + 1) + 2 0.(1 _ 0.2) (0.2 _ y2) (x + a ) 

1 [ (X2 - 1) (X2 - 0.2) J2 } 
+ 2 y (1 _ y2) (0.2 _ y2) (x2 + y2) . 

The condition for maximum at x = ± a is 

90.4 - 5a2y2 - 50.2 + y2 = 0, 

which together with the condition for maximum at x = ± Y 
9y4 - 5a2y2 - 5y2 + 0.2 = 0, 

since 0.2 must be ~ y2 results in 
0.2 + y2 = i and a2y2 = 2'\ 

a2} _ 7 ± 2y7 
or y2 - 21 . 

When these values are substituted in the expression above for a! this may by 
somewhat lengthy algebraic operations be brought into the form 

5 ~ = ~ . 6 {I - 33 ':7' !_2 (X2 - 0.2)2 (X2 - y2)2 (1 - X2)} . 

(7) For a function of the sixth degree the observations may be supposed to 
be at ± 1, ± a, ± y and 0. 

The expression for the squared standard deviation of an adjusted y becomes 

2 _ u2 {[(X2 - 0.2) (X2 - y2) (X2 - 1)J2 ! [:l';JX2 - t2)~2 - 1tl2 2 2 
6 U y - N' 7 a2y2 + 2 0.2 (0.2 _ y2) (0.2 _ l)J (x + a ) 

1 [x (X2 - 0.2) (X2 - 1) J2 1 [x (X2 - 0.2) (X2 - y2)J2 } 
+ 2 y2 (0.2 _ y2) (y2 _ 1) (X2 + yl) + 2 (0.2 _ 1) (y2 _ 1) (Xl + 1) . 

A maximum at x = ± a requires 
110.4 - 7a2y2 - 70.2 + 3y2 = 0, 

and a maximum at x = ± Y requires 
11y4 - 7a2 y2 - 7y2 + 30.2 = 0, 

which added and subtracted provide 

11 (0.2 + y2)2 - 36a2y2 - 4 (0.2 + y2) = 0, 

and (0.2 - y2) {11 (0.2 + y2) - 1O} = 0. 

Since we must have 0.2 ;; y2, 

a2+y2= Hand a2y2=/s' 

or a2 } = 15 ± 2y15 
2 33' y. 

The expression for u~ may after rather laborious operations be brought into the 

form u2 ( 33 7 11 2 } 
u2 - - 7 H - ., X2 (X2 - 0.2)2 (X2 - y2)2 (1 - X2) 

6 11- N' l 27 . 
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(8) It is thus, as we aimed at, shown for functions up to the sixth degree that 
by distributing the observations in (n + 1) equally big groups and choosing the places 
of these groups in one special way we can manage to keep the standard deviation of any 
adjusted y within the possible range of observations less than the standard deviation at 
the places of observation. There is every reason to believe that the rule holds for 
any degree of function, but as the general proof would be very complicated and as 
almost all practical cases will be covered by functions up to the sixth degree, the 
problem can therefore be left at this stage. 

As we have proved, any other distribution of observations leads to a curve of 
squared standard deviation that has a higher maximum value within the range. This 
special set of (n + 1) groups has therefore a very conspicuous advantage over all 
other distributions of observations. The application of it is however limited in that 
it demands that the degree of the function must be known beforehand and thus the obser­
vations do not provide any justification for the form of function chosen. If however the 
function has been fully investigated beforehand and there is no doubt about its form, 
(n + 1) equally big groups of observations placed as indicated are the most desirable 
set of observations possible. The approximate values of the places of the groups 
are given in the table below. 

TABLE 1. 
Degree of function 1st 2nd 3rd 4th 5th 6th 

1-0000 1·0000 1·0000 1·0000 1·0000 1·0000 

Pkw~ ill 1 ·0000 ·4472 ·6547 ·7651 ·8302 
observation -0000 ·2852 ·4689 

-0000 

With rougher approximation the intervals between the observations, still 
expressed by the half range as unit, are as follows: 

1st degree of function 2 
2nd 

" " 
1 1 

3rd 1 1 ! " " "2 
4th ! i 2 1 

" " "3 "3 
5th ! 1 1 1 1 " " "2 "2 "2 
6th i .1 1 1 1 1 

" " 3 "2 If a- s 
The six curves of standard deviation are represented in Diagram l. It will be 

seen that the minima of a curve, if it has more than two, are the lower the 
greater their distances from the middle of the range, so that the variation of the 
standard deviation is greatest in the outermost intervals of the range. 

III. Uniform continuous distribution of observations with constant standard 
deviation. General formulae. 

(1) As was pointed out in the last section the lumping up of observations in 
groups just necessary to determine the constants of the function in question has 
some drawbacks and cannot be recommended as a universal rule. In many cases 
it is through the observations themselves that we first get to know the form of the 

Biometrika XII 2 
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KIRSTINE SMITH 19 

function, and thus a full investigation may require more groups of observations 
than merely a number equal to the assumed number of constants in the formula. 
Besides, even when we believe we know on theoretical or other grounds before­
hand the nature of the function a priori we may consider it prudent to distribute 
the observations so that they supply us with data whereby we may control our 
hypothesis that the assumed function is the right one. 

It is therefore desirable to find other forms of distributions which, at the same 
time as they make the standard deviation of the adjusted function vary little 
inside the range of observations, are more uniformly spread over this range. 

(2) A uniform continuous distribution at once recommends itself as the simplest 
assumption. As we suppose the observations to have constant standard deviations 
the elements of the determinants of (15) are the moment coefficients of the x's at 
the places of observation. 

When the N observations are uniformly spread between x = - 1 and x = 1, 

1 
1_'2r = 2r + 1 and 1_'2r+l = 0, 

and the expression for 2pU! is, according to (15), 

1
1 1 /2 11 1_'2 2 

2 u2 { x2 X2 1_'2 x2 I_' 
2p U = N 1 + - + 11 I + x2 I 4 I + ..... . 1I 1_'2 1 . 1_'2 1_'2 1_'4 

1_'2' 
1_'2 1_'4 1_'4 1_'6 

1 1_'2 1_'4'" ••• 1_'271-2 2 

1_'6 •••••• 1_'271 

+X2 ______ ~_X_2_P-_2 __ ~1-'~271~~1-'~2~71+~2~ .. -•• -.~.1-'~471~-~4~------~ 
1_'4 •••••• 1_'271-2 1_'2 1_'4 

1_'6 ······1_'271+2 

1 1 JL2 ••••.• f.L2fJ-2 12 

x2p 1_'271 1_'271+2······ 1_'471-2 } (23) 
1_'2 • • • • •• 1_'271-2 1_'2 1_'271 

+ 1----':01--~::.::.-..:.~-,;I----:..~--~ ......... . 
1_'2 1_'4 1_'271 1_'2 1_'4'" ••• 1_'271+2 

By this formula we may evaluate successively lU!, 2U~ ••• 271U~ when we know 
the two general terms of which the sum consists. 

2-2 
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20 Choice in the Distribution of Observations 

(3) The determinant of the order p, 

1 1 
2q-1 

1 
2q + 1 

2q + 1 
1 

2q + 3 

1 
...... 2q + 2p -·3 

1 
...... 2q + 2p - 1 , 

1 1 1 
2q + 2p - 3 2q + 2p - 1 ...... 2q + 4p - 5 

which includes the two types of the denominators in (23), shall first be evaluated. 

We find 
q 1 q 22 
1~=2q-1 and 2~=(2q-l)(2q+1)2(2q+3)' 

and it shall be proved that if 
q q 

,p~ = {l,p-l . 2,p-2 ...... (p - 2)2 (p - ])}2. 2p (p-Il ,pll ............ (24) 
q q 

up to the order p, ,pll being the product of the elements of ,p~, the rule holds 
for determinants of any order. 

It is clear that 
q q+2 q q q q+l 

,p+1~1,1 = ,pt!., P+1~,p+1,,p+1 = ,p~, ,p+1~1,,p (- l)P+l = ,p~ 

and 
q q+2 

2>+l~2>+ld'+1,l,1 = 2>-1~' 
If we therefore in the general relation for an orthosymmetrical determinant 

~ = ~ ••. ~".' - ~;s' 
~.ss's' 

q 

put s = 1 and Sf = P + 1 and ~ = 2>+1~' we find 

and, using (24), 

q q+2 q+l X _ ,pil . 2>~ - 2>~2 
2>+1 ---i-j:"2--' 

2>-1~ 

q q+2 q+l ! _ {12>-1 . 2 p- 2 •••••• (p - 2)2 (p - 1)}4 2(p-I)(p+2) 2>1l. pll - ,p1l2 
2>+1 - {l P- 2 • 2p 3 •••••• (p - 3)2 (p - 2)}2 . . qrl 

Now, according to the definition of II, 
2>-1 

q q+2 
II II 

Y---q . ~ = (2q - 1) (2q + 1)2 (2q + 3)2 ...... (2q + 4p - 3)2 (2q + 4p - 1) 
,p+1 11 P+111 

x (2q + 2p - 1)2, 
q+l 

IT2 
~ = (2q - 1)2 (2q + 1)2 (2q + 3)2 •..•.. (2q + 4p - 3)2 (2q + 4p - 1)2 
2>+lJ12 

and 
q+2 

P-l ll = (2q -1) (2q + 1)2 (2q + 3)2 •..... (2q + 4p - 3)2 (2q + 4p - 1). q . . 

,p+1 11 
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Hence 
q q 

~+1A = {1~. 2~-1 .••••• (p - 2)3 (p - 1)2}2. 2(~-1) (~+2) • ~+1IT . [(2q + 2p - 1)2 
- (2q - 1) (2q + 4p - l)J, 

q q 
~+1A = {1~ . 2~-1 ••.•. , (p - 1)2. p}2 . 2~ (~+1) • ~+1 IT, 

which agrees with (24). 
q 

(4) Next we have to evaluate the minors of ~A necessary for calculating the 
q 

numerators in (23). For this purpose we only need the minors ~As.~, but to carry 
q 

through the proof by induction ~As.r for any values of sand r is needed. 
q 

For aA2.3 we directly find, 
q - 22.2 

SA2.S = (2q - 1) (2q + 1) (2q + 3) (2q+ 5) 

and 
q 22. 22 

aA2.2 = (2q _ 1) (2q + 3)2 (2q + 7)' 

these both agree with the following formula which will be proved by induction, 
q q 
A - (- l)r+sQ Q {lP-2 2p-3 (p _ 3)2 (p - 2)}2 2(p-1) (~-2) IT 

2) s, r - /'-'1'-],8-1 • /'-'1'-1, '1'-1 • •••••• • p s, r 

............... (25), 

f3~-1. 8-1 is the binomial coefficient {s!i[p 1_-8 and ~ fIs. r the product of all the 

q 

elements of ~As. r' 

The relation has to be proved first for r = s, then for r = p and finally for any 
combination sand r. 

For the first two proofs we use the relation between the minors of an ortho­
symmetrical determinant 

~ss. _ !:l.8,'~8' Sf • !l.sss" 8" - !:l.~.~s' gil 

A.,' s' - As' s' s" s" . Asss' s" + As" s" os' • As',,' ss" 
.................. (26). 

This is found from two relations given by Professor Pearson* by dividing one 
of them by the other. 

q 

(5) Let A be P+1A, s' = 1 and s" = p + 1, then 
q 

~+1A8.' 
q 

~+1AI.P+1 

Now 

q q q 

P+1 A sS11' ~+lAs.8.~+1.~+1- ~+1A~.s.1,P+1 
q q q q ... (27). 

~+1 AI, 1, ~+l, ~+I' ~+1 As •. ', 1, 21+1 + ~+1 A p+1, ~+l,s.l· ~+1L\1, 1. s, 21+1 
q q+2 

~+1AsS11 = ~AS-1,S-1' 
q q 

21+IAs.s, 21+1,21+1 = ~Ass' 
q q+1 

p+1A1,1'21+1,~+1 = (- 1)P+1 21L\l,~' 
q q+l 

21+1A8.s,1,~+1 = (- 1)21 ~AS-1.8' 

* Biometrika, Vol. XI, pp. 232-3. 
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q q+1 
2I+1.6. 2I+1,p+1,S,1 = (- 1)1'+1 pAp,s, 

a q+1 
2I+1Al.1,s,p+1 = (- 1)p+I 2l As_1•1 , 

so that all the determinants on the right side in (27) can be evaluated by (25). 

They all have the factor 
{lp-2. 2'11-3 •••••• (p - 3)2 (p -:- 2)}2 . 2('11-1) ('11-2) 

in common, when that is divided out there remains 
q q+2 q q+l 

!p+1As. (- 1)P{3'~_1.s-2· {3!-1 .• -1 (!pITs-I,S-l' !pITss - !PIT~-I,S) (28) 
q -~~~. qH qH q+i------q+C.. ......... . 

2l+!A1. 2l+! {3!P-l,S--2' {3!P-l.S-l (!pITs-I. 1 • !pIT 2l.s - !pIT !P.l . !pITs-I,s) 

Now indicating by Or the product of the elements of the rth column or rth 
q q 

row in !pH A and byers the element of the !pH A common for the rth row and 8th 
column we find q q+2 0 2 

!P+IITss = !pII S- I •S- 1 • ~_1-2 ' 
ell' es1 

n - n 0;+1 
!p+l S8 -!p S8' e!p+J. !p+l . e~+I. 8 ' 

q _ q+1 0 10 !P+1 
!P+1II ss - !pITs- I • S ' ---"--"'--'-=--­

e 1, 1'+1 . e., 1 • es, !p+l 

Hence the factor of the numerator in (28) is reduced to 

q 2 e;,l' e;. !p+! 2 
!pH IIss -02 0 2 {en· e!pH.!PH - e1• !PH}' 

l' '11+1 

For the IT's of the denominator we find 
q q+1 0 0 
II = IT . l' 8 !p+I 1. !p+1 !p s-I,1 esi • e g, !p+I . e1•1 

q q+1 0!P+1 . O. 
!p+I III. !p+I = !pIT p. s • , 

es.!p+I· e p +1.!p+l· e1•s 

q q+l 0!p+l. 0 1 
!p+lII1,j'+1 = !pIT!p,I' , 

e 1• !p+l' en· e!p+l. !p+l 
q q+l 02 
IT =IT ., 

1'+1 1.1'+1 !p s-l. s • e e e 
ss· S1' s, 1'+1 

the factor containing II's of the denominator of (28) is therefore equal to 

IIq 2 e 1s ' e p+1• S • e 1• I • e p+1• '11+1 { } 
'11+1 1.1'+1 0 0 02 e1s ' e'l1+1. 8 - e1• 1'+1' e ss • 

l' 1'+1' S 

Introducing these two expressions in (28) and substituting for the one factor 
q 

21+1 ITss 
q we hence find 

!P+1III.p+1 
q 

1'+1 Ass = (-l)P{3 {3 
q !P-I.8-2 1'-1. s-1 

1'+1 AI. 1'+1 

1 1 
-2-- - .. 

e1• '11+1 en·ep +1• '11+1 

1 1 
---

q 

1'+1 II ss 
q 

1'+1 III. !P+1 
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The fraction containing e's equals 

(2q + 2p - 1)2 - (2q - 1) (2q + 4p - 1) p2 
(2q + 48 - 5) (2q + 2p - 1) - (2q + 28 - 3) (2q + 28 + 2p - 3) = (8 - -C-C1)--c"(p'-_-8 +----'1) , 

q q 

hence ~+I Ass = (_ l)P Q2 ~+1 IIs. 
q /-'p,'-I q 

As 
~+1 AI. P+1 ~+1 III. ~+1 

q q+I q 
P+1 AI. ~+1 = (-l)p pA = (- l)P {l P- I . 2 p- 2 •••••• (p - 2)2 (p - 1)}2. 2~(p-I) ~+1 IT I. ~+1' 

we therefore find 
q q 

~+1 AS8 = {3i,. 8-1 {I p-l . 2 p- 2 ...... (p - 2)2 (p - 1)}2 . 2 p (p-I) P+1 IIs., 

agreeing with (25). 
q q 

(6) To evaluate ~+1A •. ~+1 we shall in (26) put A = ~+1 A. 8 = 1, 8' = 8 and 
8" = P + 1. Reversing the fractions we then get 

q q q q q 

~+I As. P+I _ p+1 As. 8. ~+I. ~+I' ~+I AI. 1. s. ~+1 + ~+1 Ap+1. ~+1. 1." ~+1 A •. sl. ~+1 
q - q q q 

~+1 All ~+1 AI. 1. s.'· ~+1 AI. 1. ~+1. ~+I - ~+l Ai, 1. '. ~+1 
............ (29). 

q q 

~+lAs .•• ~+1. p+l = ~Ass, As 
q q+2 q+I 

~+1 AI. 1. '. ~+1 = ~AS-I. ~ = (- 1)p+l ~Al,'-I' 
q qB 

~+1 Ap+1. p+1.1 •• = (- l)P+1 ~As. P' 

q q+l 

P+1A'.8.1.~+1 = (- 1)ppA ._1.s, 
q q+2 

~+1 Al •1. s. s = pAS-I. s-1' 
q q 

~+1 AI. 1. p+l. ~+1 = ~ AI. 1 , 
the right side of (29) can be evaluated by (25). 

We thus get 
q q+l q+l q q+2 

~+1 A •. ~+1 (- l)s+P-I {3~-1. s-1 . {3P-l. s-~ . {3~-1. 8-1 (- ~IIs. s-1 . 1JIIs. P + 21 IIs • . ~II8-1. p) 
q . = ~~ -~ . q+2 q----q+l----~-~~--·-----

P+1 A1.1 {3~-1. s-2 (1JITS-l. ,-1 . 21 III. 1 - ~IIi. '-1) 
............ (30). 

q 

We want here to express the II's of the numerator by HIII8.21+1 and those of 

the denominator by Hlnl,1 and we find the following relations 
q q+l 0 1 .0. 

~+1 II •. 21+1 = pIT •. • -1' , 
elS • e1• 21+1' es• 

q qti1 0 21+1. 0 1 

21+1 IIs. p+1 = 21 .'21' e1• p+l' e~+I. ~+1' e1." 

IIq IIq O"OP+1 
'21+1 '. p+l = 21 s.· 

es• 21+1 . e.s • e1J+1. ~+1 
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and 

Ohoice in the Distribution of Observations 

q 

7'+1 ITs, 7'+1 = 
q+2 0 1 .01 
7'ITs-1,7' . , 

e 1,1 • e lS • e 1, 7'+1 

q+2 Os. Os 
7'IT.'-l, s-l . e~' 

88' Is 

IT 0~+1 
7' 11' ." 

e7'+l,7'+l • ei,7'+l 
q+1 0 0 7'IT1, s-l . s· 7'+1 ___ _ 

e S,7'+1 • e 1, 7'+1 . eu 
Substituting the IT's found from these relations into (30) and eliminating the 

q 

IT one factor 7'+1 S,7'+1 bv 
q " 

7'+1 IT 11 

we get 

or introducing the values of the e's 
q 

7'+I~S'7'+1 
q 

7'+1~1,1 

1 

1 1 
-2---

eg,7'+1 e SB ' e7'+I, 7'+1 

q 

7'+1 IT S,7':t-1 
q 

7'+1 IT 1, 1 

(_l)SH+lf3~_I, 8-1 

(37'-1, s-2 

(2q+2s-3)(2q+2p-1) - (2q-1)(2q+2p+2s-3) 
(2q+ 2p+ 2s-3)2- (2q+4s- 5) (2q+ 4p-1) 
q 

- (_l)s+7'+1 f3 7'+1 ITs, 7'+1 
- . 2),8-1 q . 

7'+1 IT 1, 1 
Now 

q q+2 q 

q 

7'+1ITS,7'+1 
q 

7'+1IT l,1 

7'+1~1,l = 7'~ = {17'-1. 27'-2 ...... (p - 2)2 (p - 1)}2. 27' (7'-1) 7J+IITl,l, 

and hence 
q q 

7'+1~S'7'+1 = (- l)SH+1.f37',S_1 {17'-1. 27'-2 ...... (p - 2)2 (p - 1)}2. 27'(7'-1) 7'+1 ITs, 7'+1 
in agreement with (25). 

• q 
(7) It now remams to prove that (25) holds for 7J+l~S,r when both sand r 

are different from 1 and p + 1, and r different from s. 

For this shall be used the relation 
~ . ~8SS' s" = ~s .•. ~s' s" - ~ss' . ~S8" 

between an orthosymmetrical determinant and its minors. 

Putting ~ = 7J+l~' S = P + 1, Sf = rand 8" = 8 and solving the equation with 
regard to 7'+1~r, s we have 

1 
7'+1 ~,,,s =~ (7'+1 ~ . 7'+1 ~7'H, 7'+1, T, s + 7'+1 ~7'+1, r . 7'+1 ~7'+1, s), 

7'+1 7'+1,7'+1 
where 7'+1 ~P+l, 7'+1, r, 8 = 7'~r, s· 
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Evaluating this by (24) and (25) we get 
q (_ I)r+8 

PH~r,8 = q {IP-l. 2P- 2 ••••.• (p - 2)2 (p - I)}2. 2P (p-l) 

pII 
q q q q 

x [4p2{3p_l, 8-1' {3P-l, r-l' 71+1 II . pIIr, s + {3p, 8-1' {3p, ,--1' PH II p+1, r . pH II p+1, 8J··· (31). 

But IT - IT e p+1, p+l . e r, 'D+l . e s, 'D+l 
'P r, S - 71+1 r, S 0;)+1 

IT IT 0 8 er , 'DH 
'D+l 'D+l,r = 'D+l r,s ~. -e--' 

p+1 f, S 

and 
q q 0 2 
II = II ___ 11±1_ 

'D+l P e'D+l, 'D+l ' 

IIq - IIq 0 'D+l e s, p+l 
'D+l 'D+l,s - p -0 . 

s e'D+1, p+1 

Substituting these values in (31) we find 
q q 

'D+1 ~r, s = (- 1 )r+s I 1 'D-l • 2 p- 2 ... (p - 2)2(p - 1)}2. 2 p (p-1) . (3'D-l, S-l·{3'D-l, '--I' p2. 'D+l II,_, s 

)< [4 + fP--s +i)(1)-=r ~i)e~~8-.e~~;~J 
1 1 

and as the last fraction equals 
1 

(p - s + 1) (p - r + 1) , 
q q 

P+1 ~r, 8 = (- l)r+s{3p, s-1 • {3p, r-l {IP-1 . 2p- 2 ... (p - 2)2 (p - 1)}2 . 2p (p-ll P+1 II r,., 

with which the proof by induction for (25) is carried through. 

(8) We shall now return to (23). It consists of 2p + 1 terms of which the 
(2r + l)st originally was found as (2ra;, - 21'-1a;,) so that 

! 
1 i 2 ...... 2i--=-1 

.1 1 
5 ...... 

21'+ 1 

1 1 
2 2 u2 2r + 3 ...... 4r=-i ! 

2r U y - 2r··1 a y = N~I ------i.----...:.--;---1I....:....--...:..:...-..:::.....!---......"I,....--
1 -i ...... 2r _ 1 II} ...... 2r + 1 

-i 1 1 I,.I[ .1 1 [) ...... 2r + 1 3}" .... 2r + 3 

I , 

2r ~ 1 2r ~ 1 ...... 4r~3 \ 2r ~-f 21' ~ 3 ...... 41' ~- f 
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1 2 

1 1 1 and 
3" 5" ...... 2r - 1 

x 2 .1 
1 

5 t ...... 2r + 1 

I X 2.-2 
1 1 1 

2r + 1 2r+3······4r-3 

1 I 1 
.1 

I 
.1 t 5 ...... 2r - 1 3 ...... 2r + 1 

1 1 1 
1 

1 

I· ...... 2r + 3 'I ...... 2r + 1 5" 'I 

I 

1 1 1 I 1 1 1 
I 

2r - 1 2r + I ...... 4r - 5 I 2r + 1 2r + 3 ...... 4r - 1 

With the notations later adopted we therefore find 

2 (7:/ [X28 • T+li Hl,T+lJ}2 
a (8=0 
lV 1 1 

.L\ .• +1 L\ 

, 2X2 {S=;S-I[X2S • r~s+l,.J)2 
and 2 2 a 8=0 r 

2,--1 all - 2.-2 all N ----- 2 2 

r-1 L\ . rL\ 
Substituting the values for L\'s from (24) and (25) we get 

2 _ 2 _ a 2 s=r I S 28 .+1 II S+1.T+1 1 { , 1 '}2 
2r a y 2.-1 aY-lV.2 2r .qr)2 8~ol(-1){3r.sX /1' 11 

1 

r+1 IIH1• r+1 
/1 '1 

V rii . r+l II 
and 

/ ' 2' '2 

V r-1 II . rII 

- L V rii .• +III-, 

eS~r+1 , = V4r-t--1 _ (28 + 1) (28 + 3) ...... (28 + 2r - 1) 
0Hl' er+l, r+i 

eH~ =V4r -1. (28 + 3) (28 + 5) ...... (28 + 2r - 1)*, 
GS+l' er, r 

a2 (4r + 1) {s=r }2 
2ra~, - 2r-1 a~, = lV (1.')2 . 22r s~o [( - l)s{3r, sX2S (28 + 1) (28 + 3) ...... (28 + 2r - l)J 

......... (32), 

* The e's and 0 do not of course have thc same value in the two equations as they represent columns 
and elements in two different determinants. 
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and 
0"2 (4r - 1) X2 {s=r-l 

2r-10"~ - 2r-20";= N(lr-=-1)222r=2 ~ [(- 1)8~r_l,sX2s (28 + 3) (28 + 5) ..... . 
. 8-0 

(28 + 2r - l)J r ............ (33), 
2 

which enables us to form nO"; by successive summations from 00"~ = N' 
Before investigating the curve for nO"~' for a special n we shall first look at nO"~ 

for x = 0 and x = ± 1. 

(9) From (33) we see that when x = 0 
" 9 

2r-10"1' = 2r-20";,' 

2PO"~ is for x = 0 most easily evaluated from the formula (13). 

Remembering that in our case 1n2r = 2r ~ 1 we find from this 
1 

x=~ 0"2 P+1~1, 1 
2 p O"!1 = N --1' 

P+1~ 
and hence by (24) and (25) 

x=g _ x=g _ ~2 5~ ~ ~ 2p + 1}2 
2p+l 0"1' - 2pO"lI - N (2 . 4 . 6 ...... 2p .................. (34). 

(10) To evaluate nO"i, for x = ± 1 we use (32) and (33). The sum in (32) may 
be considered as dId 1 d {X2r- 1 (X2 - I)r} 

82r = dx X dx ...... x--£;---- -
with a number r of differentiations. If these operations are undertaken directly 
upon X2r- 1 (x2 - l)r the result is 

ar (X2 - 1)' + ar_1 (X2 - 1)'-1 + ...... al tx2 - 1) + a o, 

of which only ao = 2r (2r - 2) ...... 4.2 = ~. 2r 

remains for x = ± 1. 

Corresponding to this the sum in (33) comes out from 
dId dId {X2r- 1 (X2 - I)r-1} 

8 2r-1 = dx xdx ...... dx x dx 

by taking (r - 1) differentiations and therefore 
8 2r- 1 equals, for x = ± 1, (2r - 2) (2r - 4) ...... 4 . 2 = Ir -- 1 . 2r- 1. 

Hence 
x'=l x2=1 2 

2 2 _ 0" (4 1) 
2 r O"Y - 2r-1 0"y - N r + 
x'=l x'=l 2 

2r-10"; - 2r-20"~ = N (4r - 1), and 

0"2 

00";, N' or smce 

x'=l 0"2 

nO"~ = .LV {l + 3 + 5 + ...... (2n + I)}, 

x'=l 0"2 

nO"~ = N (n + 1)2 ................................................ (35). 
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(11) In Section I under (7) it was found that 

fji:; na;dx = a2 (n + 1) 

when the integration was taken over the places of observation. For the present 
distribution f(x) is 1, if; (x) constant and fif; (x) dx = N, hence the mean of na; in 
the range of observations is for a uniform continuous distribution 

a2 
N (n + 1). 

For the grouped observations in Section II we find by integration of the 
formulae for functions from the first to the sixth degree that 

~J~l na;dx = ~ (n + 1) ( 1 - 2n ~ 1)' 
IV. Uniform continuous distribution of observations with constant standard 

deviation. Specia,l formulae. 

(1) Let n a~ - n-l a~ be indicated by Sn' then the formulae (32) and (33) 
give us 

............ (36), 

from which we form na~ beginning with 
~ , 

oa~ = N I 
1 a~, = ~ (1 + 3X2) I 

a2 a 2 9 
a2 - - (1 + 3x2 + 1! (1 - 3X2)2) = - - (1 - 2X2 + 5x4), 2y_N 4 N'4 

and further in the same way I 
3 ai, = ~. { (9 + 45x2 - 165x4 + 175x6) ~1···(37). 

2 2'-
4a~ = N . 6~ (9 - 36x2 + 294x4 - 644x6 + 441x8 ) I 
5 a2 = a2 ~ (25 + 175x2 - 1750x4 + 651Ox6 - 9555x8 + 4851xlO) ,I 

y N'64 

S a2 = a2 ~ (175 - 1050x2 + 17325x4 - 93660x6 + 225225x8 + J' 
Y N" 256 

- 245322x10 + 99099x12) 
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(2) Since na~ = n-1a;, + 8,. the curve for na~ is entirely above the n-1a~, curve 
except where 8n = O. 

Solving the equations 8n = 0 the following roots are found: 

For 8 1 = 0 X = 0 

" 8 2 = 0 X = ± vi = ± ·5773 

" 83 = 0 X = 0 x = ± vi = ± ·7746 

8 4 = 0 _ )15 ± 2v30 _ {.8611 
" x - ± 35 - ± .3400 

X = 0 _ )~~! 2v70 _ _ {.9030 
" 8 5 = 0 X - ± 63 - ± .5438 

J'2386 
" 8 6 = 0 X = ± ·6612 

l'9325 

Since all the roots are rati(mal and all lie between - 1 and + 1, na~ therefore 
equals n_1a~ for n values of x all of which are inside the range of the observations. 

The adjusted values of the functions at these abscissae appear to be of special 
interest since they are uncorrelated as was shown in Section I under (9). 

(3) Looking at Diagram 2, representing the curves of nay up to n = 6, it is seen, 
x=O x'=l 

as was also clear from the formula for a~ and a; given in the last section, that 
while the standard deviation in the middle of the range increases slowly with the 
degree of function it increases very rapidly at the ends of the range. At x = 0 
the curve has a minimum when the degree of function is odd and a maximum when 
it is even. Besides that the curve has (2n - 2) maxima and minima between 
- 1 and 1. As the curve for na~ is of the 2nth degree, na~ is therefore increasing 
for x increasing above 1 or for x decreasing below - 1. 

The abscissae of the maxima and minima are given in the following table. 
Degree of 
funotion Absoissae of maxima Absoissae of minima 

1 0 

2 0 ±vt= ± ·4472 

3 ±vi= ± ·4472 
{± V~ = ~ ·6547 

4 
{± V¥ =0 ± .6547 

/7-± 2v7 _ f7651 
± '" 21 - ± ·2852 

5 ) 7 ± 2v7 _ {'7651 
± 21 - ± ·2852 

{ j15 ± ~V15 _ j·8302 
± 33 - ± [·4689 

{ ji5 ± ~Vi5 ~ {"8302 r718 
6 ± ·5917 ± 33 ± ·4689 

·2093 
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A4 A4· Fourth 

~. 
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~ """ a AsAs· Fifth ;:::,.. 

~ 

t:I 4 A6 A6. Sixth 4 b ('!) 

;S. """. 
~ <:to 

""" 0 ~ i:l 
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""" a ~ . ..., 
"" 
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~ 
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AI ~ 
<:to 
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Range of o/JBervations. 

DIAGRAM 2. Curves of Staudard Deviations. Uniform Distribution. 
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KIRSTINE SMITH 31 

Hence the curve for 2j)+1 a~ has a maximum for the abscissae at which 2j)a~ has 
a minimum. A comparison with the results in Section II shows that the abscissae 
of the maxima found here are the same as those of the best places of observation 
for (n + 1) equally big groups of observations of a function of the nth degree. 
These places tally with the places where na~ was a maximum. Thus if we 
imagine that we had started the investigations with a uniform distribution of 
observations, and to lower the maxima of the curve of standard deviation had put 
clusters of observations at those maxima and at the ends of the range we should not 
get the best curve of standard deviation till all the observations of the continuous 
distribution had been distributed at the n - 1 places of maxima and at 1 and - l. 

The minima of the standard deviations obtained from a uniform continuous 
distribution and the (n + 1) best groups of observations do not fall at the same 
abscissae. 

(4) The curves are very far from our ideal of a constant standard deviation 
throughout the range. To obtain the same maximum of standard deviation as 
(n + 1) groups could give us we should have to limit the part of the range used to 
the following fractions of the range: 

for 1st degree ·58 
" 2nd " ·73 
" 3rd " 

·80 

" 
4th 

" 
·84 

" 
5th 

" 
·83 

" 
6th 

" 
·73 

It is not likely that the range of values of the function which we investigate 
would only be of interest inside a range so much smaller than that within which 
we might actually observe; further it seems likely that observations all of which 
were taken inside the smaller part of the range would give better information for 
that special interval. I shall therefore examine in the following sections if a uniform 
distribution of observations to which is added clusters of observations at the ends 
of the range will not possibly give a more satisfactory curve of standard deviations. 

V. Uniform continuous distribution of observations with additional observations 
clustered at the ends of the range,. constant standard deviation of observations. 
General formulae. 

(1) Suppose we have N . -1 1_ observations uniformly distributed from - 1 +a 
to 1 and besides ~ . 1 : a observations at - 1 and the same number at l. We 

then have _ ~ {Jl Nx2r d Na } 
JL2r - N -1 2 (1 + a) X + 1 + a 
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and f1-2r+1 = o. 

According to (13) and (14) we find, 

o 1 

l+a 
1 

...... 2p + 1 + a 1 

1 
...... 2p+ 3 + a 

11. 1 

2 
a2 =~~2 (1 + a) { x 2p 2p-+-l -+ a 2p-+3 + a ...... 4p + 1 + a 

p Y N ~~--~------~----------~I~----r-~ 
l+a 13+a +a ...... 2p+ 1 

!+a 
1 

i+a ······2p+3+ a 

1 1 1 
2p + 1 + a 2p + 3 + a ...... -ip + 1 + a 

0 1 x2 X 2p- 2 

1 !+a i+a 
1 

...... 2p+ 1 + a 

X2 i+a l+a 
1 

...... 2p + 3 + a 

III 
2p + 1 + a 2-p-+-3 + a ...... -4p---1 + a ) 

+ x2 ----:---=--~--~----l~--r--..;..S· ... (38) 
13+ a l+a + " ...... 2p + 1 a 

1 ,1,.+ a +a . . ..... 2p+ 3 l+a 
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and 
0 1 x2 X 2p- 2 

1 l+a i+a 
1 

······2p_1+ a 

X2 i+a !+a 
1 

······2p+i+ a 

1 1 1 
2 _ - u2 (1 + a) {I X

2p
- 2 2]1 _ 1 + a 2p + 1 + a ...... 4p _ 3 + a 

2p'-1 U y - N --~--~-----:""""----~1-----:-----

1 + a i + a ...... 2p _ 1 + a 

l+a 1 
! + a ...... 2p+ 1 + a 

1 1 1 
2p -1 + a 2p + 1 + a ...... 4p _ :3 + a 

0 1 X2 X 2p- 2 

1 i+a !+a 
1 

...... 2p + 1 + a 

X2 !+a ++a 
1 

······2p+3+ a 

III 
2-p-+-l + a 2]1 + 3 + a ...... 4p _ 1 + a } 

+X2~~1 ---: ........ ---~~---~1~--1--~ 

I i + a ! + a ...... 2p + 1 + a 

I t + a + +a ...... 2p ~ 3 + a 

! 1 
[2p-+1 + a 

1 1 
2p + 3 + a ...... 4p _ 1 + a 

............ (39), 

Biometrika XII 3 
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and, according to I under (6), 

1 l+a 
1 ! 2 

...... 2p _ 1 + a 

1 
...... 2p + 1 + a 

1 
...... 2p + 3 + a 

1 1 1 
x2p 2p + 1 + a 2p + 3 + a ...... 4p _ 1 + a 

1 
i+ a 

1 
l+a i+a ...... 2p -1 + a l+a ...... 2p + 1 + a 

1 
i+a l+a 

1 
i+a l+a ...... 2p + 1 + a ...... 2p + 3 + a 

1 1 1 1 1 1 
2p + 1 + a 2p + 3 + a ...... 4p + 1 + a 

............ (40) 
2p - 1 + a 2p + 1 + a .. ; ... 4p _ 3 + a 

and 
2 2 _ G 2 (1 + a) 2 

2p+I G -2pGy- N X X 

1 2 

1 i+ a !+a ...... 2p + 1 + a 

x2 !+a ++a 
1 

...... 2p + 3 + a 

X4 ++a ~+a 
1 

...... 2p + 5 + a 

1 1 1 
x2p 2p + 3 + a 2p +-5 + a ...... 4p + 1 + a 

i+a 

i· +a 

1 
---+a 
2p+ 1 

!+a 
1 

...... 2p +1 + a 

~+a 
1 

...... 2p + 3 + a 

1 1 
2p -+ 3 + a ...... 4p :::.:. i + a 

I i+a l+a 
1 

...... 2p+3+ a 

i+a 
1 

++a ...... 2p + 5 + a 

1 1 1 
2p + 3 + a 2p + 5 + a ...... 4p + 3 + a 

............ (41). 

(2) For the reduction of these formulae we have to evaluate the determinant 
of pth order 
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2q_1+ a 

1 
2q + 1 + a 

KIRSTINE SMITH 

1 
2q + 1 + a 

1 
2q + 3 + a 

1 
2~q-+-:::-2p--------;:3 + a 

1 
...... 2q + 2p -1 + a 

1 1 1 
2q + 2p - 3 + a 2q + 2p _ 1 + a ...... 2q + 4p _ 5 + a 

35 

By subtracting from the elements of each row the elements of the proceeding 
and leaving the first row as it is, it is transformed to 
q 

,p8 = (_l)P-l x 
1 ------+a 

2q -1 

2 
(2q - 1) (2q + 1) 

1 
2q + 1 + a 

2 
(2q + 1) (2q + 3) 

1 
---=-----=- + a 

2q + 2p - 3 
2 

...... (2q + 2p -- 3) (2q + 2p - 1) 

2 2 2 
(2q + 2p - 5) (2q + 2p - 3) (2q + -2p - 3)(2q + 2p - 1) ...... (2q + 4p - 7) (2q + 4p - 5) 

which when the columns undergo the same process takes the form 

1 
2q -1 + a 

2 
(27-1)(2q+1) 

2 
(2q + 1T(2q + 3) 

2 2 2 
('iq - 1) (2q + 1) (2q + 1) (2q + 3) ···(2q+2p-5) (2q+2p-3) 

2.4 2.4 2.4 
(2q - 1) (2q + 1) (2q + 3) (2q + 1) (2q + 3) (2q + 5)"··(2q+2p-5) ... (2q+2p-1) 

2.4 2.4 2.4 
(2q+ iT(2q + 3) (2q + 5) (2q +3) (2q +5)(2q + 7)"··(2q+2p-3) ... (2q+2p+-Ij 

2 2.4 2.4 2.4 
(2q+2p-5)(2q+2p-3) (2q+2p-5) ... (2q+2p-1) (2q+2p-3) ... (2q+2p+1)···(2q+4p-9) ... (2q-4p-5) 

q 

,p D= 

Let us introduce the notation 
1 

(2q-=-i) (2q + 1) (2q + 3) 
1 

(2q + 1) (2q + 3) (2q + 5) 

1 
(2q + 1) (2q + 3) (2q + 5) 

1 
(2q + 3) (2q + 5) (2q + 7) 

1 
... (2q+2p - 3f.~(2i +2p + 1) 

1 
... (2q + 2p - 1) ... (2q + 2p + 3) 

III 
--~~~-=--~--7, 

(2q + 2p - 3) ... (2q + 2p + 1) (2q + 2p - 1) ... (2q + 2p + 3) ... (2q + 4p - 5) ... (2q + 4p - 1) 
q q 

Then, since for a = 0 ,pi) equals the determinant ,p~, we have 
q q q 

,p8 =,p~ + a. 23 (,p-l) . ,p_lD ........................... (42), 
q 

and the problem is reduced to the evaluation of ,pD. 
3-2 
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36 Ohoice in the Distribntion of Observations 

(3) It shall be proved by induction that 

_ Ill}. 2 P- 1 ... (p _1)2. p}'. 21'(1}-2) (p+ 1) 
- (2q -1) (2q + 1)"l2q + 3)" ... (2q + 2p - 5)1' '(2q + 2p.- 3)P(2q + 2p -1)V(2q +:lp + 1)P(2q + 2p + il)T' ' ... (2q +4p - 3)2(2q + 4p -1) 

............... (13). 

It contains the 2p + 1 different factors of the elements with indices increasing 
from 1 at the extreme to p in the middle so that the three factors of which the one 
diagonal line of the determinant consists occur with the index p. 

For p = 1 the formula gives 

as it ought to. 

q 1 
ID = (2q - 1) (2q + 1) (2q + 3) 

As the determinant is orthosymmetrical the relation 

~ = ~ss • ~8' s' - ~;8' holds. 
~sss'.' 

q 

Applied on '0+1 D for 8 = 1 and 8' = P + 1 it may be written 
q q+2 q+l 

1l+1h = 'OD. 2>Dq~~/D2 .............................. (44). 

'O-I D 

Looking first at the numerator of (43) we see that it has the same value for the 
two terms of the numerator of (44), and divided by the corresponding factor of 

q+2 
2>-1 D it becomes 

{12'O . 22 ('0-1; ...... (p - 2)6 (p - 1)4 p2}2 (p + 1)2 22'0 ('0-2)-('0-1) (2)-3) 
1'0 1. 2'0 2 ...... (p _ 2)2 (p - 1) p' 

= {1'O+1 . 2'0 ...... (p _ 2)4 (p _ 1)3 p2 (p + 1)}2l .2'0'-3. 
p 

q 
To evaluate the factor in '0+1 D arising from the denominator of (43) we shall 

give a table of the indices with which the different factors occur in the D's and 
their ratios. 

2q-12q+12q+3 ... 2q+2p-5 2q+2p-3 2q+?'p-12q+2p+12q+2p+3 2q+2p+5 2q+2p+7 ... 2q+4p-12q+4p+l 2q+4p+3 
<l 

I,D I 2 3 p-l p P p p-l p-2 p-3 1 
q+2 

pD 1 p-3 p-2 p-l p p p p - I 3 2 I 
q+2 

v-1 D p-3 p-2 P - 1 
qH 

p-l p-l p-2 p-3 1 

D2 2 4 ... 2(p·· 2) 2(p - 1) 2p 2p 2p 2(p - I) 2(p - 2) ... 4 2 P 
q Q+2 

pD.pD 
1 2 !} p-l p+l p-l 3 2 I -----q:t2 ... p p p p ... 

p_ID 
qH 
D2 

" 2 3 p-I p-l 3 2 q+2 ... P p+l p+1 p+l p ... 
p-ID 
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Hence the factor arising from the denominator of (43) is 
(2q+2p -1) (2q+2p+3\ - (2q -1) (2q +4p +3) 

37 

(2q 1) (2q + 1)" '" (2q+2p -3)P (2q +2p -l)PH(2q +2p+ I)PH (2q +2p +3)P+1 (2q+2p +5.11' ..• (2q +4p + I)" (2q +4p +3) . 

The numerator of this equals 4p (p + 2), 

multiplying with the factor previously found we therefore get 

{IpH. 2P ... (p _1)3 p' (p+ I))". 2(P+1) (p-1) . (p+ 2) 

(2q -1)(2q+ I)" ... (2q+2p - 3)1' (2q+ 2p - 1)1'+1 (2q+2p+ I)PH (2q+2p+ 3)PH (2q +2p +5)1' ... (2q+4p+ I)" (2q+4p+3)' 

which is what we wanted to prove. 

(4) When the values of L\ and D are introduced in (42) we get 
rJ= {11'- 1 . 2P-" ••• (p - 2)" (p -I)}". 21' (p-1) 

(2q 1) (2q + I)" ... (2q +2p -5)P 1 (2q +2p - 3)P (2q +2p -1)P 1 ••• (2q +4p -7)2 (2q +4p -5) 
+a . 23 (P-1) x 

{IP- 1 . 21>-2 ... (p - 2)" (p -I)}" . 2(1'-1)(1'-3) . P 

(2q -I)(2q + 1)2 ... (2q +2p -7)1' "(2q +2p -5)1' 1 (2q +2p - 3)P 1 (2q +2p -1)1' 1 (2q +2p + I)ll " ... (2q +4p -7)2 (2q +4p - 5) 

or q _ {lp-1. 21'-2 ... (p _2)" (p -I)f". 21' (P-1) [1 +ap (2q +2p -3)] 
pO - (2q -I)(2q+ 1)2 ... (2q +2p - 5)1' 1 (2q +2p -3)P (2q +2p -1)1' 1 ••• (2q +4p -7)2 (2q +4p -5) ............... (45). 

The denominators of the formulae (38)-(41) for nUi, are now known since they 
1 2 

only consist of the factors p8 and p8. To be able to write down the general expression 
for nU~ we should have to evaluate the minors of 8, but their form is so complicated 
that a direct calculation of the determinants for the degrees of function in question 
appears to be simpler. With the material in hand we are however able to deter­
mine nU~ for x = 0 and x2 = 1. 

(5) From (38) and (39) we see that 
3 

x=O x=O u 2 8 
2PU~ = 2P+1u;, = N ~ (1 + a), and with the 8's as given by (45) 

P+18 
x=o x=o 
2PU~ = 2P+IU~ = 

.,.2 (1 +a)[1 +ap (2p+3)] 1.32 .53 .74 .95 ••• (2p -1)1' (2p+ IF'H (2p+3)Jl (2p+5)P-1 ... (4p _1)2 (4p+ 1) 

N {I .2.3 ... p}" . 22', . [1 +" (p + 1)(2p + 1)] 5.72 .93 ••• (2p -l)P 2 (2p+ I)P 1 (2p +3)1' (2p +5)1' 1 .•• (ip - i}' (4p + fj 

u2 (1 +- a) 32 . 52 ... (2p - 1)2 (2p + 1)2. [1 + ap (2p + 3)J 
N {I. 2 . 3 ... p}2 . 22p . [1 + a (p + 1) (2p + l)J 

x=o "=0 u2 {3 5 2p - 1 2p + 1}2 (1 + a) [1 + ap (2p + 3)] 
or 2PU~ = 2P+1U; = N 2" 4'" 2p _ 2' -2p [1 + a (p + 1) (2p + l)J ...... (46 

x2 =1 
(6) To find nU;' we have to evaluate the determinant of (p + 1 )st order, 

o 1 1 1 

1 
1 

2q -1 + a 

1 
1 -_. +a 

2q+ 1 

1 
1 +a 

2q+ 2p- 3 

1 
2q+ 1 + a 

1 
--+a 
2q+ 3 

1 ...... 2q-+2p =-3 + a 

1 
...... 2q + 2p --=-1 +- a 

1 1 
2~q-+--=2-p---1 + a ...... 2q+4p"':::: 5 + a 
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q 
Treating it as 1)8 was treated under (2) of this section, except that now two 

rows or columns are left unaltered, it takes the form 

1 0 0 0 

1 2 2 2 
2q_l+ a (2q-l)(2q+l) (2q + 1)(2q +3) (2q+2p-5) (2q+2p-3) 

2 2.4 2.4 2.4 
(2q-l)(2q+l) (2q -1) (2q + 1) (2q +3) (2q+l) (2q+3fC2q+5) ...... (2q+2p-5) ... (2q+2p-l) 

2 2.4 2.4 2.4 
(2q+l) (2q+3) (2q+l) (2q+3) (2q+5) (2q+3) (2q+5) (2q+7) ...... (2q+2p-3) .,. (2q+2p+l) 

;-;;.-~_~2==---=_ 2 . 4 2 .4 2 .4 
(2q+2p -5) (2q+2p -3) (2q+2p -5) ... (2q+2p -J) (2q+2p -3) ... (2q+2p + 1) ...... (2q+4p -9) ... (2q+4p -5) 

q 
= - 2 3 (1)-1) 1)-ID. 

Hence we find from (38), 
1 2 

x'=l_ ~ {~3~!J 2 3(1)-1) 1)-ID} 
21)ay - N (1 + a) 1 + 2 . 

1)+18 1)8 

Now from (43) and (45) we get 
q 

23 1)1)D = (p+l)(2q+2p-l) 
q [fh(p +-1) (2q +2p--=: 1)] ..................... (47), 

1)+18 

and therefore 

or 

X2=l_ a2 {(p + 1) (2p + 1) P (2p + 1) ) 
21)ay - N (1 + a) 1 + a (p + 1) (2p + 1) + 1 + ap (2p + l)f 
x2~1_ a2 {p + 1 p} 

21)a11 -N(1+a)(2p+l) i+-~(p+l)(2p+l)+ 1+ap(2p+1) ... (48). 

In the same way we get from (39), 
1 2 

X2=o,} _ a 2 (1 + ) J23(P-l) 1)-ID 2 3 (1)-1) 1)-ID } 
21)-la !1 - N a l---l- - + 2 ' 

1)8 1)8 

q q 
which by the relation between 1)D and 1)+18 just found is reduced to 

x'=ol a2 {P(2P -1) p(2p+ 1) } 
21)-la y == N (1 + a) 1 + ap (2p _ 1) + 1+;;p-(2p + i) ......... (49). 

Both (48) and (49) are covered by the formula 

x2=;,1 a2 {n n + 2 } 
nay = N (1 + a) (n + 1) 2 + an (n + 1) + 2 + a (n + 1) (n + 2) ... (50). 

(7) The evaluation of na~ for special values of n can be made easier by a trans­
formation of the determinant 
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1 
2q -1 + a 

1 ---+a 
2q + 1 

1 
2q+ 3 + a 

1 
c------=-----c + a 
2q + 2p - 1 

1 
2q+ 1 + a 

1 --+a 
2q+ 3 

1 ---+a 
2q + 5 

1 
...... 2q+ 2p _ 3 + a 

1 
...... 2q +2p _ 1 + a_ 

1 
...... 2(i+ 2p + 1 + a 

1 1 
2q + 2p + 1 + a ...... 2q-+-4-:-p----::-3 + a 

39 

Leaving the first row unaltered and subtracting from each of the others the 
proceeding we get a determinant the first column of which is 

1, x2 - 1, x2 (X2 - 1) ... X 2P - 2 (X2 - 1), 

while the other columns are identical with those of the determinant 8 previously 
treated in the same way. When next the two first rows are left as they are and 
from each of the otl~ers is subtracted the proceeding one the result is 

1 
2q -1 + a 

1 

2 
--------

(2q-1)(2q+1) 

2.4 
(2q - 1) (2q + 1) (2q + 3) 

1 
2q+ 1 + a 

2 
(2q + 1) (2q ~~3) 

1 . 
------t a 
2q + 2p - 3 

2 
(2g -1=-2p ~3f(2q+ 2p --1) 

2.4 2.4 2.4 x 2 P- 4 (1 _ X2) 2 -=--::;------::;-;----=-----::-----c:-;- __ c------------,----cc-
(2q+2p-5) ... (2q+2p-1) (2q+2p-3) ... (2q+2p+ 1) ... (2q+-4p-7) .. ~(2q+4p-3) 

Leaving now three rows unaltered, next time four and so on, it is clear that we 
shall at last after p of these sets of operations get 

q pw-tIJ 
V+ld = (- 1) 2 X 

1 
1 -- --- + a 

2q -1 

2 
---
(2q-1)(2q+1) 

I ) 2.4 ... 2p . (1-x2 P 
(2q-1) ...... (2q+2p-1) 

1 ------ + a 
2q+ 1 

2 
(2q+J) (2q+ 3) 

1 ------+a 
2q+ 2p- 3 

2 
(2q-+ 2p - 3) (2q +-2p ---=--n 

2.4 2.4 
(2g+1)(2q-+-gH2q-1=5) '" (2q+2p-3) ...... (2q+2p+l) 

2 . 4 ... 2p 2 . 4 ... 2p 
(2([+1) ...... (2q+2p+l) ... (2q+2p-3) ...... (2q+41J -3) 

By treating the columns in the same way, leaving first two then three and so 
on unaltered, we find after the first set of operations 
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2 2 
-:-:::-------::-0-
(2q - 1) (2q + 1) ... (2q + 2p - 5) (2q + 2p - 3) 

2.4 2.4 
(2q-1) (2q+ 1) (2q - 1) (2q + 1) (2q + 3) ... (2q+ 2p- 5) ... (2q+ 2p-1) 

(1- X2)2 2.4 
(2q - 1) (2q + 1) (2q+-3) 

2.4.6 2.4.6 
(2q-1)(2q+1)(2q+3)(2q+5) .,. (2q+2p~5) ... (2q+2p+-i) 

\ (1 2) 2 . 4 ... 2p 2 . 4 ... 2p (2p + 2) 2 . 4 ... 2p (2p + 2) 
. -x P (2q-1)(2q+1) ... (2q+2p-1) (2q-l)(2q+l) ... (2q-\=2p+1) ... (2q+2p-5) ... (2q+4p-3) 

1- x2 

and after (p - 1) sets of operations 

1 --+a 
2q--1 

2 
(2q-1) (2q+ 1) 

2.4 
(2q - 1) (2q + 1) (2q + 3) 

2 2 . 4 ... (2p - 2) 
(2q - 1) (2q + 1) ... (2g-1)(2q+1) ... (2q+ 2p- 3) 

2 . 4 2 . 4 ... (2p - 2) 2p 
(2q - 1) (2q + 1) (2q + 3) ... (2q--1)(2q+-1) ... (2q+ 2p---1) . 

2 . 4 . 6 2 . 4 '" 2p (2p + 2) 
(2q-1)(2q+1)(2q+3)(2q+5) ... (2q-1)(2q+1) ... (2q+ 2p+ 1) 

(1 2)P 2.4 ... 2p 2.4 ... 2p(2p+2) 2.4 ... (4p--4)(4p-2) 
-x (2q-1)(2q+ 1) ... (2q+ 2p-1) (2q -1)(2q+1) ... (2q+ 2p+ 1) ... (2q-1)(2q+1) ... (2g+ 4p- 3) 

sInce 

Here the first element of the last p - 1 columns is seen to occur as factor for 
the whole column so that we can put outside the factor 

2 p- 1 . 4p- 2 ••• (2p - 4)2 (2p - 2) 
(2q - 1)p-1 (2q + 1)P-1 (2q + 3)P-2 (2q + 5)p-3 '" (2q + 2p - 5)2 (2q + 2p - 3) 

p(p-l) 

1P-1. 2p- 2 '" (p - 2)2 (p - 1) 2-2 -

(2q - l)p-l (2q + 1)11-1 (2q + 3)P-2 (2q + 5)P-3 ... (2q + 2p - 5)2 (2q + 2p - 3) , 

the resulting expression being 
p(p-l) 

d ___ (- 1)p2 .lp-1. 2 p- 2 ... (p - 2)2 (p - 1) 2--2- X 
pH -- (2q - 1)P-1 (2q + 1)p-1 (2q + 3)P-2 ... (2q + 2p - 5)2 (2q + 2p - 3) 

1 
1 -- +a 1 

2q-1 

1- x 2 
2 

(2q-1) (2q+ 1) 
2.4 

(2q --- Tf(2q +1Y(2q +-3) 

4 
2q+ 3 

4.6 
(2q + 3) (2q + 5) 

1 

_ 2p __ 
2q+ 2p-1 
2p (2p + 2) 

(2q + 2p - 1) (2q + 2p + 1) 

i ! (1- X2)P 2.4 ... 2p 4.6 ... (2p + 2) 2p ... (4p - 2) 
! (2q -1) (2q + 1) ... (2q+ 2p -1) (2q + 3) ... (2q + 2p + 1) ... (2q + 2p -1) ... (2q + 4p - 3) 
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In our formulae the two cases q = 1 or q = 2 only occur for which according to 
this we find 

p(p-l) 

1 (_ I)v2 .IP-l. 2p-2 ... (p - 2)2 (p - 1) 2- 2 -

P+1 d = 3p- 1 . 5p- 2. 7p-3 ... (2p _ 3)2 (2p _ 1) x 

1 I+a 1 1 

2 
l.3 

2.4 
l.D 
2.4.6 

l.3.5.7 

4 
5 

4.6 
5-:7 

4.6.8 
5.7.9 

6 
,., 
I 

6.8 
7.9 

6.8.10 
f.9.11 

1 

~ 
2p+ 1 

2p (2p+2) 
(2p + 1) (2p+3j 

2p (2p + 2) (2p + 4) 
... (2p + 1) (2p + 3) (2p + 5) 

) 2.4 ... 2p 4.6 ... (2p+2) 6.8 ... (2p+4) 2p(2p+2) ... (4p-2) (I-x2 P 
1.3 ... (2p+I) 5.7...(2p+ 3) 7.9 ... (2p+5)"· (2p+I)(2p+3) ... (4p-I) 

and 
......... (51) 

p(p-l) 

d _ (- I)p2 • Ip-l. 2p - 2 ... (p - 2)2 (p - 1) 2 -2- X 

P+1 - 3p-1 . 5p-1 . 7p-2 ... (2p - 1)2 (2p + 1) 

1 
1 
g+a 

2 
3.5 

2.4 
~7 
2.4.6 

3 -.-rf.--f:-9 

1 

4 
7 

4,6 
-'f~9 

4.6.8 
7.9.11 

1 

6 
9 

6.8 
9.11 

6.8.10 
9.II-:T3 

1 

~ 
2p+3 

2p (2p + 2) 
(2p + 3) (2p + 5) 

2p (2p + 2) (2p + 4) 
... (2p+-3)(~fp+5)(2P + 7) 

: : : : : I 

(I-x2)p 2.4.6 ... 2p 4.6 ... (2p+2) ~:_~~~11-±_4) 2p(2p+2) ... (4p-2) I 
3.5.7 ... (2p+3) 7.9 .. . (2p+5) 9.11. .. (2p+7) ... (2p+3)(2p+5) ... (4p+ 1) 

......... (52). 

VI. Uniform continuous distribution of observations with additional clusters at the 
ends of the range,. constant standard deviation of observations. Special formulae. 

(1) Our first task shall be to work out the formulae for nU; - n-1U; for values 
of n up to 6, the next to find what values should be given to a in order to make 
nU; as flat a curve as possible within the range of observations. 

With the notations just introduced (40) and (41) take the form 
1 

__ 2 2 _ u2 P+1 d2 
S2P - 2p U ,y - 2p-l U y - N (1 + a) 1 1 

p8' p+10 
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2 

_ 2_ 2_U2 2 !p+l d2 
S21'+1 - 2P+l U y 2p U y - N (1 + a) X 2 2' 

!p S. !P+lS 
and 

From these formulae we find, after applying (45), (51) and (52), 

u2 3 (1 + a) x 2 
Sl = N 1 + 3a '" .. , '" .................................................................. (53), 

1 1 + a 2 
U 2 1 1.32.5 

S2 = N (1 + a) 1+-1 . In' 22 (1 + 2. 3a) 1 _ x 2 2 
"3 

u2 5 [2 + 3 (1 + a) (x2 - 1)]2 
= N' 22 1 + 6a ............ (54), 

1 2 
1 -+a 

S _ u 2 ) 2 3 3 . 52 . 7 3 
3 -- N (1 + a x 1 + 1 . 3a . 22 (1 + 2. 5a) 2 

I-x2 -
3.5 

_ u2 ! (1 + a) x2[2 + 5 (1 + 3a) (x2 - 1)]2 (55) 
- N· 22 (1 + 3a) (1 + lOa) ............, 

1 I+a 1 2 

1- X2 
2 4 

u 2 1 . 32 . 5 1 . 32 • 53 . 72 . 9 (2) 2 
3 5 

S4 = N (1 + a) 22 (1 + 2 . 3a) . 22.26 (1 + 3 . 5a) "3 
2.4 4.6 

(1- X2)2 
3.5 5:7 

= uN
2 • -296 (1 + a) [8 + 20 (2 + 9a) (x2 - 1) + 3~ (1 + 6a) (X2 - 1)2]2 ......... (56), 

(1 + 6a) (1 + 15a 
1 2 

1 g+a 1 

2 4 
3.5 "7 

2)2 2.4 4.6 
(1 - X 3 :5-:-1 7.9 

9"~ 11 (1 + a) x2 [8 -t~8j~± 15a) (x2 - 1) + 63 (1 + lOa) (x2 -1l~ ...... (57) 
N· 26 (1 + lOa) (1 + 2Ia) , 

1 I+a 1 1 2 

2 4 6 
I-x2 3 5 "7 

(I-x2)3 2.4.6 4.6.8 6.8.10 
3.5.75.7.97.9.11 

u2 13 (I+a) [16 +168 (1+ IOa)(x2-I) +126 (3+40a)(x2-I)2+23I(I+ 15a)(x2-I)3]2 
N . -28 (1 + 15a) (1 + 28a) 

.. ' ...... (58). 
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(2) We shall now look at na~ for special values of n and as a first attempt at 
x=o x2=1 

finding a flat curve for na~ try to make na~ = na;" 

For a linear function we find, since 

la~ = oa~ + SI, 

a2 = a2 (1 + 3(! + a) X2) 
111 N I+3a .................. : ........ (59). 

x=o x'=l 
As a is positive it is obvious that we cannot make la~ = la~ which indeed we 

knew beforehand. This follows because we have proved that na~ is of 2nth degree 
and never lower. 

For x = 0 we find 

which holds for any symmetrical distribution of observations with constant 
standard deviation. a is the ratio between the number of observations at the ends 
of the range and the number uniformly distributed through the range, it may 

therefore vary from 0 to 00. As 3I(~ i:) decreases when a increases we get the 

flattest possible curve when a = 00 , that is when the distribution of observations 
consists of two groups at the ends of the range. Then the curve is, as already shown 
in Section II, 

To get a check on the degree of the function and at the same time a flatter curve 
of a~, than that obtained from a uniform distribution we may choose something 
between the two extreme cases and take for example !N observations at each end 
of the range and iN uniformly distributed through the range. 

Then a = 1 and, according to (59), 

2_a2 32 
a"-N(I+2"X)' 

with the maximum 
""=1 a 
a" = ...;'N . 1·581. 

(3) For afunction oftke second degree we find, from (46), 

x=o a2 9 (1 + a) (1 + 5a) 
2a~, = N . 4 1 + 6a 

and from (50), 

or 

We want to make these equal and this requires 

3 (1 + 5a) (1 +3a) = 4 {I + 6a + 2 (1 + 3a)} 

I5a2 - 8a - 3 = O. 

This has only one positive root a = ,7873500. 
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For this value 2 (1: a)' which is the ratio between the number of observations 

at one end of the range and the total number of observations, is ,2202562. 

As 2a~ = la~ + 8 2 we find, from (59) and (54), 

2_a2 (1 3(I+a) 2+~[2+3_(I+a)(X2-1)]2) (60) 
2 ay - N + 1 + 3a x 4 1 + 6a ........., 

for a = ·7873500 the curve is 
a2 

2a; = N {3·46837 - 6'27862x2 + 6'27862x4}, 

1 
X= ±V2 ' which has minima at 

The extreme values in the range of observations are therefore 

a {O 
a y = vN·l'86.24 for X= ±1 

and 
a 

a y = vN.l.3779 for X= ± ·7071l. 

(4) For afunction of the third degree we have, from (46), 
x=o a2 9(I+a)(1+5a) 
Sa; = N' 4--1 + 6a-' 

and from (50), x'=l 2 {3 5} 
3at=N 2 (1+a) 1+6a+l+l0a ..................... (61). 

or 

Hence the condition that they are equal is 
9 (1 + 5a) (1 + lOa) = 32 (2 + 15a) 

90a2 - 69a - 11 = 0, 

with one positive root a = ·902146l. 

From (60) and (55) we find 

2 _ ~ (1 ~il +~ 2 ~ [2 + 3 (1 + a) (X2 - 1)]2 
Say - N + 1 + 3a x + 4 1 + 6a 

+ 7 (1 + a) x2 [2 + 5 (1 + 3a)(x2- I)J2) (62) 
4· (1 + 3a) (1 + lOa) ........., 

which for a = ·9021461 becomes 
a 2 

3 a;, = N {3·67775 + 17 ·78799x2 - 48'56651x4 + 30·77852x6}. 

Besides the minimum for x = 0 this curve has other minima for x2 = ·815820 
and maxima for X2 = ,2361366. 

The maxima and minima are as follows: 

{± 1 
For X= 0 

" x = ± ·48594 
a 

ay = VN . 2·3612, 

" x = ± ·90323 
a 

a y = VN . 1·6055. 
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By choosing a = '9021461, that is by taking ·237139 x N observations at each 
end of the range, we seem therefore to have overshot our aim since the result is that 
we have got inside the range a maximum for ay greater than the value obtained for 
x = ± 1. 

or 

(5) Our next attempt shall be to make 

It requires 

x2~1 X~O 

aa; = 2 aa;. 
9 (1 + 5a) (1 + lOa) = 16 (2 + 15a) 

450a2 -105a - 23 = O. 

The only positive root is a = ·3710723 which gives the curve 
2 

3a~ = ;. {2·730117 + 12'89741x2 - 37'07612x4 + 26·90882x6}. 

The maxima and minima are: 

For X= ·0000 
a 

all = yN· 1.652 , 

" X = ± ·4828 
a 

ay = \IN' 2·016, 

" X = ± ·8279 
a 

all = YN· 1.678, 

" X= ± 1'0000 
a 

ay = YN· 2.337. 

This distribution of observations makes all for x = ± 1 greater than the 
maximum at x = ± ,4828. By interpolation between these two cases we shall 
now try to find an a, lying between those of our two trials, for which ay for 
x = ± 1 equals the maximum value of ay which still may be expected at about 
x=·48. 

x=1 a 
(6) In our first attempt we found ay = yN' 1·918 and its difference from the 

x-I 

maximum ;N' '444, in the second attempt;;11 = ";N . 2·337 and its difference from 

the maximum - ";N . ·321. 

or 

If the relation were linear this difference would be zero for 
x~1 a 
ay= yN' 2·161. 

x=1 
The a for which ay takes this value is found by (61) which leads to 

8 (1 + a) (2 + 15a) = 2·1612 (1 + 6a) (1 + lOa) 

160'2a2 - 61·28a - 11·330 = 0, 

with the positive root a = ,519. 

For this value (62) becomes 
all 

3~ = :N{2'9866 + 14'2364x2 - 40'0058x4 + 27·452lx6}. 
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The maxima and minima are: 

For x= 
a 

,0000 ay = y'N' 1·728, 

" x= ± 

" x = ± ·8585 
a 

a y = y'N' 1·655, 

" x = ± 1·0000 
a 

U y = y'N' 2'161, 

and this distribution which has ·1708 x N ?bservations at each end of the range 
may be considered satisfactory. 

(7) From (46) and (50) we find, for aJunction oj the Jourth degree, 

x=S u 2 225 (1 + a) (1 + 14a) 
4uy = N . 64 1 + 15a 

x'=1 u 2 {2 3} 
and 4U; = N 5 (1 + a) 1 + lOa + 1 + 15a ' 

which are equal when 
9 (1 + 14a) (1 + lOa) = 64 (1 + 12a) 

or 

that is when 

1260a2 - 552a - 55 = 0, 

a = ,5217564. 

The formula for 4ut, found from (62) and (56), is 

2_~ h 3(L-±-_<:l 2 ~[2+3(I+a)(x2-1)J2 ~(I+a)x2[2+5(1+3a)(x2-1)J2 
4Ull - N l + 1 + 3a x + 4 1 + 6a + 4 (1 + 3a) (1 + lOa) 

~ (!-±- a) [8 + 20 (2 + 9a) (x2 -1) + 35 (1 + 6a)(x2 -1)~J2} (63) 
+ 64 (1 + 6a) (1 + 15a) ...... . 

For a = ·5217564 it becomes 
2 

4U; = N {5'03367 - 19·72772x2 + 133'01711x4 - 235'96817x6 + 122·67868x8}. 

The maxima and minima are as follows: 

For x= {± ~ u 
U y = y'N . 2·244, 

" x = ± ·3130 
a 

a y = y'N . 2'041, 

" x = ± ·6844 a = _f!. 2·575 
y y'N' , 

" x = ± ·9361 
a 

U y = y'N .1·856. 
x'=1 

We have again as for the function of the third degree brought a y down below 
one of the maxima of 4Uy, although since 4Uy has a maximum at x = 0 the demand 

x=o x2=1 
that U y = U y is not so exacting as for aUy which has a minimum at x = O. 

 at University of Southern California on March 13, 2015http://biomet.oxfordjournals.org/Downloaded from 

http://biomet.oxfordjournals.org/


KIRSTINB SMITH 

x'=l x=O 
(8) We shall next make 4u;= 1·2671861 4u;*. 

The condition obtained from (46) and (50) is 

9 x 1·2671861 (1 + lOa) (1 + 14a) = 64 (1 + 12a) 

or a2 - ·3095773a - '032940969 = 0, 

with the only positive root a = ,3933269. 

Introducing this value of a in (63) we get 
2 

4a~ = N {4·61918 - 18'02388:v2 + 122·71833:v4 - 220'34099:v6 + 116·8807x8}. 

The maxima and minima for this curve are: 

At X= o a 
ay = \IN' 2'149, 

a 
" X = ± ·3116 a y = v'N . 1·958, 

a 
" :v = ± ·6839 ay = v'N' 2·467, 

a 
" :v = ± ·9214 ay = v'N .1,913, 

u 
" :v = ± 1·0000 a y = v'N' 2·419. 

4'7 

We have thus for a = '3933269, that is by taking ·141147 x N observations at 
x1=1 

each end of the range, succeeded in bringing (ay down to be approximately equal 
to the highest of the maxima of the curve, thus fulfilling our purpose. 

(9) After our experiences in the cases of the functions of the third and fourth 
degree we cannot expect for a function of the fifth degree by making 

x'=l x=O 
sa; = sa; 

to find a curve which has not a greater maximum than that value. We shall 
therefore start with the attempt 

x'=l x=O 
sa; = 2 sa;. 

The condition found from (46) and (50) is 

25 (1 + 14a) (1 + 21a) = 64 (2 + 35a) 

or 7350a2 - 1365a - 103 = 0, 

with the only positive root a = ,2433100. 

* The ratio 1·2671861 results from consideration of a special 2cr; curve. It was determined as 

that curve obtained from three groups of observations for which the standard deviation of cr;'s within 
the range of observations was a minimum. It is not mentioned elsewhere in this memoir as it does not 
seem to have the interest I at first assumed it to have. 
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For 5U;, we find, from (63) and (57), 

2 u2 { 3(1+a) 2-L~[2+3(1+a)(x2-1)]2 ~(1+a)x2[2+5(1-+3a)(x2-1)]2 
5U lI= N 1 + -1+-30.- x I 4 1+6a + 4 (1+3a)(l+ lOa) 

9 (1 + a) [8 + 20 (2 + 9a) (X2 - 1) + 35 (1 + 6a) (x2 -- 1 )2J2 
-L -- -------.----.. 

I 64 (1 + 6a) (1 + 15a) 

_ 11 ~_-= a) x: [8 + ~8 (2 + 15a) (X2 - 1)+ 63 (1 + lOa) (x2 - 1)2]2} .. (64). 
f- 64 (1 + lOa) (1 + 21a) . 

Introducing a = -2433100 we get 
2 

50"t = N {4·14228 + 28'47030x2 - 258'05238x4 + 853-0448x6 - 1095'921x8 

+ 476-5990x10}, 

from which we find the maxima and minima: 

x 2 ;:;::1 

At X= 0 
0" 

O"y = yN -2-035, 

" x = ± -2953 O"y = ;N _ 2-273, 

± 5004 - U ~-155 "x= - O"y- yN.... , 

" x = ± -7853 U y = iN' 2'762, 

" x = ± ,9,118 U y = ;N . 2-231, 

" x = ± 1-0000 O"y = ;N . 2-878. 

O"y does not differ much from the greatest maximum and we may thus consider 
the distribution with ·097848 x N observations at each end of the range for which 
a = ·2433100 as satisfying fairly well our aim. 

(10) Considering our previous results we must assume that for a function of 

the sixth degree x:r /x:;tO ought to be made somewhat smaller than 2 which was 
the value that gave a satisfying result for a function of the fifth degree_ 

x2=1 x=o 
Let us assume O"~/ = 1-750";, or, substituting from (46) and (50), 

from which 

and 

are found_ 

256 (1 + 24a) = 1·75 x 25 (1 + 21a) (1 + 27a) 

567a2 - 92·43430a - 4·851429 = 0 

a = -2048019 
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For 6a~1 we get, from (64) and (58), 

2 _ a2 {I 3 (1 + a) 2 5 [2 + 3 (1 + a) (X2 - 1)J2 
Say - N + 1 + 3a X + 4 1 + 6a 

7 (1 + a) X2 [2 + 5 (1 + 3a) (X2 - 1)]2 
+ 4 (1 + 3a) (1 + lOa) 

+ 6~ (1 + 6~)~t+ 15a) [8 + 20 (2 + 9a) (X2 - 1) + 35 (1 + 6a) (X2 - 1)2J2 

+ !! (1 + 1O~~; + 21a) [8 + 28 (2 + 15a) (X2 -1) + 63 (1 + lOa) (X2 _1)2]2 

13 1 + a 2 

+ 256 (1 + 15a) (1 + 28a) [16 + 168 (1 + lOa) (x - 1) 

+ 126 (3 + 40a) (X2 -1)2 + 231 (1 + 15a) (X2 _1)3]2}, 

which for a = ·2048019 becomes 
a 2 

sa~ = N {5·58984 - 33'14234x2 + 504'4523x4 - 2512'673x6 + 5524'186x8 + 

- 5452'650x lO + 1974·020X12}. 
The maxima and minima are: 

At X= 0 
a 

ay = VN ' 2·364, 

" x = ± ·2216 
a 

a y = vN . 2'216, 

" X= ± 
a 

·4826 ay = VN . 2'515, 

" X= ± 
a 

·6194 a y = VN . 2'427, 

" X= ± 

" X= ± 
a 

·9615 a y = vN . 2'485, 

a 
" X = ± 1·0000 a y = VN ' 3·128. 

It thus appears that this distribution which has ·08499 x N observations at 
x2 ;:::::1 

each end of the range fulfils our demand that ay shall be approximately equal 
to the greatest of the maxima. 

(11 ) We bring together our final results in the following table. It gives the 
distribution of observations, the maximum of ay within the range, the value of 

Vn+1 or the lowest maximum of ay vN possible, which can only be obtained 
a 

by distributing the observations of the function of the nth degree into (n + 1) 

groups, and the value of n + 1 which is the maximum of (fJLyN for a uniform 
a 

distribution. 
Biometrika XII 4 
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TABLE II. 
----------~-------------------------,--------,------, 

I, Ratio of number of I 'I 

Degree of 
function 

, observations at each I Maximum of 

the total number " end of the range to : ____ "_u .J __ N _______ .J_n_+_l __ -i _ n + 1 ___ 11 

t----------i --.---.-.------- -------

1 
2 
3 
4 
5 
6 

·2500 1·581 1·414 2 
·2203 1·862 1·732 3 
·1708 2·161 2·000 4 
·1411 2·467 2·236 5 
·0978 2·878 2·449 6 
·0850 3·149 2·646 7 

A comparison between our maximum and v' n + 1 shows the price we have to 
pay for information about the degree of the function. For lower degrees the 

maximum only differs quite insignificantly from v' n + 1, but with increasing 
degree the difference grows relatively greater for the sixth degree, being about 

one-fifth of v' n+1. 
The curves of standard deviation for the three sets of distributions are given 

in Diagrams 3--8, while Diagram 9 represents the si~ curves just reached. 
It seems likely from the form of the a y curves that two clusters of observations 
placed at the outermost of the maxima besides the two clusters at the ends of the 
range would produce a a y curve with a lower maximum than the one we have 
succeeded in getting for the functions from the fourth to the sixth degree. But 
then again the position of these new clusters would depend on the degree of the 
function and thus make the proceedings more complicated; and what is more at 

the same time as the maximum of the curve approached v' n + 1 the distribution 
of observations would incur the disadvantages of the grouping in (n + I) clusters. 
On the whole the distribution arrived at seems to be satisfactory and certainly 
marks a great progress from the uniform distribution. 

VII. Observations with varying standard deviation. 

(I) In Section I we have already given the formula for the standard deviation ay 

of an adjusted y when the standard deviation Sy of an observation is a v' f (x). 

It is 
oN 
ay.~ 1 x x2 xn 

1 mo m1 m2 mn 

x m1 m2 ma ...... mn+1 =0, 
x2 m2 m:J m4 ...... mn+2 

xn mn mn+1 mn+2 ·· .. ,· m2n 
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58 Choice in the Distribution of Observations 

where mp = ~ J xP j {:? dx, if1 (x) dx being the number of observations between 

x and x + dx and the integration being extended over the range of observations. 

It is clear that if we have found a suitable curve of squared standard deviation 
for adjusted y by taking a distribution cp (x) of observations with constant standard 
deviations a corresponding curve can be derived for observations with varying 
standard deviations by using the distribution 

if1 (x) = kcp (x) .J(x) .............................. (65). 

As J kcp (x) .J (x) dx = N the constant k must be 

k- N - N (x) .J(x) dx' 

Hence we find 
Jxp.cp(x)dx NlLp 

mp = J cp (x) .f (x) dx = J cp (x).J (x) dx' 

where ILp is the pth moment coefficient for the distribution cp (x), and as 

mp N =k 
ILp N (x) .J(x) dx 

for any p the determinant may be written 

a~. ~k 1 x x2 ...... xn 
a 

1 1 ILl IL2 ...... ILn 
x ILl IL2 IL3 ...... ILn+l =0 .. ................ (66). 

X2 IL2 IL3 IL4 ...... ILn+2 

xn ILn ILn+t ILn+2 ...... IL2n 

We thus find the same determinant as the distribution cp (x) would give for 
observations with constant error of observation except that the factor k has come 
in, that is to say the expression for a~ has been multiplied by 

~ = ~ r cp (x) .f(x) dx .............................. (67). 

The goodness of the distribution therefore will partly depend on the value of ~, 
and because we have found cp (x) the best distribution for observations with constant 
standard deviation it does not follow that 

'" (x) = kcp (x) .J (x) 

is the best distribution for observations with the standard deviation a VJ (x). 
But the deriving of if1 (x) from cp (x) is nevertheless useful as a means of simplifying 
the investigations and will be applied in the following special inquiries. 

We shall consider two forms of J (x) and try to find the best distributions for 
functions of the first and of the second degree. 

 at University of Southern California on March 13, 2015http://biomet.oxfordjournals.org/Downloaded from 

http://biomet.oxfordjournals.org/


KIRSTINE - SMITH 59 

(a) f(x) = (1 + ax2)2, where a> - 1, 

for errors of observation increasing or decreasing in both directions from the middle 
of the range. 

(b) f(x) = (1 + ax)2, where 1> a;;; 0, 

for error of observations increasing in one direction. 

These two forms will roughly cover two distinct and important types of cases, 
such as occur in practice. 

(2) Whenf(x) = (1 + ax2)2 we find, according to (67), 

~ = 1 + 2al-'2 + a21-'4' 

and as (66) for n = 1 gives~-

2~k __ 1_{ -2 2} 
ay' 2 - 21-'2 1-'1X+X, 

a 1-'2 -1-'1 

we have for a function of the first degree 

a~ = aN~ 1 + 2al-'2 +2 a21-'4 {1-'2 - 21-'1 X + x2} .................. (68). 
1-'2 -1-'1 

This curve has a minimum for x = 1-'1 and the maximum in the range is, if 
1-'1 > 0, at x = - 1, and if 1-'1 < 0, at x = 1; it equals in both cases 

a2 2 { (1 + U-t1J)21 
N- (1 + 2al-'2 + a 1-'4) 1 + -- --- 2- f ..................... (69), 

1-'2 - 1-'1 

[1-'1J being the numerical value of 1-'1. 

Now (69) is a minimum for 1-'1 = 0; we therefore ought to choose that value 
for 1-'1 and we then get, from (68), 

a~1 = ~ (1 + 2al-'2 + a21-'4) {I + ~} ........................ (70), 

1-'2 and 1-'4 may vary between ° and 1 independently of each other and are only 
bound by the conditions that 1-'4 ';2 1-'2 

and 

For any set of values which satisfies these conditions we may determine a 

distribution consisting of ~ N observations at x = ± v and (1 - y) N at x = 0, 

since from any two such values we could determine 

and 

v2 = 1-'4 ';2 1 
1-'2 

2 

y=1-'2';21. 
1-'4 

By introducing v2 and y for 1-'2 and 1-'4 we get two quite independent variables 
and (70) then takes the form 

a2 ( X2) a2 = - (1 + 2ayv2 + a2 yv4) 1 + - . 
Y N yv2 
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60 Choice in the Distribution of Observations 

w=1 
We now have to determine y and v2 so that the maximum value ~ is as small 

as possible. We find 

[dd~J = ~N2 (2av2 + a2v4 -~) ........................ (71) 
Y w=1 y V 

and [~:~1=1 = ~ ( 2ay + 2a2yv2 + a2 - ~4) .................. (72). 

Olearly [ dda;] =0 leads to y2= 4(21 2) .................. (73). 
y w=1 av + av 

Introducing this value into (72) we obtain 

[da;] = a2 
2 (1 + . 1 ) 

dv2 x=1 N . a Va (2 + av2) , 
which is> O. 

Hence the minimum for constant v2 determined by 

[da;] 0 
dy W=1= 

decreases with v2• 

But when v2 decreases, y2, as given by (73), increases and the lowest value of v2, 

for which it is real, is that determined by 

1 
y2 = av4 (2 + av2) = 1. 

For v2 smaller than this (73) gives y2> 1, and as long as y2;: 1 we therefore 
have 

[da;] = 0 
dy w=l < . 

x=l 
Hence the minimum of a; is to be found for y2 = 1. 

For this value (72) may be written as 

[~:~1=1 = ~ ~ (1 + av2) (2av4 + av2 - 1) .................. (74), 

j'l+~ 
which is zero for v2 = - ! + 16 a ......... ..................... (75) 

and> 0 for v2 greater than this value. 

When the v2 found lies between 0 and 1, that is when a> -1, we have thus found 

the minimum sought. When a;: !, then [dda!] as given by (74) is <0 and the 
v x=1 

x=l 
minimum of a~, is found by giving v2 its maximum value, that is 1. 

Returning to the variates f-t2 and f-t4 we see that in all cases 
2 1 

y2=~=-=1 
f-t4 /32 ' 
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from which it follows that no distribution of observations other than those arrived 
at consisting of two equally big groups can give f1-1' f1-2 and f1-4 the values required. 

We accordingly reach the result that: when observing a function of the first degree 
for which the standard deviation of the observations is a (1 + ax2), symmetrical about 
the middle of the range, we get the best function for a; by taking two equally big groups 

of observations, at the ends of the range if a '< i and at v = ±! j j 1 + ~ - 1 if 

a>i· 
(3) According to (70) the maximum of a~ for this distribution is 

X;l = ~ (1 + av2)2 (1 + !) 
Y N v2 ' 

v being equal to 1 for a '< i and v being determined by (75) for a > 1. 
We shall next consider the distributions (i) for which if> (x) is constant from - 1 

to 1 and (ii) for which if> (x) consists of ~ observations uniformly distributed from 

- 1 to 1 and ~ into two clusters. 

(i) For a uniform distribution from - 1 to 1 we have f1-2 = i, f1-4 = 1 and, 
according to (67), 1 

- = 1 + !a + l-a2 k 0 , 

the actual distribution is hence, as if> (x) = ~ , 
N (1 + ax2)2 

if; (x) = '2 1 + !a + la2 ' 

and the maximum a~ as given by (70) for x = ± 1, 
x=±l a2 
a~ = N (1 + !a + i-a2) . 4. 

(ii) When if> (x) = ~ with the additional clusters ~ at ± u we have 

f1-2 = l- + !u2 and f1-4 = T\r + !u4• 

According to (70) the maximum a; is then 

x~f = ~ [1 + a (t + u2) + a2 (lo + ! u2)] (1 + 3u26+ 1) . 
We shall now determine u so as to make this a minimum. We find that 

x=l 

requires 

~~~ = ~ . ~ [5a {I + a (1 + u2)} - (3u2 ~ 1)2 (45 + 7 a2)] = 0 

45a2u6 + 15a (3 + 5a) u4 + 5a (6 + 7 a) u2 - (90 - 5a + 9a2) = 0 ... (76), 

the root u2 of which is > 1 for a < ,5576. 
x=l 

For a '< ·5576 we hence get the minimum a; by taking the clusters at u = ± 1 
and for a> ·5576 at the places ± u determined by (76). 
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Table III contains for a series of values of a the values of v, (1 + av2) and u 
of the two distributions above and the maximum ay for the three distributions. 

TABLE III. 
I 

Maximum of Maximum of Maximum of Uy-.i!i 

."IN 
U 

,IN from distribution 
U y --;;:- from u y -;;- from 

for which "'(x)=~ a V 1 + av2 
best distri- distribution u 

I bution for which and clusters of 
N N </>(x)=2 4" at ±u 

-- --- --

0 1·0000 1·000 1'414 2·000 1·0000 1-581 
l 1·0000 

I 

H67 1·650 2·113 1-0000 1·760 G 
l }·OOOO }·333 1·886 2·231 1·0000 1-944 3 

! ·8836 }·390 2·100 2·352 1·0000 2·131 
j ·8071 }·434 2·284 2·477 ·9289 2·316 
5 ·7510 1-470 2'448 I 2·603 ·8502 2·483 IT : 

I 
1 ·7071 1-500 

I 

2·598 2·733 ·7797 2·637 
2 ·5559 I 1-618 3·330 3·540 ·5762 3'438 
3 ·4782 I 1-686 3·908 

I 
4·382 ·4925 4-173 

4 ·4278 I 1·732 4·404 5·241 '4612 4'899 
I I 

I 

The difference between the maxima from the two first distributions taken as_a 
proportion of the maximum of the first decreases from 41 per cent. at a = 0 to the 
minimum 5 per cent. at a = 1, and then again increases to 19 per cent. at a = 4. For 
small a, that is in practice a = 0, and again for a> 3, for which the difference is 
greater than 12 per cent., the third distribution may therefore be useful as giving 
a much smaller maximum value than the purely continuous distribution and at 
the same time offering some justification for the form of the function. 

(4) We shall next, still assuming that f (x) = (1 + ax2)2, consider the choice 
of observations for afunction of the second degree. 

According to (66) and (67) we find 
2 a2 1 

a y = N -k X 

r fl2fl4 - fl~ + 2 (fl2fla - fll fl4) x + (fl4 - 3fl~ + 2fllfla) x2 + 2 (fllfl2 - fla) x 3 + (fl2 - flD X4} 

1 fl2fl4 - fl~ + 2fllfl2fla - flrfl4 - fl~ 
............ (77), 

and 

where the fl's are the moment coefficients about x = 0 of the distribution rfo (x) 
which is connected with the actual distribution if; (x) by the relation 

'f (x) = krfo (x) ·f(x). 

From any distribution rfo (x) which has fll and fla :;: 0 we can form a symmetrical 
Hrfo (x) + rfo (- x)} which has the same fl2 and fl4 as rfo (x). We shall prove that 
the maximum a; obtained from the symmetrical distribution is always lower than 
that obtained from the skew. 
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Let the factor in curled brackets in (77) be Fs for a skew distribution 4> (x) 
and F 0 for the corresponding symmetrical distribution. 

or 

We then have 
F _ /L2/L4 + (/L4 - 3/L~) x2 + /L2X4 

o - /L2 (/L4 - /Ln . 

The condition for a maximum or minimum other than that at x = ° is 
3/L~ - /L4 > 0, 

f12 < 3, 

and as the denominator is positive we have in that case the maximum at x = 0. 
It is thus clear that the maxima of Fo between - 1 and 1 must be either at x = ° 
or at X= ± l. 

We shall show that 

and that either 
[F.]x=o > [Fo]x=o, 

[Fs],,=l or [Fsl,.=-l > [Fo]x=±l. 

According to what has been proved in Section I (4) the coefficient of X4 in (77) is 
positive, the denominator of (77) is therefore positive and we have 

[F F ] (/L2/L3 - /LI/L4)2 ° 
s - 0 ,,=0 = (/L4 - /L~) (/L2/L4 - /L~ + 2/Ll/L2/L3 - /L~/L4 - /L~) > . 

We shall next compare Fs and Fo for x = ± l. 
N 

Putting [FO]x=l =]j 

we have 
N-8 

[Fs]x=l =-n ' -E 

where 8 = /L~ - 2/LI/L3 + /L~ ± 2 {/L3 (1 - /L2) - /LI (/L2 - /L4)} 

and E = /L~ - 2/LI/L2/La + /L~/L4. 
For ~ we find 

E 

8 (/La - /LI)2 ± 2 {/La (1 - /L2) - /LI (/L2 - /L4)} 
~ = (/L3 - /LI/L2)2 + /L~ (/L4 -fi,~) ---- ---

Looking first at the case /LI ~ 0, we have 
/L3 

(/La - /LI)2 < (/Ls - /LI/L2)2, 

and if we choose the value for which the other term of the numerator is < 0, 

~< l. 
E 

When /LI < ° we see, from considering the form 
/La 

~ = 1 _ /Lr (1 - /L4) - 2/LI/L3 (1 - /L2) ± 2 fILa (1 - /L2) - /LI (/L2 -~4)} 
E (/La - /LI/L2)2 + /Li (/L4 - /L~) , 

that for either x = 1 or x = - 1 
8 
-< l. 
E 
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As e > 0 we have hence for any ILl and /La, remembering that ~ being a squared 

standard deviation multiplied by the number of observations is >' 1, 

N-'8 N '8 
D-e>D>;" 

that is, for either x = 1 or - 1, 
F. > Fo. 

We have thus proved that the maxima of Fo are below those of F •. 

(5) Our problem is hence reduced to finding the best curve among those repre­
sented by 

~ _ a 2 (1 +2a/L2 + a2/L4) f.. ( 3 2) 2 4} 
a y - N- -----(- -2) -- tfA'2fL4 + /L4 - /L2 X + /L2 X ......... (78). 

/L2 /L4 - /L2 

As was stated in (2) of this section we get all sets of possible values for /L2 

and /L4 from three groups of observations symmetrical about x = 0, and we may 
therefore limit our search of the best distribution to these. 

Let the observations be ~ N at x = ± v, at (1 - y) N at x = O. The inter­

polation formula of Lagrange gives, when Yv represents the mean of the observations 
at X= p, 

x2 - v2 _ X (x - v) _ x (x + v) _ 
y = -=- v2 Yo + - 2v2 Y-v + 2v2 Yv, 

from which we find 
2 _ ~ .!. {(X2 - V2)2 x2 (x2 + v2) (1 + aV2)2} 

a y -- N . v4 1 _ y + y ............... (79). 

It is obvious that if for a certain distribution we have 
x=o x'=l 
a;,> a; 

we can get a better distribution by taking more observations at O. If on the other 
hand 

x=O x'=1 a;<a;, , 
x'=1 

the curve cannot be the best unless a! is a minimum for the present values of v 
and y. From (79) we find 

[da2J a2 1 {(I -- V2)2 (1 + v2) (1 + aV2)2} d; x 1= N' v4 (1 - y)2 - y2 ............... (80) 

and [da;] _ a2 1 {_ ~(1 - v2) _ (2 + v2 - av4) (1 + av2)l 
dv2 x'=1 - N . VS 1 - y y j , 

from which we obtain the conditions for maximum or minimum 

v2 = 1 ± 2v'~ 
a 

and 
y 2v'~ (1 ± Va)2 

r-=-y=-~T2v'~-1 . 
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The lower sign requires 3 - 2 y2 < a <! and the upper sign a > 3 + 2 y2 to 
make 0< v2 < l. The case a < ! has no interest, as we have seen that when a <! 
extrapolation is not even for a linear function advantageous. We have therefore 

x'=] 
seen that for a < 3 + 2 V2 * a~ has no minimum and we have thus proved that 

x=O x'=l 
the best distribution requires a; = a~, that is 

or 

2v2 - 1 (1 + v2) (1 + av2)2 
1-y = y 

___ ~ __ = 1 + (1 + v2) (1 + av2)2 
1-y 2v2 -1 

The maximum of the curve is 
x=;;o a2 1 
a y = N·1-y· 

........................ (81). 

To find the minimum of this value we differentiate (81) and get 

[da~J _ 1 + av2 4 2 
dv2 x=O- (2v2_1)2{4av - aV - 2a- 3}, 

which is zero for 

v2 = ~ (1 +j 33 + ~) .............................. (82) 

and positive for greater v2, so that we have found a minimum. 

For a = 3 we find from (82) v2 = 1, hence for a < 3 we have to choose v2 = 1, 
from which, according to (81), follows 

1 _ 2 _ 2 (1 + a)2 
1 ~-y -- 1 + 2 (1 + a) or y - 1 + 2 (1 + a)2· 

When 3+2Y2>a>3, V2=~ (1 + J 33 + ~) is < 1, and for the corresponding 

y we have 
iy _ 

(1 + av2)2 
1-y 

1 + v2 5a+ 4+Ya(33a+ 48) 
2 (2v2 - f) = 8 (a + 2) ............ (83). 

Returning to the cp (x) distribution, which is found from this distribution by 

dividing the frequencies by k . (1 + ax2)2, we therefore find, when; N is the number 

of observations at x = ± v and (1 - €) N, that, at x = 0, 

€ 

2 1 + v2 

1 - € = 2 (2V2 - 1) 

x'=l 
* A further examination shows that for a> 3 + 2 J"2 cr; has a minimum but this is smaller than 

X=O x'=l x=O 
,,~ when a < 6·7. Up to this value we therefore have cr~ = cr~ for the best curves. For a> 6·7 the 

x~=l 

minimum of cr~ determines the best distribution. 

Biometrika xn 5 
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Hence 

and 
........ -......................... (84). 

For a <" 3 we have found v2 = 1 which according to (84) involves 11-2 = 11-4' so 
that only the distribution above consisting of three groups can realise the requisite 
conditions. 

When a> 3 we have v < 1 and therefore 11-4 < 11-2' so that it must be possible 
to satisfy the equation (84) by a continuous distribution of observations. However 
v2 is decreasing so slowly for increasing a that practically the distribution deter­
mined by (84) cannot differ much from three groups of observations. 

Our results are accordingly that for a function of the second degree, of which the 
standard deviation of the observations is a (1 + ax2), we get the best function for a; 
when a <" 3 by taking three groups of observations at the middle and the ends of the 
range, each group proportional to the squared standard deviation at the place, and when 

3 + 2V2 > a > 3 by taking three groups of observations determined by (82) and (83). 

(6) From (78) we find 
x~O a2 11-a; = N- (1 + 2al1-2 + a211-4) - 4 2' 

11-4 - 11-2 

which, when 11-2 and 11-4 are found in accordance with (82) and (84), determines the 
maximum ayarrived at from our special three groups of observations. Besides the 
numerical evaluation of this standard d~viation, we give in Table IV below the 

. maximum of ay obtained from a distribution for which cp (x) is constant from - 1 to 
1, that is, since, according to (67), 

~ = (1 + ia + ~) , 
,I. ( ) = (1 + ax2)2 ~ 
't' X 2' 2 . 

1 2 a 
+3a +r; 

the distribution 

That maximum is determined by 

a; = ~ ( 1 + ia + ~) . 9, 
2 
~ . 9 being the maximum a; obtained from a rectangular distribution of observations 

with the standard deviation a. 

The last column of the same table gives the maximum ay arrived at when cp (x) 
x=o x'=l 

is the rectangular distribution with clusters at - 1 and 1 for which a~ = a!. For 
this distribution consisting of ·22026 N observations at + 1 and at - 1 and 
·5595 N = 2cN uniformly distributed from - ] to 1, we have found as given in 
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Table II (p. 50) the maximum iN' 1·862. Hence when fL2 and fL4 are the moment 

coefficient of this ¢ (x) the maximum is found from 
2 

a; = N (1 + 2afL2 + a2fL4) . 1·862. 

We find fL2 = '6270, fL4 = ·5524 and ~ = 1 + 1·2540a + ·5524a2. 

The actual distribution is hence 
·27975 (1 + ax2)2 

if1 (x) = 1 + 1.2540a + .5524~ . N, 
together with the clusters 

·22026 (1 + a)2 N 
1 + 1·2540a + ·5524a2 • , 

at - 1 and l. 

TABLE IV. 

i 

M' f JNj. IN Maximum of 
IN aXlmum 0 (fy- I MaxImum of (f - for 

(j I Y cr 
a (fY7 for for distribution I distribution with 

the best with ¢(x)=l! ¢(x)=c and clusters 
distribution 2 at ± I 

~- ~ ~ 

0 1·732 3·000 1·862 
1 3·000 4·099 3-120 
2 4·359 5·310 4·453 
3 5·745 6·573 5·810 
4 7·135 7·861 7-178 
5 8·522 9·165 8·551 

1 

The difference between the first and second maxima taken as a proportion of the 
first varies from 79 per cent. at a = 0 to 8 per cent. at a = 5, while the difference 
between the first and the third maxima varies from 8 per cent. at a = 0 to 0·4 
per cent. at a = 5. The continuous distribution with clusters is therefore 
especially useful for smaller a. 

For a = 4 we find from (82) v = ·9816 and for a = 5, v = '9700, both of these 
values of v are so close to 1 that if instead of using them we take the observations 
at 1 and - 1 and let the numbers of the three groups of observations be proportional 
to the squared standard deviations we get the maxima 7·141 and 8·544 which only 
differ quite insignificantly from the corresponding values of Table IV. 

(7) For a function of the first degree, of which the standard deviation of the 
observations is a (1 + ax), where 0 < a < 1, we have, according to (66) and (67), 

2 u2 1 + 2afLl + a2fL2{ 2 2} UY=N- 2 fL2- l-~lX+X .................. (85). 
fL2 - fLl 

For fLl = - c2 the maximum of this function is at x = 1, and for fLl = c2 at - l. 
As the maximum of (fL2 - 2fLl X + x2) has the same value in both cases it is clear 

5-2 
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that the negative fLl gives the lower maximum for a~. We therefore only have to 
find the conditions for [a;L=1 being a minimum when fLl < 0. 

We have 
"'=2l_ a~ [(1 + UfLl)2 + a2 (fL2 - fLDJ { _ 2 + (1.- )2} (86) 
ay - N 2 f.t2 fLl fLl ... ... ... , 

fL2 - fLl 

and differentiating with regard to fL2' 

[ da;,] = (j~ a2 (fL2 - fLD2 - (1 - fLl)2 (1 + afLl)2 
_dfL2 ",=1 N' (fL2 - fLD2 . 

As a < 1, we have (1 - fLl) (1 + afLl) > ° and 

a (fL2 -- fLil - (1 - fLl) (1 + afLl) = (afL2 - 1) + fLd1 - a) < 0, 

from which it follows that 

for any fLl '< 0. 

The greatest value fL2 can take for our range - 1 to + 1 is 1, the minimum of 
.r=l 
a; must therefore be found for fL2 = 1, for which value (86) passes into 

2 _ a2 S _ (1 - a)21 
[ay],x=l- N 2 t2a -t l+fLl r' 

2 

which, since fLl '< 0, is a minimum and equals N . 2 (1 + a2) when fLl = 0. 

The 4> (x) distribution ought accordingly to consist of two equally big groups 
at the ends of the range and the actual distribution to be chosen for a function of the 
first degree, the standard deviation of which is a linear function of the variable, should 
be two groups at the end8 of the working range with numbers proportional to the squared 
standard deviations at these places. 

(8) For a continuous distribution from - 1 to 1 with frequencies proportional 
to the squared standard deviations we have 

fLl = ° and fL2 = !, 
and the maximum ,1'=1 a2 ( a2) 

a~, = N 1 + 3 4, 

.1. ( ) = (1 + ax)2 ~ 
't' X a2 . 2 . 

1+3 
the actual distribution is 

Table V contains besides the maxima of ay from these two distributions those 
obtained from a distribution for which 4> (x) is constant with two additional clusters 

at - 1 and 1 each consisting of ~ of the observations. 

The actual distribution is, since 

fL2 = i + t =!, 
.1. ( ) = (1 + ax)2 ~ 
't' X 1 + !a2 • 4 ' 
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(1- a)2 N . 
--~-- - observatIOns at - 1 
1 + ia2 ' 4 

(1 + a)2 N . dd" 
-~22 . -4 at + 1 III a ItIOn. 
1 + sa 

The maximum of a~, is 

TABLE V. 

i I 'liN 
Ma.ximum of 'M' f yNI Maximum of lJy - for 

'liN I aXlmumo lJy~ IJ 
lJy - for f o· distribution with 

a IJ or distribution N 
best ~istri. I . . _ N ¢> (x) =4 and clusters 

butlOn I wIth ¢> (x)-9 
~ at ±l 

-.------~--- -----

·0 1·414 2·000 l·581 
·1 1·421 2·003 1·587 
·2 1-442 2·013 1·602 
·3 1-477 2·030 1·628 
·4 1·523 , 2·053 1-663 
·5 1·581 2·082 1·708 
·6 1·649 2·117 1·761 
·7 1·726 2·157 1·821 
·8 1·811 2·203 1-889 
·9 1·903 2·254 1·962 

69 

(9) For afunction of the second degree we found in (5) that when the standard 
deviation of the observations was Sy = a (1 + ax2) and a '< 3 it was advantageous 
to use the whole working range of observations, much more must this be the 
case when Sy = a (1 + ax) and 0 '< a < 1. We shall therefore try to find the three 
best groups of observations taken at - 1, v, and 1, supposing v unknown. We do 
not venture to assert that another form of distribution might not lead to a curve 
of standard deviation with lower maximum, but the solution of the general problem 
would involve a more elaborate investigation into the possible variations of /1-1' /1-2' 
/1-3 and /1-4 for distributions with limited range than seems desirable in this con­
nection. We shall further limit our problem by assuming that the best distribution 

x~l "'=-1 
will be found among those which make a;, = ai, and both also equal to a maximum 
situated between x = - 1 and x = 1. This would obviously be right if the 
maximum were found at x = v; this in fact is not the case, but still the maximum 
value is likely to be chiefly determined by the number of observations at x = v and 
there is therefore every reason to believe that our assumption is justifiable. 

Let there be N'8 observations at - 1, N . y at 1 and N (1 - '8 - y) at v. The 
interpolation formula of Lagrange then gives 

(x -.- v) (x - 1) _ (x -- v) (x + 1) _ x2 - 1_ 
Y = (1 + v) . 2 Y -1 + --(r - v)-. -2 - Jh + v2 - 1 y,,, 
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from which we find 

IS 

or 

2 _ a2 {(X - V)2 (X - 1)2 (1 - a)2 (x - V)2 (x + 1)2 (1 + a)2 
ay - N 4 (1 + V)2 . I) + 4 (1 - '1.')2 • Y 

The condition for 
","'1 "=-1 
a~ = a~ 

(1 + a)2 (1 - a)2 
-y-=-S 

x=1 
Eliminating I) we obtain for ai, - a~ the value 

(x2 - 1)2 (1 + aV)2} 
+ (v2 - 1)2' 1 - I) -.:. y . 

a2 _x;l = ~ (1 + a)2 (X2 - 1) r (1 + av)2 (X2 - 1) 
v Y N' (v2-1)2 ((l+a)2-2y(l+a2) 

+ 2~ [(1 + v2) x2 + 2v (1 - v2) x + 2 - 5v2 + V4]} 

2 _X=l_ ~ (1 + a)2 (x2 - 1) {'(1)2 (1 2) _ 2 ( _ )2J x2 
ay a v - N . (v2-1)2[(1 + a)2 _ 2y(1 + a2)] L + a + v y a v 

+ 2v (1 - V2) [(1 + a)2 - 2y (1 + aJ)J X + (1 + a)2 (2 - 5v2 + v4) 

- 2y [(1 + a2) (2 - 5v2 + v4) + (1 + av)2J} ..................... (87). 
",=1 

Our assumption that the maximum a~ shall be equal to a'~ requires that the 
expression in curled brackets shall be a perfect square for which the condition is 

2 [ Y ] 2 {a2 (1 + a2) v6 + 2a (1 + a2) v5 + (3 _ a2 _ 3a4) v4 - 4a(3 + 2a2) v3 
(1 + a)2 
+ (- 2 + 9a2 + 5a4) v2 + 2a (3 + a2) v - a2 (3 + 2a2)} 

+ -y-{- a2v6 - 2av5 + (- 5 + 2a2) v4 + 12av3 - (2 + 9a2) v2 - 2av 
(1 + a)2 

+ 3 + 4a2} + v4 + 2v2 - 1 = 0 ................................................ (88). 

x=l a 2 (1 + a)2 
Now a! = N' y is the maximum which we want to make as low as 

possible, hence we have for a certain a to find the v for which (1-: a)2 as given by 

(88) is a maximum. 

We shall examine the cases a = ·5 and a = ,9. 

(10) For a = ·5 (88) takes the form 

[ -""_.J2 {·625v6 + 2'5v5 + 5· 19.5v4 - 14v3 + 1'125v2 + 6·5v - 1·75} 
(1 + a)2 "" 

+ y {-·25v6 - v5 - 4'5v4 + 6v3 - 4'25v2 - V + 4} + v4 + 2v2 - 1 = 0 (1 + a)2 , 

which differentiated with regard to v gives 

[ y J2 {3'75v6 + 12'5v4 + 20'5v3 - 42v2 + 2·25v + 6·5} (1 + a)2 

+ y {- 1'5v5 - 5v4 - 18v3 + 18v2 - 8·5v - I} + 4v (v2 + 1) = 0 (1 + a)2 . 
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We find that these two equations have for v = - ·190 the root (1 : a)2 = ·2936 

in common which represents a maximum. 
2 

The maximum of the curve is hence N . 3·405, which value occurs for x= ± 1 

and for x = ·064 determined by (87). 

The distribution of observations is 

and 

·6607 Nat 1, 

·0734 N at - 1, 

·2659 N at - ,190. 

For comparison we shall consider what would result from taking for the cP (x) 
distribution three equally big groups of observations at - 1, 0 and l. This would 
for observations with the constant error a make the maximum of the curve equal 

2 

to N . 3 and that multiplied by 

gives 

1 2 2· 3·5 
+ ap,1+ a P,2=3 

a 2 

N· 3·5. 

The actual distribution ifi (x) would be 

and 

·6429N at 1, 

'0714N at -1, 

·2857 Nat O. 

This last distribution only makes the maximum a~, about 3 per cent. greater 
than the value which we obtained by our special distribution and it will therefore 
for most practical cases be as useful. 

(11) When a = ·9 we find for (87), 

[ Y J2 {2'9322v6 + 6'516v5 + ·4434v4 - 33'264v3 + 17'141v2 + 13·716v - 7·4844} 
(1 + a)2 

+ --y- {- ·81v6 - 1'8v5 - 3'38v4 + lO'8v3 - 9'29v2 - 1·8v + 6·24} 
(1 -+- a)2 

+ v4 + 2v2 - 1 = 0, 

which differentiated with regard to v gives 

[_1'_ J2 {17'5932v5 -+- 32'58v4 + 1'7736v3 - 99'792v2 -+- 34·282v + 13'716} 
(1 + a)2 

+ y {- 4'86v5 - 9v4 - 13'52v3 + 32'4v2 - 18·581) - 1'8} + 4v (v2 + 1) = 0 
(1 + a)2 . 

For v = - ·354 these two equations nave the root (1: a)2 = ·23214 in common 

which is therefore the maximum of (I ~ ~)2 . 

 at University of Southern California on March 13, 2015http://biomet.oxfordjournals.org/Downloaded from 

http://biomet.oxfordjournals.org/


72 Choice in the Distribution of Observations 

The maximum of the corresponding a; is hence 

~ (~±_ a)2 = a2 4.308 
N· y N· . 

From (87) we find that it occurs at x = ·125 as well as at x = ± 1. The dis­
tribution of observations is then 

and 

·8380N at 1, 

·0023 N at - 1, 

·1597 N at - ·354. 

Comparing again with a distribution consisting of three groups of observations 
at - 1,0 and 1 with frequencies proportional to the squared standard deviations at 
these places we find that the distribution would be 

·7814N at 1, 

·0022 N at - 1, 

and ·2164N at 0, 

and the maximum of a0 would be 

a2 a2 
N· 3 (1 + 2aIL1 + a21L2) = N. 4·62. 

We thus find that by our special distribution the maximum of a~ was 7 per cent. 
lower, the choice of that distribution would thus permit us to reduce the total 
number of observations at the same rate without raising the maximum of a~,. 

(12) The result of these investigations is that the maximum ay obtained from 
the best three groups of observations differs so little from that obtained from three groups 
at - 1, 0 and 1 that the first grouping only in quite exceptional practice would be pre­
ferred. 

We shall therefore in Table VI give the maximum ay arrived at from the 
following three distributions: (1) three groups of observations at - 1, 0 and 1 in 
numbers proportional to the squared standard deviations at these places, (2) a 

distribution for which ~ (x) = ~, and (3) a distribution for which ~ (x) = ·2797 N 

with additional clusters ·2203 N at ± 1 (see Table II, p. 50). 

Both in Table V and in Table VI the difference between the two first maxima 
as a proportion of the first decreases with increasing a so that the distribution with 
uniform ~ (x) is more profitable for a> 0 than for observations with constant 
errors. 

VIII. Best distribution of observations for detennining a single constant 
oj the function. 

(1) Our choice of observations has hitherto aimed at giving within the working 
range of observations a determination of the function as accurate and uniform as 
possible. We shall now consider what is the best choice of observations for 
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TABLE VI. 

I Maximum of I Maximum of 0" 1/N M· f 1/N! Maximum of I 1/N - y 0" aXlmumo O"Y---;- 1/N 
0" - from ' ... 0" -- from a. Y 0" from dlstnbutIOn from distribution fori Y 0" 

three groups for which <!> (x) =!! which ¢(x)=·2797N best three 
at 0 and ± 1 2 and clusters at ± 1 groups 

---- - - - -

·0 1·732 3·000 1-862 -
·1 1·738 3·005 1-868 -
·2 1·755 3·020 1·886 -
·3 1·783 3·045 1·914 -
·4 1·822 3·079 1·954 -
·5 1-871 3·122 2·003 1·845 
·6 1·929 3-175 2·062 -
·7 1·995 3·236 2·129 -
·8 2·069 3·304 2·205 -
·9 2·149 3·381 2·287 2·076 

determining a single constant of the function. The investigations will be carried 
out for functions of the first and of the second degree for which the standard 
deviations of the observations are 

8y = (J (I + ax2), a> - 1 
or 8y = (J (I + ax), I > a ~ o. 

We have in (3) of Section I given the formula (8) for a~,v and shall here give only 
the form to which it is transferred by putting 

ifi (x) = lccp (x)f(x). 

1 I r k = N. cp (x) . f (x) dx. 

The formula analogous to that given for a~ (66) is 

a~ . ~k 0 0 0 I 0 
v a 

0 1 fk1 fL2 fLv fLn 
0 fLl fL2 fts fLv+l fLn+1 
0 fL2 fLs fL4 ftV+2 fLn+2 =0 ... (89). 

1 {.Lv fLv+1 fLV+2 fL2V fLn+v 

0 f.Ln fLn+1 fLn+2 fL1>+n fL2n 

(2) For a function of the first degree 

y=no+ aIx, 

for which the standard deviation of an observation is 
Sy = a (I + ax2L a> -I, 

and therefore ~ = 1 + 2afL2 + a2p.4' 
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we find, according to (89), 

u2 (1L2) a~o = N- (1 + 2aIL2 + a21L4) 1 + - ~ 2 ; ......... ;~ ••••• ; .... (90), 
1L2 ILl 

and U~I = N~ (1 + 2al£2 + a21L4) _1_2 ........................... (91). 
1L2 -ILl 

As for any skew distribution of observations we can find a corresponding 
symmetrical distribution with the same 1L2 and 1L4' both these expressions are a 
minimum for f£l = 0. 

We have already shown in (2) of Section VII that any possible values of 1L2 and 
1L4 can be produced by three symmetrical groups of observations, so that by intro­
ducing the variables v and y determined by 

1L2 = v2 y, 

and 1L4 = v4y, 
and limited by v2 < 1, 

° < y < 1, 
we do not leave out any possibilities. 

From (90) we then get 

2 

which for a > ° is a minimum when y = v2 = 0, and for a = ° is N for any y 

and v2• 

For a < ° we find, since 
da2 u2 
dv~o == N 2ay (1 + av2) 

1 
and v2 < - -, 

a 

that for a constant y, u~,o has the least value when v2 is as great as possible, that 
is for v2 = 1. 

The minimum of u~'Q is then 
u2 

U~,o = N{l + (2 + a) ay}, 

which, since a (2 + a) < 0, is a minimum when y takes its greatest possible value 1. 

The minimum is thus 

Hence we conclude that: 
2 

when a > 0, u~o is a minimum and equal to ;. for N observations at x = 0, 

2 

when a = 0, u~o is a minimum and equal to N for any distribution for which ILl = 0, 

and 
2 

when a < 0, u~o is a minimum and equal to ;. (1 + a)2 for two equally big groups 

of observations at ± 1. 
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(3) When we introduce 1-'1 = 0,1-'2 = yv2 and 1-'4 = yv4 in (91) we get 

a!, = ; (1 + 2ayv2 + a2yv4) y~2 . 
This for constant v2 is a minimum when y = 1 and then equal to 

a~, = ~ (1 + 2av2 + a2v4) ~ ..•..•..................... (92). 

As 

v2 = ±! when possible, that is for a >= 1 determines a mInImUm, while for 
a 

a < 1, a~, reaches its lowest value for v2 = 1. From (92) we find for a >= 1 the 
mInImUm 

and for a < 1 the minimum 
a2 

a2 = - (1 + a)2 
a, N ' 

2 

both formulae giving a~, = N . 4 for a = 1. 

Our results are accordingly: 
2 

when a> 1, a~, is a minimum and equal to N. 4a for two equally big groups of 

observations at x = ± ! or for any distribution with the same 1-'2 and 1-'4, 
a 

a 2 
and when a ~ 1, a~, is a minimum and equal to Ii (1 + a)2 for two equally big 

groups of observations at x = ± 1. 

We see that for a ~ 0 two equally big groups of observations at ± 1 make both 
a~o and a~, minima and these groups in addition form the distribution for whicha~ 
has the lowest maximum within the possible range of observations. 

(4) For afunction of the second degree 

y=ao+a]x+o'2 x2 , 

with the standard deviations of observations 

Sy = a (1 + ax2), a> - 1, 

and therefore ~ = 1 + 2al-'2 + a21-'4' 

we find, from (89), 

2 a2 (1 2 2 ) 1-'2!-t4 - I-'~ (93) 
aao = Ii + al-'2 + a'l-'4 '1-'21-'4 - p.~ -I-'~ + 21-'11-'21-'3 -l-'il-'4 ...... '" • 

2_~ 2 ~-~ 
aa, - Ii (1 + 2ap'2 + a '1-'4) '1-'21-'4 _I-'~ -I-'~ + 21-'111-21-'3 -l-'il-'4 '" ...... (94), 

and 2_U2 2 1-'2-l-'i -
a"2 - N (1 + 2al-'2 + a '1-'4) '1-'21-'4 _I-'~ -I-'~ + 21-'11-'21-'3 -l-'il-'4 ........ . (90). 
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We shall prove that the last factor of each of these formulae is a minimum for 

fLl = fLa = o. 

To prove this for (93) we consider the difference 

fL2fL4 __ _ fL~ fL2 (fL2fL3. - fllfL4)2 > 0 
fL2fL4 - fL~ fL~ -- 2fLlfL2fL3 + fLrfL4 fL2 (fL4 - fLn [(fL3 -- fLlfL2)2 + fLr (fL4 - fLm ' 

from which follows 

2 2 
fL4 - fL2 > fL4 - fL2 

3 [( )2 2 (2)] 3 . fL2fL4 - fL2 - fLa - fLlfL2 + fLl fL4 - fL2 fL2fL4 - fL2 

For the case of (95) we compare 

and hence 
fL2 - fLr fL2 fLi 

·~--3~-"-c"2 - .. - -~--2 .. > . ---3 > 2 2 • 

fL2fL4 - fL2 - fL3 + 2fLlfL2fLa - fLlfL4 fL2fL4 - fL2 fL3 - 2fLlfL2fLa + fLlfL4 

It is thus proved for the three formulae that a distribution of observations for 
which fLl = fLa = 0 gives lower values than any distribution with the same fL2 and 
fL4 as the former and with fLl ~ 0, fLa ~ o. 

Hence our problem is reduced to finding the fL2 and fL4 which make the following 
expressions minima: 

2 

a~,o = NIJ"- (1 + 2afL2 + a 2fL4) ~ ••••....••.••.•••••.. (96), 
fL4 - fL2 

(J'~., = N~ (1 + 2afL2 + a 2fL4)..!. ••••••••••••••••••••••••••• (97), 
fL2 

a~, = Nc! (1 + 2afL2 + a 2fL4) _1_2 ..................... (98). 
fL4 - fL2 

(5) Introducing fL2 = yv2 and fL4 = yv4 in (96) we get 

a 2 = ~ (1 + _L (1 + aV2)21 "0 N 1-y )' 
2 

which is seen to be > N except when y = o. 
2 

Hence the minimum value of a~o = N can only be obtained by taking all the 

observations at x = o. 
(97) is identical with (91) for fLl = o. The conditions for a minimum of a~, are 
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therefore the same for a function of the second degree as for a function of the 
2 

first degree. That is, when a> 1, a~1 is a minimum and equal to N . 4a for two 

equally big groups of observations at x = ± !, or for any dist.ribution with the same 
a . 

2 

11-2 and 11-4' and when a '< 1, a~1 is a minimum and oqual to ~ (1 + a)2 for two equally 

big groups of observations at x = ± 1. 

With the variates y and v (98) takes the form 

. a 2 224 1 
~2 = LV (1 + 2ayv + a yv ) v4y (1 _ y) . 

By differentiating with regard to '1.'2 we get 

da~2_ a2 2 2 
dv2 - LV . y (1 _ y) '1.'6 (- 1 - ayv ), 

which is negative for any a, v and y within our limits. 

For constant y, a~2 is therefore least when v2 = 1 and the minimum value is 

~2=~(~ +2a+a2)1~y···························(99). 
This is again a minimum when 

da2 a2 1 
l1y"-2 = LV . y2 (1 _ y)2 {a (2 + a) y2 + 2y - I} = 0, 

that is for y = 2_1- which gives a minimum both for positive and negative a. 
+a 

Thus the distribution that makes a~2 a minimum has a rp (x)-distribution 

consisting of 'i(2~-;;') observations at - 1 and 1 and ~t: N observations at o. 

We have 

and 

The relation 

then gives us 

and 

1 
11-2=11-4= 2 +a 

1 
k = (1 + a). 

if; (x) = k rp (x)f (x) 

N 
if; (0) = 2 + a 

l+a 
if; (± 1) = 2 (2 + a)" N. 

From (99) we find the minimum value 

a 2 
a2 = - (2 + a)~. a, N 

2 

Our result is thus that a~2 is a minimum and equal to N (2 + a)2 for a distribution 

.. if N b . ° d l+a N 1 consMttng 0 2 + a 0 servatwns at an 2 (2 + a) at ± . 

 at University of Southern California on March 13, 2015http://biomet.oxfordjournals.org/Downloaded from 

http://biomet.oxfordjournals.org/


78 Ohoice in the Distribution oj Observations 

(6) When the standard deviation of an observation is 

Sy = a (1 + ax) and 0 ~ a < 1, 

we have 

and according to (89) we find for a function of the first degree 
2 

a~o = Na (1 + 2aJkt + a2fL2) fL2 ~ '" .................. (100) 
fL2 - fLl 

and a~, = N~ (1 + 2afLi + a2fL2) 1 2 ..................... (101_). 
fL2 - fLl 

By differentiating (100) we find 

da~ a2 2fL2 (1 + afLI) (fLl + afL2) 
dfL: = N (fL2 - fLn2 

and 
da~_o a2 (afL~ - 2afL~ - fLI) (fLl + afL2) 
dfL2 = N (fL2 - fLD2 

Both of these can only be zero when 

fLl + afL2 = 0 ................................. (102), 
2 

which is seen to determine a minimum of a~o the value of which is N' The 

condition fL2 = - ttl ca,n befuljilled by an infinity of different distributions. From 
a 

0'<fL2,<1 

follows the condition 05 fLl 5 - a. 

We shall confine our attention to those distributions which consist of two groups 
of observations. Let there be Ny observations at VI and (1 - "I) N at v2 , we then 
have 

fLl = v~ + "I (VI - v2), 

fL2 = v~ + "I (v~ - vn, 

from which by means of (102) is found 

___ :r~_= 1-"1 _ 1 
- v2 (1 + av2) v~i+~cW~) -- (VI - V2){1 + a (VI + v2)} 

and -~ = 1 + afLl = (l±_avl ) Q...± av2) 
k 1 + a (VI + v2) 

Thus we find that the cf> (x)-distribution consists of 

- V2 (1 + av2) N 
(VI - v2) {I + a (VI + v2)} at VI 

VI (1 + avl ) ----------- N at V 
(VI - v2) {I + a (VI + V2)} 2. 

and 

while the actual distribution 
_ 1 + a (VI + V2) 2 

if; (x) - (1 + avl ) (1 + av2) (1 + ax) cf> (x) 
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consists of 
........................... (103). 

and 

We thus see that for any two points VI and V2 of which one is negative and the other 
2 

positive we can choose the numbers of observations so as to make a~o = N as it of 

course would be by taking a single group of observations at x = O. 

(7) By differentiating (101) we get 
. da2 a2 2 

-d~ = N ~( ~-~2):j (1 + all-I) (Il-I + a1l-2) .................. (104) 
Il-I 1l-2 ~ Il-l 

da~l a2 (1 + a1l-I)2 
dj.;,2 - N (1l-2 ~ Il-l)2 . 

and 

As the latter is always negative a~'l is for constant Il-I least when 1l-2 has its 
greatest value, that is 1. 

Introducing this in (104) we get as condition for a minimum, 

Il-I + a = O. 

There is only one distribution for which 1l-2 = 1 and Il-I = ~ a, .and it is that 
consisting of two groups of observations at - 1 and 1 included in the distributions 
examined in (6). 

From (103) we find that the actual distribution consists of 1 ; a N observations 

at - 1 and 1 ~ a N at 1. The minimum of a~'l is from (101) found to be ~ . 
2 

The minimum ;. of a~l can thus only be obtained by taking tw~ groups of observa-

tions at the limits of the range with numbers proportional to the standard deviation 
of observations at these places. This distribution makes also a~,o a minimum, but it 
is not, except when a = 0, the distribution which gives a~ the lowest maximum value 
within the possible range of observations. 

(8) For afunction of the second degree .. 

with the standard deviation 

where 

we have 

and from (89), 

y = ao + alx + a2 x2 

a y = a (1 + ax), 
O~a<l 

~ = 1 + 2all-1 + a21l-2' 

... (105), 

... (106), 

... (107). 
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(105) may be brought into the form 

where the denominator and fL2fL4 - fL3 are always positive. Hence the condition 
2 

for a~,o' taking its minimum value N' is 

fLl -I- afL2 = 0 and fL§ -. fLlfL3 = 0 

0~ = f!'}, = - ~ ..................................... (108). 
fL2 fLl a 

or 

We shall examine the possible distributions consisting of three groups of 
observations with the frequencies Yl> Y2 and Ya at VI' v2 and v3 • The conditions 
(108) require 

Yl vi -1- Y2V~ -I- Y3V~ Yl vi ± Y22:'~ + Y3~ Y2V~ (V2 - VI) -I- Y3V~ (V3 - VI) 1 
YIVl+YZV2+Y3V3 Ylvi+Y2V~+Y3V§ Y2V2(V2-Vl)+Y3V3(V3-Vl) a 

y1vd_!_±_av]) = 2'2 V2j_~±.Cl:V2) = Ya V3Q..±~Va.) ............ (109). 
~-~ ~-~ ~-~ 

or 

Now __ Vl~, _V2. and~3. can never all have the same sign and (1-1- av) 
v2 - V3 V3 - VI VI - V2 

is for any V ~ - 1 positive, from which it follows that (109) leads to negative 
frequencies. Nor can (109) be satisfied by two groups of observations as Y2 = 0 
requires VI = V3 = 0, that is one group of observations at x = 0 which of course 

• 9 a 2 

glves a;,o = N' 

(9) We may write (106) 

" _ ~2 (_~ I _~ (,;,4 - fL~) (fLl -I- afL2)2 -I- (fL3 - fLlfL222) 
a", - N fL2 T fL2' (P'4 - fL~) (fL2 - fLi) - (fL3 - fLlfL2)2 ' 

where the last ratio is seen to be positive unless 

fLl + UfL2 = 0 and fL3 - fLlfL2 = 0 ..................... (1l0). 

If therefore any distribution of observations can give.!. its minimum value 1 
fL2 

and at the same time fulfil those conditions it will make a~, a minimum and equal 
a 2 

to N' But fL2 = 1 together with (1l0) lead to 

fL3 = fLl = - a, 

. 1-1- a N b' 1 d I-UN h h which reqUlre 2 -- 0 servatlOns at - an-2 at 1, w ereas t e actual 

. 'b . . f 1 - a N b t' tId 1 -I- aNI dlstn utlOn must conslst 0 --2- 0 serva lOns a - an -2- at. 
2 

Thus the only distribution which makes a~J a minimum and equal to N is that 

consisting of 1; a N observations at - 1 and 1. ~ a N at 1. 
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(10) The general minimum conditions for au, cannot be found without more 
elaborate investigations into the possible variations of the moment coefficients 
than are at present available and we shall limit our research to the case of three 
groups of observations. 

Let us suppose YI N, Yz Nand (1 - YI - yz) N observations taken at Xl, Xz 
and Xa, and let the corresponding means be YI' Yz and Ya' 

We then find, when 
,i = (Xt - xz) (xz - :xa) (:xa - Xt), 

a2 = ~ {;ih (xa - ~) + Yz (Xl - xa) + 71a (~ - Xt)}, 

and 

a = - + + '--=---:;---=----'----'''-
2 a2 {(X3 - ~)2 (1 + axl)Z (Xt - xa)2 (1 + ax2)Z (xz - Xt)2 (1 + aXa)2} 
a, ,i2 . N YI Y2 1 - YI - Y2 

............ (llI). 

Differentiations first with regard to YI and then with regard to Y2 give the 
minimum conditions 

or. when we suppose Xl < Xz < Xa, 

YI 1- YI - Y2 1 
2 (xa - Xl) (1 + ax2) 

............ (1l2). 
With these values for YI and Yz we get from (llI) 

a2 = (1~ {2 (xa - Xl) (1 + ax2)}Z = <C f 2 (1 + ax2) }Z 
n, N ,i N (xz - Xl) (xa - xz) . 

This for constant Xz is obviously a minimum for Xl = - 1 and Xa = 1 and is then 
equal to 

From this we find 

which shows that 

determines a minimum. 

The minimum value is 

a2 = a2 {2 (1 + axz)}z . 
a, N I-x~ 

2 

a2 = ~ (1 + vi - a2)Z "2 N ' 

and the frequencies found from (1l2) are 

1a vI - a (VI + a - VI -a) . N at - I, 

Biometrika XII 6 
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4~ Vl~ (VI + a - VI - a) . N at 1, 

~- N at -! (1 - Vl-....:.~2). 
a 

IX. Adjustment with regard to both of two var'iates connected by 
a linear relation. 

(1) The case often occurs when both of the variates observed have errors of 
observations of the same order so that adjustment only of one of them is unsatis­
factory. We shall therefore in this section consider adjustment with regard to 
both of the variates and give the adjusted relation between them and the standard 
deviations of the constants. 

Let x' be observed with the standard deviation V~u and y' with the standard 

deviation Vyu, we shall then for the sake of greater perspicuity exchange the 
x' y' 

variates for x = va and y = .jy so that both of our variates have the same 

standard deviation u. Let ~ ~ {xryB} taken over the N pairs of observations be 

denoted by fLr, B' we then find, by adjusting only the y's according to (3), 

y 1 x 

fLo 1 1 fLlO = 0, 

fLu fLlO fL20 

01" Y - fLOI = fLn - fLOIfLlO (x - fLIO) .............•....••• (113). 
. fL20 - fL~o 

By adjusting only the x's we get 
2 

y - fLOI = fL02 - fLO! (x - fLlO) •••..•.•..••..••.•.•• (114), 
fLu - fLOIfLlO 

which only coincide with (113) when 

(fL20 - fL~o) (fL02 - fL~l) = (fLu - fLOIfLlO)2, 

that is when there is perfect correlation between x and y and no casual errors of 
observation. 

(2) Adjusting at the same time with regard to x and y may be transformed to 
the problem of finding the straight line for which the sum of the squared distances 
of the observed points (x, y) is a minimum. 

Let the line sought be 
x cos v + y sin v + p = 0. 

The sum which we want to make a minimum is then 

S = fL20 cos2 V + fL02 sin2 v + 2fLu cos v sin v + 2PfLIO cos V + 2PfLoI sin v + p2, 

dS ° . . dp = reqUIres P = - fLlO cos V - fLOI sm v, 

indicating that the line passes through the mean -i..fLIO' fLot); this determines a 
minimum for constant v. 
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The corresponding S is 

S = (P_20 - p_~o) cos2 V + (P_02 - P_~1) sin2 v + 2 (P_ll - P_OIP_lO) cos v sin v ...... (115), 

which differentiated with regard to v gives 

or 

dS _ { 2 ( 2)} . dv - - P_20 - P_1O - P_02 - P_O! SIn 2v + 2 (P_Il - P_OIP_IO) cos 2v. 

It thus follows that 
tan 2v = . .2 (f!'.lL--=-P-otJ!l!lL _ = 2 tan v 

P_20 - p_~o - (P_02 - P_~1) 1 - tan2v ' 

tan v = ! {P_02 - P_~1 - (P_20 - p_~o) ± V[P_02 - P_~1- (P_20 - p_~o)]2 + 4 [P_ll - P_IOP_Ol]2} 
P_n - P_OIP_IO 

determine a maximum and a minimum of S. 
............ (116) 

Substituting in (115) we find 

S = ! {P_20 - p_~o + P_02 - P_~1 ± V[p,20 - p_~o - (P_02 - P_~1)]2 + 4 [p,n - P_OIP_IO]2}, 
so that the minimum corresponds to the negative sign of the root in (116). 

The adjusted function connecting x and y is hence a line through the general 
mean forming an angle u with the x-axis which is determined by 

tan u = - cot v = P_02 - P_~1 - (P_20 - p_~o) + V[P_20 - p_~o -----c(P_~O~2~--P_~~1~)]c=2~+~4-;-;:-[p,~1~1~-~P_-Ol~P_~1--:O];-;:2 

2 (P_n - P_OIP_IO) 
. . ........... (117). 

For the variates x' and y' there must to this value of the tangent be added the 

factor J~, expressed by the moment coefficients of x' and y' we therefore find 

tan u = a (P_~2 - P_~1) - Y (p_~o - p_~~) + v~-=-i4r=-;;:(;~~=-~~m2 + 4ay [P_~l - P_~l p_;o] 2 
2a (P_;l - P_~lP_;O) 

............ (118). 

(3) We shall prove that the line is situated between the two regression curves 
(113) and (114). 

Making (P_IO' P_OI) the zero point of the coordinates, the three tangents to be com-
pared are 

P_n P_02 d 1 { +v(· - )2+42}-t - , - an 2- P_02 - P_20 P_02 - P_20 P_n - an u, 
P_20 P_n P_u 

where the P_'s now are the moment coefficients about the mean. 

According to P_n ~ 0 we have 

sInce 

P_n <. P_02 
->-
P_20 P_n 

p_i 1 < P_20 . P_02' 

As V(P_02 - P_20)2 + 4p_il < P_02 + P_20' 

we have tan u :; P_02 . 
P_n 

6-2 
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It rests to compare tan u and /-ttl, we find 
/-t20 

tan u - /-tIl = -21 l/-to2 - /-t20 - 2/-til + j-[~~:~:o_2/-tilJ2+4~il-(~~:~~~~ /-ti:;-} . 
/-t20 /-ttl 1 /-t20 /-t20 /-t20 

The factor in curled brackets is hence positive and we have tan u > or < ~11 
/-t20 

according as /-ttl> or < 0, 
we have thus proved that 

/-tIl ~ tan u ~ /-t02 . 
/-t20 11-11 

(4) In order to find the standard deviations of the constants of the line we 
shall express the observations, the standard deviations of which are V~u and 

Vyu, by a parameter r to get an equation for each observation. 

Suppose Xi = a + ri cos u, 

Yi = b + fi sin u, 
and suppose we have a good approximation for a, b, u, rl , r2 •••••• fN from which is 
calculated x and y corresponding to the observations. The differences between 
observed and calculated x and y can then be expressed by 

~Xi = ~a - fi sin u. ~u + cos u. ~ril 
A Ab A' A J •••....•.•.•..•••• (119), 
uYi = u + fi COSU. uU + sm u. ufi 

and we can carry out an adjustment, ~a, ~b, ~u, ~rlJ ~r2 ... ~fN being the 
elements. 

The normal equations are: 
1 N sinu cosu cosu 
;;: 2: {Xi} =~.1a +O . .1b - 2: {r;} --;;- AU +-",- Arl + ... + -",-.1Tu, 

IN, cos u sin u sin u 
- 2: {Yi} =0 . .1a+ -Ab+2: \Ti} - .1u+- Ml + ... + -.1r,\-, 
'Y 'Y 'Y 'Y 'Y 

2: {r.[- sinu Ax.+ cosu Ay.]l 
, '" ''Y'''J 

sinu cosu [Sin'u COS'U] (1 1) . =-2:{ri}--.1a+2:{ri}--.1b+~{r;}" -- +-- .1u+r1 --- cosusm",Arl + .. · 
'" 'Y '" 'Y 'Y '" 

+rN (~ -~) cosusinu.1rN, 

cos u .1 sin u A 
--;;:-- Xl + --.y Yl 

cosu sinu (1 1) . (COS2 U Sin2u) =-.1a+--.1b+r1 --- COSUSlllU.1U+ --+-- ATl+ ... +O.Ar,\., 
'" 'Y 'Y '" '" 'Y 

cosu sinu 
-.1x\.+- .1Yv 

'" • 'Y " 
cosu sinu (1 1). (COS2 U sin2 u) =-Aa+-Ab+rx --- cosusmuAu+0.Ar1 + ... + --+-- Ar", 

'" 'Y 'Y '" '" 'Y 

Eliminating rlJ r2 ... fN from the first and the third of these equations by means 
of the last N equations, we obtain 

~ {sin U~Xi - cos U~Yi} = N sin u~a - N cos u~b - ~ {fi}~u ...... (120), 
and 
~ {fi [sin U~Xi - cos U~Yi]} = ~ {fi} sin u~a - ~ {fi} cos u~b - ~{fn~u ... (121). 
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By eliminating the r's from the second of the normal equations we get an equation 
identical with (120), which shows that we have one more element than we can 
determine. 

From (120) and (121) we are however able to find 

(sin u/).a - cos u/).b) and /).u; we get 

sinu/).a - cosu/).b = N ( 1_ 2) ~ {(m2 - m1r;}(sinu/).xi - cos U/).Yi)} 
m2 m1 

and /).u = N (1 2)· ~ {(ml -r;) (sinu/).xi - cosu/).Yi)h 
m2 -m1 

where m1 = ~ ~ {ri} and m2 = 1 ~ (rD· 

For a point of the adjusted line corresponding to rq we find, according to (119), 
pq = sin u/).xq - cos u/).Y q = sin u/).a - cos u/).b - r p /).u. 

The standard deviation of pq is seen to be the standard deviation of the position 
of the adjusted point (xp, Yp) in the direction at right angles to the line. 

We find 

pq = N (1 2) ~ {[m2 - m1 ri - r p (ml - ri)] (sin u/).xi - cos U/).Yi)} 
m2 -m1 

a2 { (r - m )2} and a; =-(asin2 u+ycos2 u) 1+ p \. 
q N m2 -m1 

This standard deviation is quite analogous to that obtained for an adjusted 
ordinate when the abscissa is errorless and gives the same indications for the dis­
tribution of the observations. 

For au we find 
2 a2 (a sin2 u + y cos2 u) a = - ..... - . - _..... . .. _. 
u N (m2 - mi) , 

again emphasising that the standard deviation of the r's ought to be a maximum 
to give the best determination of the line. 

In conclusion I should like to express my thanks to Miss H. Gertrude Jones 
for the care she has devoted to the preparation of the diagrams in this paper. 
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