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In Professor Davis's second paper it is pointed out that 
the 48 operations which bring the cube into coincidence 
with itself are operations which bring any one of the eight 
triangles into which a face is divided by its lines of sym
metry into coincidence with the 48 like triangles of the 
surface of the cube. Any of the subgroups of operations 
brings this same triangle into coincidence with merely a part 
of the 48 triangles. A cube with these triangles all of one 
color and the rest of the cube another color is an object 
which, taking account of color, comes into coincidence with 
itself only under the operations of the subgroup. Similar 
methods can be used for the representation of all regular 
groups and their subgroups. 

THOMAS F. HOLGATE, 
Secretary of the Section. 

ON THE HISTOKY OF THE EXTENSIONS OF 
THE CALCULUS. 

BY J . G. HAGEN, S. J . 

T H E results attained by means of the infinitesimal calcu
lus naturally evoked similar attempts in other directions. 
"We may distinguish between two kinds of new theories, dif
fering from each other mainly in their origin. The one is 
the natural outcome of an ever recurring need of solving 
practical problems or of giving existing theories a broader 
basis; the other owes its origin to purely abstract speculation. 
The former is not the property of any one mathematician; its 
nomenclature is not arbitrarily chosen, and its general in
troduction is only a question of time. This is clear from 
the history of all those branches of mathematics that have 
come into general use. 

The case is somewhat different with the purely speculative 
theories. But though these may never succeed in demon
strating their practical utility, yet they are of value to mathe
matical science since they throw new light on existing 
methods and on their usefulness. For our purpose, how
ever, a summary outline of these theories will suffice. 

The present abstract is confined to those theories that are 
in close relation to the infinitesimal calculus and the theory 
of functions, a-nd excludes, for instance, all geometrical 
methods and what are called ' ' principles '? or methods of 
demonstration. 
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In enumerating the following theories it cannot be the 
intention of the writer to classify them with the abstract the
ories that will never command general attention. They are 
mentioned merely because they have not yet been generally 
adopted. How long a new theory may remain a hidden 
treasure is amply illustrated by Grassmanu's Ausdehnungs-
lehre. Perhaps the reason why some of the theories consid
ered have appeared of slight value is that they are formal 
in their nature and were invented before the full import 
and difficulty of Taylor's theorem was revealed. We ex
pressly exclude from this remark Cauchy's calculus of 
residuals and the calculus of finite differences. How far 
the " operations" of this latter calculus may be promoted by 
the modern theory of functions is a question of great-
interest, which has probably not yet been fully answered. 

While some of these new theories that have a set of for
mulas similar to the infinitesimal calculus are generally 
known, a synoptical view of all of them may be instructive. 
The references to the original sources would be be very nu
merous and cumbersome and are omitted here, as they will 
Ibe given elsewhere.* 

I . Derivation with a General Index. 

The attempts to invent a calculus, of which the differen
tial and integral calculuses should be particular branches, 
date back as far as Leibniz. Their history was outlined 
by Liouville, Tardy, and Cantor. That a negative index of 
differentiation is equivalent to an integration, and viee 
versa, was first stated by Leibniz. The first examples, in 
which the index n of an nth differential coefficient is put 
equal to J, were given by Leibniz and Euler. Later, 
Fourier expressed a differential coefficient by a double inte
gral, and added the passing remark that the index of the 
differential may be any number. While these few exam
ples were intended as mere curiosities, the theory of the 
new calculus was established by Liouville and has since 
remained substantially in the shape that he gave it, al
though it was perfected later by Eiemann, Gruenwald, 
Most, Letnikoff, and Krug. 

Liouville gave three independent definitions of the deri
vation with a general index: first by development into a 
series, then by finite differences, and finally by definite in
tegrals. 

1. Liouville supposed the given function to be developed 
into an exponential series, of which he took the nih differen-

* The writer's Synopsis of higher mathematics, vol.III., pp. 85-99. 
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tial, and then assumed the index n to be any number. His 
hypothesis is generally considered unsatisfactory. Bie-
mann, while yet a student, chose for the same purpose a 
series progressing according to powers of the increment h in 
the development of f(x + h), such that the exponents in
crease by integral numbers. The nth derivation is then the 
coefficient of knh

n, where the factors kn are subject to the 
condition, that the development becomes Taylor's theorem 
when n is an integer. 

The definition by series has been abandoned by later 
writers on the subject. 

2. A second definition was given by Liouville in the fol
lowing manner : He expressed the finite différence Anj by 
Newton's formula, then divided it by hn, and finally took 
the limit for h = 0. If then the index n is taken arbitrarily, 
we have a definition for the general derivation. Gruen-
wald was probably the first to assume this index to be a 
complex number. He also expressly added a lower and 
upper limit to this derivation, as is required in a calculus 
which is to comprise the integral calculus as a special 
branch, and which may be valid only within definite limits 
in the plane of complex coordinates. Gruenwald's notation 
of the nth derivation of f(x) within the interval from a to # 
seems to be the most convenient : £)n [ƒ(#)]«. 

3. A third definition is that by definite integrals. Liou
viUe gave two integrals with the limits zero and infinity, 
and all later definitions are only generalizations of these. 
Gruenwald, as before mentioned, changed the limits into 
a and x. Most gave four different integrals, in each of 
which the upper limit is a critical point of the function 
ƒ(#)• LetnikofE's two integrals resemble those of Liouville, 
except for the upper limit x. Krug's treatise on the same 
subject seems to surpass all others by a more precise state
ment of the conditions to which the formulas are subject. 
One of his integrals is a curve integral, and reminds us of 
Cauchy's fundamental theorem ; the other has the limits 
a and z, and comprises all the cases discussed by Gruenwald 
and Most. 

I t will not be necessary for the purpose of this abstract to 
mention the various theorems which Liouville has estab
lished for the operation Dn [ ƒ ( » ] *. 

I I . Cauchy's 'f Calcul des Residues. ' ' 

This calculus is entirely due to Cauchy as to its origin 
and complete development. Unfortunately this calculus in 
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its entirety has not yet gained general recognition. Ber
trand's " Calcul différentiel" is probably the only text
book that gives a complete theory of it. Of course, as far 
as this calculus is connected with Cauchy's fundamental 
theorem of integration around contours, it will ever remain 
a corner stone in the theory of functions. 

1. The " Calcul des residues " is not a generalization of 
the infinitesimal calculus, like the derivation with general 
index, but rather a branch parallel to it. Cauchy was 
probably led to this new idea by Lagrange's definition of 
the derivative as coefficient of the increment e+1 in the de
velopment of the function /(a + e). For he defined the 
residuum as the coefficient of e~ \ This applies of course 
only to functions which have points of infinity. Suppose 
the equation f(z) = oo has the root zr m times ; then the func
tion (s — zr)

mf(z) = <p(z) is in the point z = zr neither zero 
nor infinite. Hence, putting z = zr + e, we have the devel
opment 

em e r a r w / ' e 1.2 - (m —1) 

I . *2 • • • rn. v 1.2 - m 

Here the coefficient of - is called the residuum of ƒ(«) in 

regard to the m-fold root zr : 

?{m~l\zr) __ 1 dm~l r -I 
( w - l ) ! " " ( m - l ) ! de^l em^Zr+e^ \eJ0 

2. The " integral residuum" of the same function ƒ (z) is 
defined as the sum of the residuals in regard to all the roots 
of f(z) = oo within certain limits, i. e., within z == a + iA 
and z «s b + iB, and is designated by 

> * ( ( ƒ ) ) or > * [ ƒ ] , 

where the letter E is the initial of the word " Extraction." 
I t was changed by Cauchy into a character somewhat similar 
to a capital epsilon. 

The "partial residuum" refers to a function composed of 
factors fu /2, •-, and is designated by enclosing in brackets 
that factor of which the residuum is taken. Thus, 
E [ /J /2 ••• refers to the roots of /i = oo alone. 
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The sign E follows all the rules of the sign of integration, 
so far as the associative, the distributive, and the commuta
tive laws are concerned. 

Cauchy has established many theorems of this calculus 
which it is not necessary to mention here. By numerous 
applications to nearly all branches of mathematics and 
physics he has proved the great power of his calculus. 

I I I . ScheWs u Quotial and Instaurai.11 

This interesting but little known calculus is similar to 
Cauchy's " Calcul des residues," in as much as it branches 
off from the definition of the differential in a new direction. 
But while Cauchy started from Lagrange's idea of the de
rivative, Schell takes Leibniz's and Euler's point of view. 
His original idea is to replace the limit of a finite difference 
by the limit of a finite quotient He endeavored to establish 
a kind of dualism in the infinitesimal calculus by inter
changing differences and quotients, sums and products, 
somewhat similar to Gergonne's and Poncelet's dualism in 
geometry, where line and point coordinates are interchanged. 

There are only two other publications relating to this sub-

( d \r 

XT ) ' 
the other by Gaussin on the "Definition du calcul quoti-
entiel." Gaussin considers this calculus mainly from the 
arithmetical and algebraic point of view. 

1. The definition of the " quotial" consists in this : The 
finite difference A x=xx—x and the differential x

x™xJx=dx 
are replaced by the quotient 6 x =x1 : x and the" quotial " 
xl=x ®x=&x (or = qx in Gaussin's designation). Hence 
Xi=x+dx has the dualistic formula x1=x0x. For the 
" quotial " of a function we have 

u=F(x), Ui=F(xex), 0« = J£. J = ^ g p • 

Now, while in the differential calculus we pass from a 
differential to a differential quotient, we here pass from a 
" q u o t i a l " to a difference, by means of the logarithm. The 
peculiarity of this logarithm lies in the variable base Ox, 
with the limit &x = a> = 1. I t is denoted by A, and we have 
the following definition : 

F(x&x) 
Quotial Logarithm of F(x)=X&F(x)^X-j=——^. 
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The connection between this and the differential calculus 
appears from the following transformation : 

which shows that the "quotial derivative" is substantially 
identical with a logarithmic differentiation. 

On the other hand, it appears that " quotial derivatives " 
of higher order with the symbol 

X—-\ . 
ax/ 

2. The " ins taurai ," as the limit of a product, is the 
dualistic counterpart of the integral, the limit of a sum. 
We first write the quotial derivative in this form 

« W - ' ^ =/(*)> or % $ = .*» d im . - 1). 

Then we divide the quotient of two given limits xQ and x 
into n arbitrary factors 

x 

and substitute the n values 

in the above formula (putting at the same time for w suc
cessively <ov •••, a)n). Finally, multiplying all these equa
tions, and remembering that a>r+1 = - ^ = #xr, we have the 

T 

product 

F(X0) 1 « r+1 

If this product has a definite finite limit, it is called the 
"instaurai of ƒ(#) between x0 and x ( " p r o d u i t " accord
ing to Gaussin), and designated by 

F(x) » fi<r) D o /(<r) ^ 77/ N 
- , ; \ = Pi9(7 , or P&<T = const. i*Y#). 
F(x0) *0 
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The connection between this formula and the integral cal
culus appears from the following identities : 

M-xhgF(x), or C-expfttp-dx = F(x), 

P#<y/0) = e 

IV. The Exponential Function of Higher Order, 

In considering the product as a repeated sum, and the 
power as a repeated product, it was but natural to look for 
a new expression which would repeat the power, and thua 
increase the number of elementary operations from seven 
to eight. The attempt, however, failed, for the reason, 
that base and exponent are not commutative, as are terms 
and factors. Yet we meet in the older literature the ex-

ra 

pression rr . I t is not known where it occurs first. Con-
dorcet equated this power of higher order to a certain series, 
without giving any proof. Euler, in supplying this proof, 
gave a full discussion of the function, and found an interest
ing relation between it and the base of natural logarithms. 

1. He puts p == ra, y = W3, ô = r?, — and investigates the 
condition that the series a, /?, y, ••• converge toward a finite 
value v. Evidently this condition is rw = a>. 

Euler then finds that the maximum value of the root r 
which can satisfy this condition is rx = e1/e= 1.44 ••• and 
the corresponding value a* = e = 2.7 ••• For all values r > rx 
the limit «> =x -f iy is imaginary, and for all values r < r% 
the condition rw = w furnishes generally two values w and w', 
towards which the series a, /?, y, ••• can converge. 

2. Assuming the root r = e and writing x for a the func-
,x 

tion may be expressed by the symbol e6' = expn#, 
where " e x p " is Cayley's notation for the exponential, and 
where n indicates the number of times the letter e is 
written. In this case the differential of the function can 
be written in the following manner : 

d 
2~ expn# =5 expw#. exp*1-1^ ••• exp x. 

3. There are later essays on this function by Eisenstein 
and Woepke, which give no reference to Euler's treatise. 
They do not seem to have substantially advanced our 
knowledge of the nature of this function. 
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V. Extension of the Calculus of Finite Differences. 

There are two very interesting new theories in the line of 
finite differences : one by Oettinger and the other by Dr. 
McClintock., 

1. Oettinger creates a calculus perfectly analogous to the 
calculus of finite differences, another imitation of the 
geometric dualism. He runs side by side the two for
mulas 

4f(*)-/(*+A)-/0O and #(*)=ƒ(* +*)+ƒ(*)> 
and all their consecutive corollaries. The original idea is 
the change of the minus in the former formula into plus in 
the latter. 

The letter C (instead of J ) is the initial of the word 
" Z u n a h m e " (increase). Oettinger then develops a full 
theory of Z±m parallel to that of J±m, with many formulas 
and applications. This calculus does not seem to occur in 
the later literature. 

2. Dr. McClintock has laid down his new calculus in an 
elaborate essay, which appeared in an early volume of the 
American Journal of Mathematics. He starts from the follow
ing symbol, where D is used for -=- as usual, 

2?V0*0 s ehD<p(x) == (1 + A)<p(x) s <p(% + h), Ax = h, 

and designates the operation UE" as " enlargement.'J 

A number of symbolic formulas with the operator E is 
then established, of which the following is remarkable for 
its simplicity, and seems to be the most important of all : 

D = IgE. 

Dr. McClintock then develops the theory of the functions 
of E, and uses it to give the theory of differentiation a broader 
basis, as the logarithmic branch of the doctrine of these 
functions. 

I t would be too long in this abstract to show how the for
mulas of the differential calculus are derived from the sym
bol D = IgE. Nor can we do more than mention the re
markable application of this new method for finding 
simultaneously all the roots of an equation. I t is hoped 
that this calculus of enlargement will give a new impulse to 
the use of symbolic operations which have proved so power
ful in the hands of French and English mathematicians. 
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VI. The Logarithmic Methods of Bergbohm and Oltramare. 

The facility with which exponentials can be handled in 
differentiating and integrating seems to have given rise to 
the two methods to be mentioned here. Both have this in 
common, that they pass from a given function to a loga
rithm or exponential, and, after a series of suitable trans
formations, back to the given function. This process ap
pears almost like a roundabout way, by which the direct 
differentiation and integration is partly covered. Both 
methods were represented by their authors in a rather ob
scure and unsatisfactory manner. 

1. The " new methods " of Bergbohm are based upon the 
symbol dxdy with vanishing base and exponent' This sym
bol is first developed into the converging series 

from which the fundamental formula is obtained 

dxdy = 1 + dylgdx. 

Of this formula the logarithm is taken, and then the anti-
logarithm or numerus, both in regard to a certain vanish
ing base dp. These operations are designated by A and v. 
In this manner the further formulas are derived 

since Adx.]gdft = Igdx. 
The application consists in this, that by the above men

tioned transformations any expression df is changed into 
fdx, and again any expression fdx into df. By the former 
process the derivative is obtained, by the latter the integral. 
The method is tested by some of the elementary formulas. 

2. Oltramare's "Calcul de generalisation" rests on the 
symbol 

by which the operation with the " characteristic " G is said 
to be defined. 

The partial generalization, which refers to u only, or to v 
only, etc., is denoted by Gu, (?„, ••• ; and a repeated genera
lization by Ö2, GP, etc. The inverse operation G -1 is called 
" degeneralisation." 
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The principal operations in this calculus consist in develop
ing both members of the equation 

<jee+«)i»+<y+5).+ .« = <p(x + a, y + b, ...) 

according to powers of the increment a, and equating the 
coefficients of equal powers. By this process the following 
fundamental formula is found : 

In the applications the function <l> has to be developed ac

cording to powers of Dx = -=—, Dy = -=-, •••, after which the 

differentiations are to be performed. 
The idea of this calculus seems to be to replace a given 

function <p(x, y, •••) by the exponential function Gexu + '", and 
then, after some suitable transformations, to return from 
the exponential to the given function. This suggests the 
idea that G is an operator like 2, although the author 
avoids saying so, perhaps owing to the objections which had 
been raised against Liouville's assumption, that every func
tion can be developed into an exponential series. The work 
of Oltramare was recently reviewed by Professor Lovett in 
the BULLETIN. 

GEORGETOWN UNIVERSITY, 
May, 1900. 

BURNSIDE'S THEORY OF GROUPS. 

Theory of Groups of a Finite Order. By W. BURNSIDE,* M. A., 
F.R.S.; Professor of Mathematics at the Royal Naval COIT 
lege, Greenwich. Cambridge, The University Press, 
1897. 8vo., xvi + 388 pp. 
THIS work enjoys the distinction of being the first treatise 

on the theory of groups which does not consider the applica-

*The joint author of Burnside and Panton's u Theory of Equations" 
is W. S. Burnside, an Irishman , professor of mathematics and fellow of 
Trinity College, Dublin. He is not related to the author of the work 
here considered, who is of Scotch extraction and has not published 
any other book. He has, however^ published a number of memoirs—most 
of which relate to the theory of groups—in the Proceedings of the London 
Mathematical Society and in the Messenger of Mathematics. It seemed de
sirable to mention these facts since the two authors—William Burnside 
and William Snow Burnside—are frequently confused. Cf. Netto's re
view, SchlömiWs Zeitschrift, vol. 44 (1899), p. 20. 


