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single-ray velocity be taken as the axis of x" we have 

(~'xm+b'y'2)(£'~+y')--2a%'£'~-.b'~(~ ' +a')y' + a'b~e~' = 0 

as the equation to the curves. 

Section containing the axis of. single-ray velocit# and 
the axis of y. 

InneJ'. Outer. 
x" y . x ". y: 

0"00 2'00 0"00 4"00 
1"00 1"85 1"00 3"85 
1"16 1"80 1"16 3"80 
1'59 1"59 
2"00 1"33 2"00 3"32 
2"32 1"05 2"32 3"03 

2'65 2"65 
2"37 1"00 3"18 1"00 
2"75 0"50 3"14 0"50 
3"00 0"00 3"00 0"00 ) 

and 1"97 

given to the nearest 10 ~, and the other numbers 
decimal place. 

Angles are 
to the second 

XLII .  On the Steady Motion of an Electrified Ellipsoid. 
.By G. F. C. S~ARL~ zl/f.A., Demonstrator in ~xperimental 
_Physics~ Cave, dish Laboratory, Cambridge * 

A T the Meeting of the Royal Society on 19th March, 
1896, I read a paper oll " Problems in Electric Con- 

vection." The first part of the paper is printed in the 
'Philosophical Transactions of the Royal Socie ty ' t ,  and 
contains the principles which are required in the solution of 
any problems about moving charge~. The second part of 
the paper, ~vhich deals with the motion of a charged ellipsoid, 
was not published by the Royal Society. A few ot' the 
results are, however, stated in an abstract published in the 
' Proceedings'  ~. By the permission of the Royal Society I 
now publish my results for a moving ellipsoid. As fre~]uent 
reference to my paper in the ~Philosophieal Transactions 
will be neeessary~ i shall use the notation {§ 5} and {(9)} to 
indicate the paragraph or equation referred to in that paper. 

• Communicated by the Physical Society : read June 25~ 1897. 
t Phil. Trans. vol. 187 (1896) A. pp. 675--713. 

Prec. Roy. See. vol. b9~ p. 343. 
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When any system of electric charges moves with mfiform 
velocity through the ~ether, the electromagnetic field, when 
referred to axes moving forw~,rds with the charges, can be 
completely defined by means of a quantity W, as was first 
shown by Prof. J. J .  Thomson*. The electric force E and the 
magnetic force ~r are simple functions of ~ .  But besides E 
and ~!" there is another vector of great importance, viz. the 
mechanical tbrce F experienced by a unit charge moving with 
the rest of the system. The value of F I have shown {§ 10} 
to be given by the vector equation 

r = ~ + ~ V ~  . . . . . . .  (1) 

The equations of the field are {§ 4} 

curl F = 0 ,  . . . . . . .  (2) 

]t----- KVv_E . . . . . . .  (3) 
1 u ~ 

I f  v =  -¢ K--~ is the velocity of light, and if  a stand for i - -  ~ ,  

then when the motion ~akes place parallel to the axis of x, 
we have {§ 4} 

ttqt d~F dqt 
F~ dx F~= d~d 8-- - -  7~z' (4) 

dq t I d ~  1 d ~  
E l =  dx  E2 = - -  a d y  E~ = a d z '  (5) 

K u  dW K u  d't r 
H , = 0  H~= H~ . . . .  . (6) 

a dz a dy" 

From these equations, since E has no divergence, 

d2~ d ~  d~qt 
a d ~  +d--72 + d ~ j = 0  . . . . . .  (7) 

ttere, and throughout the paper, the axes are supposed to 
move forward with the same velocity as the electrical charges. 

Prof. W. B. Morton has considered the motion of an 
ellipsoid in a paper read before the Physical Society on 
27th March, 1896 :~. He obtains the two following results, 
viz. : (1) that the distribution of electricity is the same as if 
the ellipsoid is at rest, and (2} the value of "t t when the 
ellipsoid moves along one of its axes. 

Prof. Morton obtains his resul~ by the assumption first 

* Phil. Mag. Julv 1889. 
¢ Prec. Phys. Soc. No. 71, August 1896, p. 180 ; Phil. Mag. xli. p. 488. 
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made by Mr. Oliver Heaviside, F.R.S. *, that a distribution 
of' electricity on the surface of a charged body such as to 
give zero disturbance at all points inside the surface is an 
equilibrium distribution. Since F satisfies curl F = 0  and F 
vanishes inside the surface, it follows that on the outside of 
the surface F is perpendicular to the surface. This implies 
that "It is constant over the surface. But as neither the 
electric force E nor the mechanical force experienced by each 
part of the charged surface (calculated from the Maxwell 
stress) is normal to the surface, [ felt unable to accept the 
wLlidity of Mr. Heaviside's assumption until I discovered 
{§ 15} that F is the mechanical force on an isolated moving 
unit charge, and that the term --VGD, which appears in the 
expression for the force experienced by the surface, has no 
influence in causing convection of electricity from one part 
of the surface to another. Here D is the electric displacement, 

dlt  
and G the " magnetic current " / z  ( ~ .  

Since ' t  t is a true potential for the mechanical force F, I 
have called • the "electric convection potential." 

When there has been established the boundary condition 
that W is constant over the surface, with its consequence that 
there is zero disturbance within the surface, it is very easy to 
show that the distribution on an ellipsoid is the same for 
motion as for rest. Suppose the ellipsoid to have the same 
distribution as when it is at rest, so that a = qp/47rabc, where 
q is the charge, a, b, c the axes of the ellipsoid, and p the 
perpendicular from the centre upon the tangent-plane at the 
point. Through any internal point M as vertex draw a 
slender double cone intercepting two areas N, N / on the 
surface, bTow the electric/brce due to a moving point-charge 
is still radial and still varies inversely as the square or" the 
distance, although it, alters with change of direction or" the 
radius vector. Thus it follows just as in electrostatics, since 
a ~: p, that the effects at M of N and N f are exactly equal and 
opposite. The whole surface can be treated in the same 
manner, and thus it follows that E----O at all internal points. 
Hence H=O also. Thus the assumed distribution is in 
equilibrium and is therefore the actual distribution. Thus 
the motion has no influence upon the distribution, and this 
result is true whatever the direction of motion with respect 
to the axes of the ellipsoid. 

In order to find the state of the field near a charged 
ellipsoid moving with velocity u parallel to the ayis of x, it is 
necessary to find a value of W which shall be constant over 

' :Electrical Papers,' voh it. 13. 514. 
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the surfi~ee of the ellipsoid, sh~ll vanish at infinity, and shall 
satisfy (7). We see at once that if f (x, y, z) satisfies 
V2f=0 ,  then f (x/,v/~, y, z) satisfies (7). Now from 
electrostatics we know that 

c~ 

~/(a '2 + X)(b 2 + x) (c" + x)' 

where X is connected with x~ y, z by the relation 
X2 ~2 Z2 

a'2+ ~- + b~+-X + c ~  = 1, 
satisfies V ' ~ = 0 .  

Hence 
t t ('~ Ad~ =}~ - - -  ( 8 )  

¢(a'" + x)  ~ x )  (c  2 + x )  ' " 

where A. is connected wi~h x, y, z by the relation 
X 2 ,~:~ Z 2 

(~,~ + x~ + b ~  + ~--+x = l, (9) 
satisfies (7). 

Writing a ~ for aa r2, (8) and (9) become 

~f f  Ad~ 
~F= ~(a~+aX) (b~+A,) (c2+X) ; (10) 

X 2 .y2 z~ 
a~+~£ + ~ + ~ =1. (~1) 

This value of ~ is constant over the surface of the 
ellipsoid a~ h, c, for X---=0 at all points of this surface ; it also 
vanishes at infinity, and it satisfies (7). I t  is therefore the 
value of • required. To find the constant A we make o" have 
its proper value q/4~rbc at the end of axis a. 

Now 
K K 

at the end of the axis. 
d'V But by (5) E,  = -- - ~ .  

Again, at x = a ,  y = z = O  we have dk/dx---2a]a and con- 
sequently 

d~t ' dW d~ A 2a 
~ , v  = - ~  ~ - a b c  " ~ " 
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Thus, as Prof. Morton has also shown by the same method, 

f ~ q~, d~. (12) 

Now I have shown {§ 21} that if  there is a surface A 
carrying a charge q, and any surface B is found for wh!ch 
T" is constant, then a charge q placed upon B and allowod to 
acquire an equilibrium distribution will produce at all points 
not inside B the ~ame effect as the charged surfitce A. 

Fig. 1. 

8 ~ A 

Hence the ellipsoid (11) when carrying a charge q produces 
at  all points not inside itself exactly the same disturbance as 
the ellipsoid a, b, c with the same charge. 

I f  we make a = b = c = O ,  the surfaces of equal " convection 
potential '" are the ellipsoids given by 

X 2 

- - + S ' ~ + z  2 = X. 

They are therefore all similar to each other. Thus the 
ellipsoid of this form produces exactly the same effect as a 
point-charge at its centre, and thus an ellipsoid of this form 
takes the place of the sphere in electrostatics. An ellipsoid 
with its axes in the ratios ~/a : 1 : 1 I have called a Heavi- 
side Ellipsoid, since Mr. Heaviside ~ was the first to draw 
attention to its importance in the theory of moving charges. 
Whatever  be the ratios a : b : c ,  the equipotential surfaces 

* ' Electrical Papers,' vol. it. p. 514. 



33~ Mr. G. F. C. Searle on the Steady Motion 

approximate to Heaviside ellipsoids as k is made very great. 
q,/7~ 

The value of ~F at the surface X is ~-~.  

Putting c-~-b so that we have an ellipsoid of revolution~ 
the axis of revolution being the axis of x, we see by taking 
k------b ~ that a uniformly-charged line of length 2 +/a~-.b'Za 
lying along the axis of x produces exactly the same effect 
as the ellipsoid a~ b, b. It may therefore be called its 
"image." When b =a  this length becomes 2au/v. Thus, 
when a charged sphere is at rest it produces the same effect 
as a point-charge at its centre. When the sphere is in 
motion it produces the same effect as a uniformly-charged 
line whose length bears to the diameter of the sphere the 
same ratio as the velocity of the sphere bears to the velocity 
of light. When u=v~ so that the sphere moves with the 
velocity of light~ the line becomes the diameter of' the 
sphere ; and the same is true for an ellipsoid. Since when 
u = v  each element of the charged line produces a disturb- 
ance which is confined to the plane through the element 
perpendicular to the direction of motion {(46)}, it follows 
that the disturbance is entirely confined between the planes 
x =  +a.  Between them the electric force is radial to the 
axis of x and has exactly the same value, viz. q/aKp, as if 
the line had been of infinite length and had had the same 
line-density q/2a. Here p stands for {.y~+z~t ½. The mag- 
netic force is by (3) qu/ap. Hence the field between the 
planes x =  -t-a is independent of x. There are therefore no 
displacement-currents except in the two bounding-planes. 
There is an outward radial current in the front plane and an 
inward current in the back plane, the total amount of current 
in each case being ~/u, equal in amount to the convection- 
current carried by the ellipsoid. 

It  appears, however, that at the velocity of light any 
distribution on any surface is in equilibrium. For the value 
of W at any point near a moving point-charge is { (43)} 

~2 = q C ~  
K ¢'x"/a +y~ + z"' 

and this vanishes when u = v  (so tha ta=0) ,  even when x--0.  
Thus the value of • for a point-charge vanishes, and the 
value of W for any distribution being derivable from that for 
a point-charge by integration, it tbllows that W has the 
constant value zero everywhere. Hence the charge is in 
equilibrimn however it may be distributed. The same result 
follows from the expression {§ 19} for the force between two 
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moving charges. When they move parallel to each other 
with the speed of light the ibrce between them vanishes. 

If the ellipsoid is more oblate than Heaviside's the limiting 
internal surthce of ellipsoidal form, whose action is the same 
as that of the ellipsoid, is a disk of radius ~b'T~-~a2/a, the 
axis of the disk coinciding with the axis of x. 

The form of the lines of the electric force ]g due to an 
ellipsoid of revolution is easiry found. Putting p~ for y2+z~, 
the equilibrimn surfaces are given by 

X"' p2 
a2+a k 4 - b ~ =  1 . . . . . .  (13) 

Now the mechanical force Y is normal to this surface, and 
therefore 

F. p(a 2 + ~x) 
F t -  x(b2 ÷ X) ' 

Fp 2 = F2 ~ + F~ 2. 

E , = ] ) '  1 and E ~ = F J a ;  

E,  1 p (a ~ + aX~ 
E I - ~  x@+X)  . . . . . . .  (14) 

where 

But by (5), 

so that 

Now consider the conic 
x2 p2 _ 

a ~ v +  b ~ -  l . . . . . .  (15) 

The tangent of the angle which the geometrical tangent 
makes with the axis of x is 

z(b ~ + v) p(.~+~,.) . . . . . . .  (1G) 

But if the point x, p lies on both (13) arid (15), it follows 
that 

x(b: + v) 1 p(a~ +.X) 
p(.~ + ~,) - ,  x(b ~ + x ) '  

Hence by (14) and (16) the electric force is always tangential 
to the conic (15). But this conic has exactly the same 
equation as the equilibrium surfaces. Thus the single 
equation (13) represents both the equilibrium surfhces and 
the lines of electric force. 

I f  any point x, p be taken , there are two values of X which 
will satisf~¢ (13) considered as a quadratic in ~,. One value 
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corresponds to an ellipsoidal equilibrium surface; the other 
to a hyperbolic surface whose lines of intersection with planes 
passing through the axis of x are the lines of electric force. 
The lines of electric force for a charged sphere in motion are 
not radial but form a series of hyperbolas. 

Figs. 2 and 3 show the forms of the equilibrium surfaces 
and of the lines of electric forc% for a line and a disk respec- 

Fig. 2. 

- . 8  

, = - . 1 6 ~ x  

tively, when a=-¼ so that u/v='866.  In fig. 2 the curve 
marked X----~ is a circl% a section of the sphere of which the 
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line marked X----0 is the " image." The semi-length of the 
line and tile radius of the disk are each taken as unit),. 

Fig. 3. 

] have attempted to find the lines of the mechanical force 1~ 
these being everywhere perpendicular to the equilibrium 
surfaces. But the process involved an impracticable inte- 
gration, and thus led to no result. 

I will now write down the values of E and ~I at any point 
near the ellipsoid of revolution with axes a~ b~ b. Instead of X 
it will be convenient to take as the parameter of any one of 
the equilibrimn surfaces its x axis and to denote this by ],. 
Thus ].2 = a~_{_ a). ; 

and consequently if we put l 2 for a:-ab 2, so that 1 is the semi- 
lengfll o{' the line which is the " i m a g e "  of the ellipsoid, we 
have 

h ~ _ l'~ 
b~+X = - - .  

Gt 
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The value of ~ in terms of h thus becomes 

qa ~® dh 
xt, = K , ~ h  h~--l~ . . . . . .  (17) 

Equation (11) now becomes 

h ~ + ~ - -  (is)  

so thatinstead &the  cylindrical coordinatesxand p ( =  ~/~j2 + z ~) 
we can take h and 4) where 

41,  ~ -  z~ sin 4) (19) x =  h cos 0 ,  0 = ~ • 

From (18) we have in terms of h and 4) 

dh (h~-- l  ~) cos~b, d h _  h ~/h~--/2s~n ¢ ~/~ 
dx  --  h2--l  2 cos 2 4) dp --  K~--l 2 cos 2 4) 

~-I e u c e  

E a =  d~t ' dh aq cos 4) (20) 
dh "dx = K(h ~ -  t ~ cos 2 4)) ' . . . .  

ld~t  ' dh qhsin4) ~/~ . (21) 
E . =  - -  ~3-~-~ " ~  = I¢ 4 h ~ - - Z  ~ (t,~--l~co~ ~ 4))' 

quh sin 4) ~/~ 
H = K u E p =  ~/h~_l~(h~_t~cos  ~ q) ) . . . . .  ('22) 

I now pass on to calcu|ate the total energy possessed by 
the ellipsoid when in motion along its axis of figure. In 
making the calculation I shall suppose that a2>ab 2, i .e . ,  
that l 2 is positive. The case in which a2< ab ~ can be deduced 
by the appropriate mathematical transformation. 

I have shown {§ 22} that the total energy, viz. the volume 

integral of KE~-+#]:[2, due to the motion of a charge on any 
b~r 

surface, is 
W = ½q'I'0 + 27, 

where ~Ito is the value of the convection-potential at the 
surface of the body, and T is the magnetic part of the energy, 
viz., the volume integral of/~H~/87r. 
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:Now in fig. 4 le~ the ellipsoid PQ be determined by h, and 
the ellipsoid RS by h+dh.  Let the angular coordinate of 

Fig. 4. 

P and S be ~), and leg that of Q and R be 4)+ d~b. Then the 
area P Q R S  

d(x,p) d1,d4,= { dxdp dx dp~ . .  

-- d(]~,~ \ dhd~ . ~ ] c l h d c ~  

_ lY--I 2 cos: 4, dh ddp. 
~/ a ~/ h'Z-- I 2 

Now if the area P Q R S  revolve about the axis Ox the volmne 
of the ring traced out is 

2~rp d(x:p) dh dd~-- 2~r(h~--l~ c°s~ 4)) sin dp d h ddp. 
d ( ~ , ¢ )  ~ -  ~, 

Thus tbr ~he magnetic par~ of the energy we have 

ff~H ~ d(x,p) 

~ u ~ f f  ]dsina~dhdd~ 
= (h~_t~) ( / ~ - z ~  cos ~ ~)"  

SinceXgoes  from 0 t o ~  hgoes  f r o m a t o ~ .  The limits 
of ~b are 0 and ~'. 

:Now 
ld-- P. h + I cos ¢ '~ C" sin3 ¢ dgb 1 Ices ~ - -  ~ o  

Jo/,~-Z-//~ ~ b  -- -- ~ ~ log h-- l cos 

1 f2- h2-l'~lo~ h + l  "} 
= l-~ ~ 1,1 o - % : [ f "  

Hence 

_ /zq~u 2 [-, h ~ + 12 h + l ] ~ 
4~ 2 [ . n - - ~ l o g ~ ]  . 
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When h is large the quantity in [ ] 
l 3 

= h - - l [  ld + x ) ( h / - + ~  • ) \12 "" . 

vanishing when I,= ~ .  
Thus, making use of ~Kv~----1 we have for the magnetic 

energy 
q2a2 

T =  41Kv ~ { a~+12" a+l  

Now by (17) we have at the surface of the ellipsoid 

q a f  ® dh qa . a+l  
~0 = I~ h 2 -  l: -- 2-Kl log a--  l '  

Hence the total electromagnetic energy of the ellipsoid is 

uUaU~ , a+l  ,u2a-~ (23) 

Here we must remember that l~-- - a2--al~ ~. 
(A) .Energy ofHeaviside JEllipsoid. If  we put a/ l=S and 

make S large we have 
: 

W =  ~ { (1 + - ~ - ]  (S  + 3-g~-+'" ")-- v'~ j 

; , , -hon . . . . . . .  

This corresponds to the tIeaviside ellipsoid, for when S=oo 
a~.~ab ~. The energy of the same ellipsoid at rest is 

q2 V g  . v__ s in_  1 u .  
2Ka u v 

(B) JEnerg.y of a Sphere. Putting b=a we have l=au/~,, and 
thus 

W =  q2 [v log v+_~U_l) . . . .  (25) 
2Ka\u  v--u 

I f  u is small compared with v we have 
~ U 2 

It will be found that as far as u~/v 2 the magnetic energy is 
q~u ~ ~q~u ~ 

3Kay ~ -- 3a 
as has been found by Mr. Heaviside ~. It follows fi'om this 

' EleetricF,1 Papers,' vol. ii. p. 505. 
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that as far as terms in u~/d ~ the electric part of the energy is 
unaltered by the motion. 

(C) Energy of a very slender Ellipsoid. When the ellip- 
soid is so slender that bq/a ~ may he neglected in comparison 
with unity we have 

W =  I + ~  log ! u ~ v- ~ . . (26) 
b,k. /  t--v-f 

When u/v is small, this becomes 

But 

q2 {(1_1u~\1 l u  ~ 

(D) Energy of a Disk. 
When a "2 < ab * the ellipsoid is more oblate than Heaviside's, 

and l ~ becomes negative. In this case let us write 

r ~  - -  b e -  eta 

so that r is the radius of the disk which is the "image ,9 of 
the ellipsoid a, b. Then writing ~ / - - 1 = i  we have from (23) 

4Kq~ _[1/r-q '  ~, u~a~\,  l+ i~ / -ar /a ,  q2u~a 
~ ) l ° g l - - i  '¢'~ r/a ~- 2Kv~r~a" 

~5 

l°g YL'-~ 5 " "  

so that ('23) becomes 
q~ - -  u~a 

W =  2Kr v'/* { (1 - -  u'a" v%~a ) t a n - l '  l a  + v'r'C'-aJ (27) 

When a----0 we find for the energy of a disk of radius r 
moving along its axis 

W =  q%r 
4Kr ~/~ . . . . . . .  (28) 

In all these cases it will be found that when u=v the 
energy becomes infinite, so that it would seem to be impossible 
to make a charged body move at a greater speed than that 
of light. 

PldL Mat. S. 5. Vol. 44. To. 269. Oct. J 897. 2 B 


