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of x-rays. The production of diffuse reflexion by solid bodies 
is very easily observed ; but hitherto I have no clear evidence 
of specular re'flexion. Air unfortunately itself sets up dif- 
fusion, behaving as a semi-opaque fluid. I f  ordinary expe- 
riments on the reflexion of light had to be carried on in dense 
smoke or in milky water, a similar diffusion would interfhre 
with specular reflexion. In one set of' exi)eriments a V-tube 
made of lead pipes set at right angles, and open at the bottom, 
was used, the x-ray source being made to shine down one 
limb, while a shielded photographic plate was placed at the 
upper end of the other. The surfaces to reflect x-rays were 
placed at the open lower ends at 45 ° to the lines of incidence 
and of presumed reflexion, l~eflexion of a sort was indeed 
obtained when surfaces of metal and of glass were placed 
across the bottom of the tubes. But an effect was also 
obtained even when nothing was placed across the open 
bottom. I t  seems exceedingly doubtful whether true specular 
reflexion has been observed in any case. 

x v .  On t1~e Theo~ v of Optical Images, with Special Reference 
to t]~e 21licroscope. By LOI~D RAYL~IGH, Sec. R. S.* 

T HE special subject of this paper has been treated from 
two distinct points of view. In the work of Helmholtz t 

the method followed is analogous to that which had long 
been used in the theory of the telescope. I t  consists in 
tracing the image representative of a mathematical point in the 
object, the point being regarded as self-luminous. The limit 
to definition depends upon the fact that owing to diffraction the 
image thrown even by a perfec~ lens is not confined to a point, 
but distends i~setf over a patch or disk of li~h~ of finite dia- 
meter. Two points in the object can appear fully separated only 
when the representative disks are nearly clear of one another. 
The application to the microscope was traced by means of a 
somewhat extended form of Lagrange's general optical 
theorem, and the conclusion was reached that the smallest 
resolvable distance e is given by 

e =  {~./sin a, . . . . . .  (1) 

X being the wave-length in the medium where the object is 
situated, and a the divergence-angle of the extreme ray (the 
semi-angular aperture) in the same medium. I f  k 0 be the 
wave-length in vacuum, 

x = X 0 l ~ ,  . . . . . . .  (2) 
Communicated by the Author. 
Pogg..Ann. Jubelband, 1874. 
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t* being the refi'aetive index of the medium ; and thus 

= ½X0 / tt sin a. . (3) 

The denominator tt sin a is the quantity now well known 
(after Abbe) as the "numerical aperture." 

The extreme value possible for a is a right angle, so that 
for the microscopic limit we have 

e = ~ X 0 l t ,  . . . . . . . .  (,i) 
The limit can be depressed only by a diminution in X0, such 
as photography makes possible, or by an increase in tt, the 
refractive index of the medium in which the object is 
situated. 

This method, in which the object is considered point by 
point, seems the most straight-forward, and to a great extent 
it solves the problem without more ado. When the repre- 
sentative disks are thoroughly clear of one another, the two 
points in which they originate are resolved, and on the other 
hand, when the disks overlap the t~oints are not distinctly 
separated. Open questions can relate only to intermediate 
cases of partial overlapping and various degrees of resolution. 
]n these cases (as has been insisted upon by Dr. Stoney) we 
have to consider the relative phases of the overlapping lights 
before we can arrive at a complete conclusion. 

If the various points of the object are self-luminous, there 
is no permanent phase-relation between the lights of the 
overlapping disks, and the resultant illumination is arrived at 
by simple addition of separate intensities. This is the 
situation of affairs in the ordinary use of a telescope, whether 
the object be a double star, the disk of the sun, the disk of 
the moon, or a terrestrial body. The distribution of light in 
the image of a double point, or of a double line, was especially 
considered in a former paper *, and we shall return to the 
subject later. 

When, as sometimes happens in the use of the telescope, 
and more frequently in the use of the microscope, the over- 
lapping lights have permanent phase-relations, these inter- 
mediate cases require a further t reatment;  and this is a 
matter of some importance as involving the behaviour of the 
instrument in respect to the finest detail which it is capable 
of rendering. We shall see that the image of a double point 
under various conditions can be delineated without difficulty. 

In the earliest paper by t 'rof. Abbe t ,  which somewha~ 
* "Investigations.. in Optics, with special reference to the Spectroscop.e '~ 

Phil. Mag. vol. wfi. p. 266 (1879). 
t .4rchiv.f. Mik,'. Anat. vol. ix. p. 418 (1878). 
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preceded that of Helmholtz, similar conclusions were reached; 
but the demonstrations were deferred, and, indeed, they do 
not appear ever to have been set forth in a systematic manner. 
Although some of the positions then taken up, as for example 
that the larger features and tile finer structure of a micro- 
scopic object are delineated by different processes, have since 
had to be abandoned ~, the publication of this paper marks a 
great advance, and has contributed powerfully to the modern 
development of the microscope ~'. In  Prof. Abbe's method 
of treating the matter the typical object is not a luminous 
point, but a.qratlng illuminated by plane waves. Thence arise 
the well-known diffraction spectra, which are focussed near the 
back of the object-glass in its principal focal plane. I f  the 
light be homogeneous, the spectra are reduced to points, and 
the final image may be regarded as due to the simultaneous 
action of these points acting as secondary centres of light. 
I t  is a r gue d  that the complete representation of the object 
requires the co-operation of all the spectra. When only a 
few are present, the representation is imperfect; and when 
there is only one--for this purpose the central image counts 
as a spectrum--the representation wholly fails. 

That this point of view offers great advantages, at least 
when the object under consideration is really a grating, is at 
once evident. More especially is this the case in respect of 
the question of the limit of resolution. I t  is certain that if 
one spectrum only be operative, the image must consist of a 
uniform field of light i and that no sign can appear of the 
real periodic structure of the object. From this considera- 
tion the resolving-power is readily deduced, and it may be 
convenient to recapitulate the argument for the case of 
perpendicular incidence. In fig. l AB represents the axis, 
A being in the plane of the object (grating) and B in the 
plane of the image. The wlrious diffraction spectra are 
focussed by the lens LL  I in the principal tbcal plane, So repre- 
senting the central image due to rays which issue normally 
from the grating. After passing So the rays diverge in a 

* Dallenger's edition of Carpenter's ' Microseo. p.e,' p. 64, 1891. 
~" It would seem that the present subject, hke many others, has 

suffered from over specialization, much that is familiar to the micro- 
,copist being ahnost unknown to physicists, and vice versd. For myself 
I must confess that it is only recently, in consequence of a discussion 
between Mr. L. Wright and Dr. G. J. Stoney in the ' English Mechanic ' 
(Sept., Oct., Nov., ]894; Nov. 8, Dec. 13, ]895; Jan. 17, 1896), that I 
have become acquainted with the distinguishing features of Prof. Abbe's 
work, and have learned that it was conducted ui)on different lines to that 
.of Helmholtz. I am also indebted to Dr. Stoney for a demonstration of 
some of Abbe's experiments. 
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cvne corresponding to the aperture of the lens and iIIuminate 
a circle CD in the plane of the image~ whose centre is B. 
The first lateral spectrum $1 is formed by rays diffracted from 

Fig. 1. 

i A 
the grating at a certain angle ; and in the critical case the 
region of the image illuminated by the rays diverging from 
S~ just  includes B. ]:he extreme ray SlB evidently proceeds 
from A, which is the image of B. The condition for the 
co-operation at B of the first lateral spectrum is thus that 
the angle of diffraction do not exceed the semi-angular 
aperture a. By elementary theory we know that the sine of 
the angle of diffraction is k/s~ so that the action of the lateral 
spectrum requires that ~ exceed X/sin a. I f  we allow the 
incidence upon the grating to be oblique, the limit becomes 
½k/sin a, as in (1). 

We have seen that if one spectrum only illuminate B, the 
field shows no structure. I f  two spectra illuminate it with 
equal intensities, the field is occupied by ordinary interference 
bands, exactly as in the well known experiments of Fresnel. 
And it is important to remark that the character of these 
bands is always the same, both as respects the graduation of 
light and shade, and in the fact that they have no focus. 
When more than two spectra co-ol~erate , the resulting inter- 
ference phenomena are more corrTlicated , and there is 
opportunity for a completer representation of the special 
features of the original gra t ing*.  

i These effects were strikingly illustrated in some observations upon 
gratings with 6000 lines to the inch, set up vertically in a dark room 
and illuminated by sunlight from a distant vertical slit. The object-glass 
of the microscrope was a quarter inch. When the original grating, 
divided upon glass (by Nobert), was examined in this way, the lines 
were well seen if the instrument was in focus, but, as usual, a compara- 
tively slight disturbance of focus caused all structure to disappear. 
When, however, a photographic copy of the same glass original, made 
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While it is certain that the image ultimately formed may 
be considered to be due to the spectra focussed at So, S t . . . ,  
the degree of conformity of the image to the original object 
is another question. From some of the expositions that have 
been given it might  be inferred that if all the spectra emitted 
from the grat ing were utilized, the image would be a complete 
representation of the original. By considering the case of a 
very fine grating, which might  afford no lateral spectra at all, 
it is easy to see that this conclusion is incorrect, but the 
matter  stands in need of further elucidation. Again, it is not 
quite d e a r  at what point the utilization of a spectrum really 
begins. All the spectra which the grat ing is competent to 
furnish are focussed in the plane So $1; and some of them 
might  be supposed to operate partially even although the part  
of the image under examination is outside the geometrical 
cone defined by the aperture of the object-glass. For  these 
and other reasons it will be seen that the spectrum theory*,  
valuable as it is, needs a good deal of supplementing, even 
when the representation of a grating under parallel light 
is in question. 

When the object under examination is not a grat ing or a 
structure in which the pattern is repeated an indefinite number 
of time% but for example a double point~ or when the incident 
light is not parallel, the spectrum theory, as hitherto developed~ 
is inapplicable. As an extreme example of the latter case we 
may imagine the grating to be self-luminous. I t  is obvious 
that the problem thus presented must be within the scope of 
any complete theory, and equally so that here there are no 
spec~m formed, as these require the radiations from the different 

with bitumen, was substituted for it, very different eiii~cts ensued• The 
structure could be seen even although the object-glass were drawn back 
through 1] inch from its focussed position; and the visible lines were 
twice as close, as if at the rate of 12,000 to the inch The diffhrence 
between the two cases is easily explained upon 2~bbe's theory• A soda 

• t r  " " flame vmwed thro%h the original showed a strong central linage 
(spectrum of zero order) and comparatively faint spectra of the first and 
higher orders. A similar examination of the copy revealed very brilliant 
.spectra of the first order on both sides, and a relatively feeble central 
linage. The case is thus approximately the same as when in Abbe's 
experiment all spectra except the first (on the two sides) are blocked out. 

The special theory initiated by Prof. Abbe is usually called the 
"diffraction theory," a nomenclature against which it is necessary to 
protest• Whatever may be the view taken, any theory of resolving 
power of optical instruments nmst be a diffraction theory in a certain 
sense, so that the name is not distinctive. Diffraction is more naturally 
regarded as the obstacle to fine definition, and not, as with some expo- 
nents of Prof. Abbe's theory, the machinery by which good definition is 
brought about• 
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c~ements of the grating to possess permanent phase-relations. 
It  appears, therefore, to be a desideratum that the matter 
should be reconsidered from the older point of view, according 
to which the typical object is a point and not a grating. Such 
a treatment illustrates the important principle that the theory 
of resolving-power is essentially the same for all instruments. 
The peculiarities of the microscope arise from the flint that 
the divergence-angles are not limited to be small, and from 
the different character of the illumination usually employed ; 
but, theoretically considered, these are differences of detail. 
The investigation can, without much difficulty, be extended 
to gratings, and the results so obtained confirm for the most 
part the conclusions of the spectrum theory. 

It will be convenient to commence our discussion by a 
simple inv(stigation of the resolving-power of' an optical 
instrument for a self-luminous double point, such as will be 
applicable equally to the telescope and to the microscope. In 
fig 2 AB represents the axis, A being a point of the object 
and B a point of the imag.e. By the operation of the object- 
glass LL ~ all the rays issmng from A arrive in the same phase 
at B. Thus if A be self-luminous, the illumination is a 
maximmn at B, where all the secondary waves agree in phase. 

Fig. 2. 

k 

B is in fact the centre of the diffraction disk which constitutes 
the image of A. At neighbouring points the illumination is 
less, in consequence of the diserepanems of phase which there 
enter. In like manner, if we take a neighbouring point P in 
the plane of the object, the waves which issue fi'om it will 
arrive at B with phases no longer absolutely accordant, and 
the discrepancy of phase will increase as the interval AP 
increases. When the interval is very small, the discrepancy 
of phase, though mathematically existent, produces no prac- 
tical effect, and the illumination at B due to P is as important 
as that due to A, the intensities of the two luminous centres 
being supposed equal. Under these conditions it is clear 
that A and P are not separated in the image. The question 
is, to what amount must the distance AP be increased in 
order that. the difference of situation may make itself felt in 
the image. This is necessarily a question of degree ; but it 
does not require detailed calculations in order to show that 
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the discrepancy first becomes conspicuous when the phases 
corresponding to the various secondary waves which travel 
from P to B range over about a complete period. The illumi- 
nation at B due to P then becomes comparatively small, in- 
deed for some forms of aperture evanescent. The extreme 
discrepancy is that between the waves which travel through 
the outermost parts of tile object-glass at L and L / ; so that, 
if we adopt the above standard of resolution, the question is~ 
where must P be situated in order that the relative retarda- 
tion of the rays P L  and P L '  may on their arrival at B amount 
to a wave-length (X). in  virtue of the general law that the 
reduced optical path is stationary in value, this retardation 
may be calculated without allowance for the different paths 
pursued on the further side of L, L', so that its value is 
simply P L - - P L ' .  :Now since AP  is very small, AL~--PL I 
is equal to A P .  sin a, where a is the semi-angular aperture 
I JAB. In like manner P L - - A L  has the same value, so 
that 

P L - -  P L I =  2AP.  sin ~. 

According to the standard adopted, the condition of resolution 
is therefore that AP, or e, should exceed IX/sin ~, as in (1). 
I f  e be less than this, the images overlap too much ; while if e 
greatly exceed the above value the images become unneces- 
sarily separated. 

In the ,bore argument the whole space bekween the object 
and tile lens is supposed to be occupied by matter of one 
refractive index, and ~. represents the wave-length in this 
medium of the kind of light employed. I f  the rest,'icticn as 
to uniformity be violated, what we have ultimately to do with 
is the wave-length in the medium immediately surrounding 
the object. 

The statement of the law of resolving-power has been made 
in a form appropriate to the microscope, but it admits also of 
immediate application to the telescope, i f  2R be the diameter 
of the object-glass, and D the distance of the object, the angle 
subtended by AP  is e/D, and the angular resolving-power is 
given by 

2D sin a -- 2R . . . . . . .  (5) 

the weU-known formula. 
This method of derivation makes it obvious that there is no 

essential difference of principle between the two cases, 
although the results are conveniently stated in different 
forms. In the case of the telescope we have to do with a 

Phil. 3lag. S. 5. Vol. 42. No. 255. Aug. 1896. 0 
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linear measure of aperture and an angular limit of resolution, 
whereas in the case of the microscope the limit of resolution is 
linear and it is expressed in terms of angular aperture. 

In  the above discussion it has been supposed for the sake of 
simplicity that the points to be discriminated are self-lumi- 
nous, or at least behave as if they were such. I t  is of interest 
to inquire how far this condition can be satisfied when the 
object is seen by borrowed light. We may imagine that the 
object takes the form of an opaque screen, perforated at two 
points, and illuminated by distant sources situated behind. 

I f  the source of light be reduced to a point, so that a single 
train of plane waves falls upon the screen, there is a perma- 
nent phase-relation between the wav6s incident at the two 
points, and therefore also between the waves- scattered fi'om 
Chem. In this case the two points are  as far as possible fi~m 
behaving as if  they were self Imninous. I f  the incidence be 
perpendicular, the secondary waves issue in the same phase ; 
but in the case of' obliquity there is a permanent phase- 
difference. This differeuce, measured in wave.lengths, in- 
creases up to e, the distance between the points, the limit 
being attained as the incidence becomes grazing. 

When the light originates in distant independent sources, 
not limited to a point, there is no longer an absolutely definite 
phase-relationship between the second-~vy radiations from the 
two apertures ; but this condition of things may be practically 
maintained, if  the angular magnitude of the source be not too 
large. For  example, if the source be limited to an angle 0 
round the normal to the screen, the maximmn phase-difference 
measured in wave-lengths is e sin 0, so that if  sin 0 be a small 
fraction of X/e, the finiteness of 0 has but little effect. "When, 
however, sin t? is so great that e sin 0 becomes a considerable 
multiple of X, the secondary radiations become approximately 
independent, and the apertures behave like self-luminous 
points. I t  is evident that even with a complete hemi- 
spherical illumination this condition can scarcely be attained 
when ~ is less than X. 

The use of a condenser allows the widely-extended source 
to be dispensed with. By this means an image of a distant 
source composed of independently radiating parts, such as a 
lamp-flame, may be thrown upon the object, and it might at 
first sigh~ be supposed that the probtem under consideration 
Was thus completely solved in all cases, inasmuch as the two 
apertures correspond to different parts of the flame. But we 
have to remember here and everywhere that optical images 
are not perfect, and that to a point of the flame corresponds 
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in the image, not a point, bu~ a disk of finite magnitude. 
When this consideration is taken into account, the same 
limitation as before is encountered. 

For what is the smallest disk into which the condenser is 
capable of" concentrating the light received from a distant 
point? Fig. 2 and the former argument apply ahnost 
without modification, and they show that the radius A 13 of 
the disk has the value ½X/sin a, where a is the semi-angular 
aperture of the condenser. Accordingly the diameter of the 
disk cannot be reduced below k;  and if e be les3 than k the 
radiations from the two apertures are only partially inde- 
pendent O f one another. 

It seems fair to conclude that the function of the condenser 
in microscopic practice is to cause the object to behave, at any 
rate in some degree, as if it were self-luminous, and thus to 
obviate the sharply-nmrked interference-bands which arise 
when permanent and definite phase-relatlons are permitted to 
exist between the radiations which issue from various points 
of the object. 

As we shall have occasion later to employ Lagrange's 
theorem, it may be well to point out how an instantaneous 
proof' of it may be given upon the principles already applied. 
As before, A B (fig. 3) represents the axis of the instrument, 

Fig. 3. 

A and B being conjugate points. 1 ~ is a point near A in the 
plane throuo'h~, A perpendicular to the axis, and. Q is its image, 
in the perpendicular plane through B. Since A and B are 
conjugate, the optical distance between them is the same for 
all paths, e.g. for A R S B and A L M B. And, since A P, 
B Q are perpendicular to the axis, the optical distance from 
P to Q is the same (to the first order of small quantities) as 
from A to B. Consequently the optical distance P R S Q is 
the same as A R S B. Thus, if ~, /~/be the refractive indices 
in the neighbourhood of A and B respectively, a and ~ the 
divergence-angles 1~ A L, S B M for a given ray~ we have 

t t . A P . s i n a = t ~ . B Q . s i n t 3 ,  . . (6) 
0 2  
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where AP, BQ denote the corresponding linear magnitudes of 
the two images. This is the theorem of Lagrange, extended 
by IIelmholtz so as to apply to finite divergence-angles% 

We now pass on to the actual calculation of the images to 
be expected upon Fresnel's principles in the various cases that 
may arise. The origin of coordinates (~=0, ~/--0) in the 
focal plane is the geometrical image of the radiant point. I f  
the vibration incident upon the lens be represented by 
cos (27rVt/X), where V is the velocity of light~ the vibration 
at any point ~, ~ in the focal plane is t" 

7 f a x v '  " (7) 

in whichfdenotes  the focal length, and the integration with 
respect to x and y is to be extended over the aperture of the 
lens. I f  for brevity we write 

2~E/Xy=p, 2~ , /X/=  q, . . . . .  (8) 
(7) may be put into the form 

C 2rr "-7 - S 2~r - -  x - ~ s i n - ~  ( ~ t - - f ) - -  •  :cos-- 2- ( v t - / ) ,  

where 
S =SSsin (pz+qy)dxdy ,  . . . .  (10) 

C-----SScos(px+qy)dxdy . . . . .  (11) 

I t  will suffice for our present purpose to limit ourselves to the 
case where the aperture is symmetrical with respect to x and 
y, We have then S~-0~ and 

c =Sj'cospx cos @ . . . . .  
the phase of the vibration being the same at all points of 
the diffraction pattern. 

When the aperture is rectangular, of width a parallel to 
x, and of width b parallel to y, the limits of integration are 
from --½ a to + ½ a for x, and from --½ b to + ½ b fbr y. Thus 

C=ab sin (~r:a/Xf) sin (~rvb/kf) 
7r$a/Xf ~rvb/Xf ' "  (13) 

and by (9) the amplitude of vibration (irrespective of sign) 
is C/Xf. This expression gL es the difli'action pattern due to a 
single point of the object whose geometrical image is at ~---0, 

$ I learn fi'om Czapski's excellent Theorie der Optischen Inslrume~te 
that a similar derivation of Lagrange's theorem from the principle of 
minimum path had already been given many years ago by Hockia 
(Micros. See. Journ. vol. iv. p. 337, 1884). -,  " ~ 

t See for example JEne. Brit.~ " Wave Theory, ' p. 430 (1878). 



with Special Reference to the Microscope. 177 

= 0. Sometimes, as in the application to a grating, we wish 
to consider the image due to a uniformly luminous line, 
parallel to ,7, and this can always be derived by integration 
from the expression applicable to a point. But there is a 
distinction to be observed according as the radiations from 
the various parts of the line are independent or are subject to 
a fixed phase-relation. In the former case we have to deal 
only with the intensity, represented by 12 or C~/X2p; and 
we get 

: f . ~ .  a2b sin 2 (~r~a/Xf) . . (14) 

by means of the known integral 

sin" X dx ~ +~ sin X dx--~'. (15) 

This gives, as a function of ~, the intensity due to a self-lumi- 
nous line whose geometrical image coincides with $ =0.  

Under  the second head of a fixed phase-relation we need 
only consider the case where tlle radiations from the various 
parts of the line start in the same phase. We get, almost as 
before, 

1 ~" +~' . -sin (Tr~a/Xf) xX ) . . . . .  (16) 

for the expression of the resultant amplitude corresponding 
to ~. 

In order to make use of these results we require a table of 
the values of sin u/u, and of sin 2 u/n'L The following will 
suffice for our purposes : ~  

TABLE I .  

sin u 

+ 1"0000 
"9003 
"6366 
"3001 
"0000 

- -  "1801 
-- "2122 
-- "1286 

"0000 

sin 2 u 

1 " 0 0 0 0  
"8105 
"4053 
"0901 
"0000 
'03"24 
'0450 
"0165 
"0000 

4~ 

9 
10 
11 
12 
13 
14 
15 
16 

sin u 

+ ' 1 0 0 0  
"1273 
"0818 
"0000 

- - ' 0 6 9 2  
-- "0909 
- "0600 

-0000 

sin 2 u --~-. 

"01~ 
"0162 
"0067 
"0000 
"~48 
"0083 
. ~  

"0000 

When we have to deal with a single point or a single line 



178 Lord  Rayle igh  on the Theory of Optical Images, 
only,  this table gives directly the distr ibution of l ight  in the 
image,  u being equated to ~r~a/Xf. The il lumination first 
vanishes when u = %  or ~f=X/a. 

On a former occasion ~ it has been shown tha t  a self- 
luminous point or line at u =  --Tr is barely separated from one 
at u = O .  I t  will be of interest to consider this ease under  
three different conditions as to phase-relationship : (i.) when 
the phases are the same, as will happen when the i l lmnina- 
tion is by  plane waves incident pe rpend icu la r ly ;  ( i i . )wt!en 
the phases are opposite ; and (iii.) when the phase-difference 
is a quarter  period~ which gives the same result  for the in- 

TABLE II. 

4~t  

-2:: 

1:: 
2.. 

s:: 
1°o:: 
11.. 
i2.. 

sin u 

sin (u+lr) 

+ 1 ' 0 0 0 0  
+ 1'2004 
+ 1"2732 
+ 1'2004 
+ l'O000 
+ "7202 
5- "4244 

slY/ '//, 

~t 
sin ( u +  a-) . 

u - t -a"  

- -  1 " 0 0 0 0  
-- "6002 

.oooo 
+ "6002 
+ 1"0O00 
+1'0804 
+ "8488 

r sin 2u 

sin ~(u+a-) 1.. 
(u+ a-) ~ J 

+1-000 
+ "949 
+ -90O 
+ -949 
+1000 
+ "918 
+ "671 

-t- "1715 -i- 
.oo0o 

- .0800 
- '0849 
- .0468 

.cooo 
+ .0308 + 
+ '0364 + 
+ "0218 + 

"0000 

"4287 
"0000 
"2801 
'3395 
"2105 
"0000 
"1693 
'2183 
"1419 
"0000 

-4- "326 
"00O 

-- "206 
-- "247 
- -  "152 

"000 
+ "122 
+ "156 
+ -101 

-000 

tensi ty  as if the apertures were self-luminous. The annexed 
table gives the nmnerical  values required. I n  cases (i.) and 
(iii.) the resultant amplitude is symmetr ical  with respect to 
the point  u = - ½ 7 r  midway between the two geometrical  
images  ; in case (it.) the sign is reversed, but  this of  course 
has no effect upon the intensity. Graphs of the three functions 
are given in fig. 4, the geometrical  images being at the 
points marked - -~r  and 0. I t  will be seen that  while in case 
iii., re la t ing to self-luminous points or lines, there is an 
approach  to separation, nothing but an accurate comparison 
with the curve due to a single source would reveal the 
dupl ic i ty  in case i. On the other hand, in case ii.~ where 

* Phil. Mag. vol. viii. p. 266, 1879. 
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there is a phase-difference of" half, a period betweeil, the: 
radiations, the separation may be regarded as complete. 

:Fig. 4. 

In a certain sense tile last conclusion remains undisturbed 
even when the double point is still closer , and also when the 

oerture is of any otber symmetrical form, e. q. circular. 
r at the point of symmetry in the image, midway between 

the two geometrical images of" the radiant points, the com- 
ponent amplitudes are necessarily equal in numerical value 
and opposite in sign, so that the resultant amplitude or illu- 
mination vanishes. For example, suppose that the aperture 
is rectangular and that the points or lines arc twice as close 
as before, the geometrical images being situated at u = - - ~ ' ,  
u---=O. The resultant amplitude is represented by f(u),  
where 

f (u)  = sin u sin (u + ~Tr) (17) 
u u+½7r 

The values of f ( u ) a r e  given in Table I I I .  They show 
that the resultan~ vanishes at the place of, symmetry u--  --¼~r, 
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and rises to a maximum at a point  near  u = { ~ r ,  considerably 
beyond the geometrical  image at u = 0 .  Moreover,  the value 
of  the maximnm itself is much  less than before, a feature 
which would become more and more pronounced  as the points 
were taken closer. A t  this stage the inmge becomes only a 

TABLE I I I .  

4 u  4 ~  
- - .  -~- f(~). ~ I(~)" 

- - I  . . . . . . . . . . . .  

0 . . . . . . . . . . . .  

1 . . . . . . .  ° °° . .  

+'00 

+ '36 

+ "60 

+ -64 

+'48 

+'21 

5 . . . . . . . . . . . .  

6 . . . . . . . . . . . .  

7 . . . . . . . . . . . .  

8 . . . . . . . . . . . .  

9 . . . . . . . . . . . .  

- "05  

- -  "21 

- "23 
--'13 
+'0"2 

ve ry  incomplete representation of  the object ; but  if  the forma-  
t ion of  a black line in the centre of the pattern be supposed 
to constitute resolution, then resolution occurs at all degrees 
of  closeness*. W e  shall see later, f rom calculations conducted 
by the same method, that  a gra t ing  of  an equal degree of 
closeness would show no structure at all but  would present a 
uni fbrmly i l luminated field. 

* These results are easily illustrated experimentally. I have used 
two parallel slits, formed in films of tin-foil or of chemically deposited 
silver, of which one is conveniently made longer than the other. These 
slits are held vertically and are viewed through a small telescope, pro- 
vided with a high-power eye-piece, whose horizontal aperture is re- 
stricted to a small width. The distance may first be so chosen that 
when backed by a neighbouring flame the double part of the slit just 
manifests its character by a faint shadow along the centre. If  the flame 
is replaced by sunlight shining through a distant vertical slit, the effect 
depends upon the precise adjustment. When everything is in line the 
image is at its brightest, but there is now no sign of resolution of the 
double part of the slit. A very slight sideways displacement, in my 
case effected most conveniently by moving the telescope, brings in the 
half-period retardation, showing itself by a black bar down the centre. 
An increased displacement, leading to a relative retardation of three 
halves of a period, gives much the santo result, complicated, however, by 
chromatic eflhets. 

In conformity with theory the black bar down the image of the double 
slit may still be observed when the distance is increased much beyond 
that at which duplicity disappears under flame illumination. 

For these experiments I chose the telescope, not only on account of 
th:k~re~tec~::cifi~Yt°~t~iePoUla~: On whirClh ' iatn~l~v ~, sbU~a~]~e~s °rd:rto~ 

• - y .  g , , . 

limited, as is sometimes supposed~ to the case of the microscope. 
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But before proceeding to such calculations we may dednce 
by Lagran~,e s theorem the interval e in the original object 
corresponding to that between u-----0 and u--'--~" in the image, 
and thence effect a comparison with a grating by means of 
Abbe's theory. The linear dimension (~) of the image cor- 
responding to u=~r is given by ~ = X f / a ;  and from 
Lagrange's theorem 

e/~= sin/~/sin a, . . . .  (17a) 

in which a is the " semi-angular aperture," and f l=a/2f .  
Thus, corresponding to u=~r, 

e = ½k/sin a. 

The case of a double point or line represented in fig. 4 
lies therefore at the extreme limit of resolution for a grating 
in which the period is the interval between the double points. 
And if the incidence of the light upon the grating were 
limited to be perpendicular, the period would have to be 
doubled before the grating could show any structure. 

When the aperture is circular, of radius R, the diffraction 
pattern is symmetrical about the geometrical image ( p = 0 ,  
q=0) ,  and it suffices to consider points situated upon the 
axis of $ for which ~7 (and q) vanish. Thus from (12) 

;; Y; C = cospxdxdy  = 2 e c o s p x j ( R 2 - - x a ) d x  . (18) 

This integral is the Bessel function of order unity, de- 
finable by 

z f-  J ,  (z) = ~r cos (zcos ~) sin~ ~ d~b. (19) 
,do 

Thus, if x----Rcos ~b, 
C = ~rR ~ 2J,(pR) (20) 

pR ' . . . . .  

or, if we write u=~-~. 2R/X/, 

C -- 7rR 22Jl(u) . . . . . .  (21)* 
u 

This notation agrees with that employed for the rectangular 
aperture if we consider that 2R corresponds with a. 

The illmnination at various parts of the image of a double 
point may be investigated as before, especially if we limit 
ourseIves to points which lie upon the line joining the two 

*Enc. Brit., " Wave Theory," p. 43"2. 
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geometrical images. The only difference in the calculations 
is that represented by the substitution of 2J1 for sine. We 
shall not, however, occupy space by tables and drawings such 
as have been given for a rectangular aperture. It may 
suffice to consider the three principal points in the image due 
to a double source whose geometrical images are situated at 
u----O and u------Tr, these being the points just mentioned and 
that midway between them at u-----~r.  The values of the 
functions required are 

2J, (o) /o  =1 .oooo = ,/{1.oooo}. 
2J~(~-)/~r = "1812 = ,/{'03283}. 
2ax(~')/-~r-~ "7217----- ~/{'5209}. 

In the case (corresponding to i. fig. 4) where lhere is siml- 
]arity of phase, we have at the geometrical images amplitudes 
1"1812 as against 1"4434: at the point midway between. 
When there is opposition of phase the first becomes _+'8188, 
and the last zero ~. When the phases differ by a quarter 
period, or when the sources are self-]umim~us (iii. fig. 4), the 
amplitudes at"the geometrical images are ~/{l'03"28} or 
1"0163, and at the middle point j{1"0418} or 1"0207. The 
partial separation, indicated by the central depression in 
curve iii. fig. 4, is thus lost when the rectangular aperture is 
exchanged for a circular one of equal width. It should be 
borne in mind that these results do not apply to a double line~ 
which in the ease of a circular apertur~ behaves difibrently 
from a double point. 

There is one respect in which the theory i.~ deficient, and 
the deficiency is tbe more important the larger the angular 
aperture. The i'ormul~ (7) from which we start assumes 
that a radiant point radiates equally in all directions, or 
at least that the radiation from it after leaving the object- 

~ lass is equally dense over the whole area of the section. 
n the case of telescopes, and microscopes of moderate 

angular aperture, this assumption can lead to no appreciable 
error ; but it may be otherwise when the angular aperture 
is very large. The radi:~tion from an ide,1 centre of 
transverse vibrations is certainly not uniform in various 
directions, and indeed vanishes in that of primal T vibration. 
:If we suppose such an ideal source to be situated upon the 
axis of a wide-angled object-glass, we might expect the dif- 
fi.action pattern to be less closely limited in that axial plane 

* The zero illumination extends to all points upon the line of  sym- 
metry. 
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which includes the direction of primary vibration tban in that 
which is perpendicular to it. Tim result for a double point 
illuminated by borrowed light would be a better degree of 
separation when the primary vibrations are perpendicular to 
to the line &junct ion  than when they are p~rallel Lo it. 

Although it is true that complications and uncertainties 
under this head are not without influence upon tile theory of 
the microscopic limit, it is no6 to be supposed that any con- 
siderable variation from that laid down by Ahbe and Helm- 
boltz is admissible. Indeed, in the case of a grating the 
theory of Abbe is still adequate, so far as the limit of 
resolution is concerned;  for, as Dr. Stoney has remarked, 
the irregularity of radiation in different directions tells only 
upon the relative brightness and not upon the angular 
position of the spectra. And it will remain true that there 
can be no resolution without the cooperation of two spectra 
at least. 

In Table I I .  and fig. & we have considered the image of a 
double point or line as formed by a lens of rectangular 
aperture. I t  is now proposed to extend the calculation to 
the case where the series of points or lines is infinite, con- 
stituting a row of points or a yratin 9. The intervals are  
supposed to be strictly equal, and also the luminous intensities. 
When the aperture is rectangular, the calculation is the same 
whether we are dealing with a row of points or with a grating, 
but we have to distinguish according as the various centres 
radiate independently, viz., as if they were self-luminous, or 
are connected by phase-relations. We will commence with 
the former case. 

I f  the geometrical images of the various luminous points 
are situated at u = 0 ,  u =  +v,  u =  +2% &c., the expressions 
for the intensity at ally point u of the field may be written as 
an infinite series, 

I(,~) sin~u sin2(u + v) sin2(,~-- v) 

sine(u + 2v) sin e (~t-- 2v) 
+ (a+.2,,) ~ + ( u _ 2 v ) ~  ~- . . . .  (22) 

Being an even function of u and periodic in period v, (22) 
may be expanded by Fourier 's  theorem in a series of cosines. 
Thus 

2~'~ 2~rru 
= Io + I~ cos - -  + . . . .  + I c e s  - -  + . . . .  ; (23) 

V I) 

and the character of the field of light will be determined when 
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the values of the eonstants I0, I1, &e., are known. For these 
we have as usual 

1 fo = f'I(u)eos?= %u ; Io = - _  I ( u ) d u ,  I ,  . (24) 
Vale do  v 

and it only remains to effect the integrations. To this end 
we may observe that each term in the series (22) must in 
reality make an equal contribution to I~. I t  will come to 
the same thing whether, as indicated in (24), we integrate 
the sum of the series from 0 to v, or integrate a single term 
of it, e.g. the first, from - - ~  to + ~ .  We may therefore 
take 

Io = 1 f+® sin~u . ~r - ~ u = -  ; . . . .  ( 25 )  
V J _ ~  V 

I , = v j _ ~  u~ cos v " " 

To evaluate (26) we have 

au - d - ®  u du (sing u cos  su) du,  

and 
d 2 su)  = s . ~-~ (sin u cos -- ~ sin su  

2 + s  . ~ - ~ s i n  (2--s)u; + --~-- sm (2 + s) u + 

SO that by (15) (s being positive) 

7.2 a u  = rr + + u - ~  - T - -  ' 

the m i n u s  sign being taken when 2--s  is negative. 
Hence 

(~6) 

L =  1---~-  , or 0, . . . .  (27) 

aeeording as v exceeds or falls short of rTr. 
We may now trace the effect of altering the value of v. 

When v is large, a considerable number of terms in the 
Fourier expansion (23) are of importance, and the discon- 
tinuous character of the luminous grating or row of points is 
fairly well represented in the image. As v diminishes, the 
higher terms drop out in suecession, until when v falls below 
2 ~ only I0 and 11 remain. From this point onwards I1 con- 
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tinues to diminish until it also finally disappears when v 
drops below rr. The field is then uniformly illuminated, 
showing no trace of the original structure. The case v----~r is 
that of fig. 4~ and curve iii. shows that at a stage when an 
infinite series shows no structure, a pair of Imninous points 
or lines of the same closeness are still in some degree 
separated. I t  will be remembered that v----rr corresponds to 
e----l~./sina, e being the linear period of the original object 
and a the semi-angular aperture. 

We will now pass on to consider the case of a grating or 
row of points perforated in an opaque screen and illuminated 
by plane waves of light. I f  the incidence be oblique, the 
phase of the radiation emitted varies by equal steps as we 
pass from one element to the next. But for the sake of 
simplicity we will commence with the case of perpendicular 
incidenc% where the radiations from the various elements all 
start in the same phase. We have now to superpose ampli- 
tudes, and not as before intensities. I f  A be the resultant 
amplitude, we may write 

A(u) = sin U + sin (u +v) + sin (u--v) + . . . . .  
U U'JffV U m V  

2~ru 2~rru 
=A0 +A1 cos - -  + . . .  +A~ cos - -  + . . . . . .  (28) 

V V 

When v is very small, the infinite series identifies itself 
more and more nearly with the integral 

_if +~ sin u du v iz .  71"" 
V , J _ ~  U ' V 

In general we hay% as in the last problem, 

_1 f+*s inUdu  2 { +~sinUcos2~rrUdu 
A 0= vd_® u ; A n = v d _ ~  u v -  ; (29) 

so that Ao=~r/v. As regards An, writing s for 2~rr/v, we 
have 

& =  1 si.(1 +s)u+sin(1--s)u 
÷ l),  

the lower sign applying when ( l - -s)  is negative. Accord- 
ingly, 

} A(u) = 1 + 2 cos v + 2 cos 47rUv + . . . .  (30) 

the series being continued so long as 2rrr < v. 
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I f  the series (30) were eontiuued ad infinitum, it  would 
represent a discontinuous distribution, limited to the points 
(or lines) u = 0 ,  u = + v ,  u = ± 2 v ,  &c., so that the image 
formed would accurately correspond to the original object. 
This condition of things is most nearly realised when v is 
very great, for then (30) includes a large number of terms. 
As v dimir.ishes the higher terms drop out in succession, 
retaining however (in contrast with (27)) their full value 
up to the moment of disappearance. When v is less than 2~', 
the series is reduced to its constant term, so that the field 
becomes uniform. Under this kind of illumination, the 
resolving-power is only half as great as when the object is 
self-luminous. 

These conclusions are in entire accordance with Abbe's 
theory. The first term of (30) represents the central image, 
the second term the two spectra of the first order, the third 
term the two spectra of the second order, and so on. Reso- 
lution fails at the moment when the spectra of the first order 
cease to cooperate, and we have already seen that this 
happens for the case of perpendicular incidence when v =  2~r. 
The two spectra of any given order fail at the same moment. 

I f  the series stops after the lateral spectra of the first 
order~ 

showing a maximum intensity when u~-O, or ½% and zero 
intensity when u=)3v, or ~v. These bands are not the 
simples~ kind of interference bands. The latter require the 
operation of two spectra only ; whereas in the present case 
there are three-- the central image and the two spectra of the 
first order. 

We  may now proceed to consider the case when the inci- 
dent plane waves are inclined to the grating. The only 
difference is that we require now to introduce a change of 
phase between the image due to each element and its 
neighbour. The series representing the resultant amplitude 
at any point u may still be written 

sin u + sin(u+v) e_~.~_~ sin (u -- V) e+ ~ .... 
u u + v  u ~ v  

sin (u + 2v) e_~,,, , + (3"2) 
+ u+2v  . . . . .  

For perpendicular incidence m=O. I f  7 be the obliquity, 
e the grating-interval, X ~he wave-length, 

rn~12~'= ~ ~in 7 / x . . . . . .  (~3)  
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The series (32), as it stands, is not periodic with respect to 
u in period v, but evidently it can differ from such a periodic 
series only by the factor d "~. 

The series 

e-~"~sin u e-~"(~+~)sin (u+v)  
- - - t -  

u u +  v 

e-~m(~+2°)sin (u + 2v) + e-~("-~)sin(u--V)u--v + u + 2 v  + . . . .  (34) 

is t ra ly  periodic, and may therefore be expanded by Fourier 's  
theorem in periodic terms : 

(34) =Ao + IB0 + (A~ + IB,) cos (2~ru/v) 
+ (Ct + IDa) sin (2wu/v) 4- . . . . .  

+ (A,+iB)cos(2r~ru/v)  + (C,+iD~)sin(2r~r,u/v) + . . .  (35) 

As)before, if s = 2rrr/v, 

f +* e-~m%in u cos SUdu; ½v(A~+iB ) = u 

so that B , = 0 ,  while 
f+® cos mu sin u cos su 

]v. A,.---j_~, u an. (36) 

Ill like manner C,=O, while 

D -- ['+® sin mu sin u sin su du. (37) -½~. ,-j_® ~ • 

In the case of the zero suffix 

B0 = 0, vA0 = cos mu sin u du . . . . .  (38) 
, j _ ~  U 

When the products of sines and cosines which occur in 
(36) &c. are transformed in a well known manner, the inte- 
gration may be effected by (15). Thus 

cos mu sin u cos su = ¼{sin£1 + m + s) u + s in ( l - -  m- - s )u  
+ s i n ( l  + m - - s ) u + s i n ( t - - m + s ) u }  ; 

so that 

½,,. a , = ¼ , ~ { D + m + s ]  + [ t - -m- -s ]  + [1 +m--.~] 

+ [ 1 - . , + , ] }  . (39) 
where each symbol such as [ l + m + s ]  is to be replaced by 
4-1, the sign being that of ( [  + m + s). In  like manner 
-½,,. D , = ~ i D  + ~ - ~ 3  + [ l - m + ~ ] -  [ l + , , + q  

- [ ~ - ~ - , , 3  } (~0) 
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The rth terms of (35) are accordingly 

~vvle ([1+m-Fs] H- [ l - - m - - , ] )  

+ e-~( [  1 + m-- s] -F [ i  --m-F 8]) ~ ; 
or for the original series (3"2), 

~v le LL" . + r o t  + 

+ s])} (4z) 
For the term of zero order, 

o e - - 2 v  e ([I q-m] + [1--m]).  (42) 

From (41) we see that the term in e i('~+~)~ vanishes unless 
( re+s)  lies between +_1, and that then it is equal to 
~r/v.e~('~+')~ ; also that the term in e ~ - ' ) ~  vanishes unless 
(m--s) lies between _+1, and that it is then equal to 
:rr/v. e ~('~-')~. In like manner the term in e ~ vanishes unless 
m lies between +_1, and when it does not vanish it is equal to 
~r]v .e ' ~ .  This particular case is included in the general 
statement by putting s = 0. 

The image of the grating, or row of points, expressed by 
(32), is thus capable of" representation by the sum of terms 

+ + + + . . . .  } . (43)  

where sl=2~r/v, s~=4~/v, &e., every term being included for 
which the coefficient of u lies between -I-1. Each of these 
terms corresponds to a spectrum of Abbe's theory, and repre- 
sents plane progressive waves inclined at a certain angle to 
the plane of the image. Each spectrum when it occurs at 
all contributes equally~ and it goes out of operation sud- 
denly. I f  hut one spectrum operates~ the field is of uniform 
brightness. I f  two spectra operate~ we have the ordinary 
interference bands due to two sets of plane waves crossing 
one another at a small angle of obliquity *. 

Any consecutive pair of spectra give the same interference 
hands, so far as illmnination is concerned. For  

- -  COS 7rue/~b~+2(*+~)~lv]~ 
V [  ) V V 

of which the exponential factor influences only the phase. 
In  (43) the critical value of v fbr which the rth spectrum 

* ~ne. Brit. "Wave Theory," p. 425. 
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disappears is given by, when we introduce the value of m 
from (33), 

2~r (e sin 7 
-~- \ ~ -  +r)---- +1 ;  

7~ E s i n  
or, since (as we have seen) ~ =  ~. , . . . . .  (4~t) 

e(sin 7 +  sin a)---- +rX . . . . .  (45) 

This is the condition, according to elementary theory, in 
order that the rays forming the spectrum of the rth order 
should be inclined at the angle 6, and so (fig. 2) be adjusted 
to travel from A to B, through the edge of the lens L. 

The discussion of the theory of a rectangular aperture may 
here close. This case has the advantage that the calculation 
is the same whether the objec~ be a row of points or a grating. 
A parallel treatment of other forms of aperture, e.g. the 
circular tbrm, is not only limited to the first alternative, but 
applies there only to those points of the field which lie upon 
the line joining the geometrical images of the luminous 
points. Although the advantage ties with a more general 
method of investigation to be given presently, it may be well 
to consider the theory of a circular aperture as specially de- 
duced from the formula (21) which gives the image of a 
single luminous centre. 

If we limit ourselves to the case of parallel waves and 
perpendicular incidence, the infinite series to be discussed is 

J , ( u + v )  J~ (u -v )  J~(u+2v)+ ,  (4(;) 
where 

u----~r$. 2R/Xf. . . . . . .  (47) 
Since A is necessarily periodic in period v, we may 

a s s u m e  

A ( u ) = A 0 + A ,  cos (27ru/v) +... + A~cos (2r , ru /v)+. . .  ; .  (48) 

and, as in the case of the reciangular aperture, 

l I [: Jl(~U ) du, A,= 2 f _" Jx~u ) cos 2"yrU du. (49) 
a ° = v  _ - v ® ~ .... " 

These integrals may be evaluated. If  a and b be real, and 
a be positive *, 

fo°e Jo(bx)dx= 
1 ax 

~ / / . ~ + t ~ )  . . . .  (50) 

* Gray and Mathews' ~Bessel's Functions,' 1895, p. 72. 
.PI, il. Ma.q.S. 5. Vol. 42. l~o. 255. Aug. 1896. P 
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~Iulfiplying by bdb and integrating from 0 to b, we find 

y f  4 ( a '  + b') --a Jl(bx)e-~dx=- (51) 
x b 

:In this we write b = l ,  a=is,  where s is real. Thus 

y f  J,(z){eos sx--lsin sz~ 
dx=  4(i--s')--i,. 

I f  s~>l ,we must write i 4(s ' - l )  for 4(i-s ' ) .  Hence, 
if s< 1, 

f0  J1 (~) cos . ,z  d ~ =  4(l-s,), (52)  

fo g~ (x) sin sx_ d x =  s; . . . . .  (53) 
~r 

while, if s > 1, 

yo gl (x) cos s .  dx 0 = , . . . . . .  (54) 

yo "~ J1 (x) sin sx x- d x =  - ~ / ( s ' - 1 )  + s. (55) 

We are here concerned only with (52), (54), and we con- 
dude that Ao--2/% and that 

A t =  4 ~/(1-- s'), or 0, (56) 
V 

according as s is less or greater than 1, viz. according as 
2r~r is less or greater than v. 

If  we compare this result with the corresponding one (30) 
for a rectangular aperture of equal width (2R----a), we see 
that the various terms representing the several spectra enter 
or disappear at the same time ; but there is one important 
difference to be noted. In the case of the rectangular aper- 
ture the spectra enter suddenly and with their full effect, 
whereas in the present case there is no such discontinuity, 
the effect of a spectrum which has just entered being infi- 
nitely small. As will appear more clearly by another method 
of investigation, the discontinuity has its origin in the sudden 
rise of the ordinate of the rectangular aperture from zero to 
its full value. 
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In the method referred to the form of the aperture is sup- 
posed to remain symmetrical with respect to both axes, but 
otherwise is kept open, the integration with respect to x 
being postponed. Starting from (12) and considering only 
those points of the image ibr which V and q in equation (8) 
vanish, we have as applicable to the image of a single lmni- 
n o u s  s o u r c e  

c=y 5 eospx,: . 2 cosp  (57) 
in which 2g denotes the whole height of the aperture at the 
point x. This gives the amplitude as a function of p. I f  
there be a rowof luminous points, from which start radiations 
in the same phase, we have an infinite series of terms, similar 
to (57) and derived from it by the addition to p of positive 
and neuative integral multiples of a constant (Pl) repre- 
senting~the period. The sum of the series A (p) is necessarily 
periodi% so that we may write 

A(p) = A o +  . . .  +A~cos (2~'Trp/p:) + . . .  ; (58) 

and, as in previous investigations, we may take 

A ~ = C cos sp dp, . . . . .  (59) 

s (not quite the same as before) standing for 2rrr/pl, and a 
constant factor being omitted. To ensure convergency we 
will treat this as the limit of 

f +[ e+'P . . . . .  (60) 

the sign of the exponent being taken negative, and h being 
ultimately made to vanish. Taking first the integration 
with respect to p, we have 

h h 
e +ht' cos xp  cos sp dp = h, ~ + (x + s)" + h "z + x - s) ~ ; 

A,= 2h~+ (a-+s)~ + .:h~+ (x-s)~' 
in which h is to be made to vanish. In the limit the inte- 
grals receive sensible contributions only from the neigh- 
b ourhoods of x =  + s ;  and since 

f ~® du 
• , l . t . ,u~=W,  . . . . . .  (61) 

t ' 2  
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we ge~ 
A = ~ ( y  . . . .  +yx=+,) = 2,~W=,..  (62) 

From (62) we see that the occurrence of the term in A~, 
{. e. the appearance of the spectrum of the rth order, is asso- 
ciated with the value of a particular ordinate of the object- 
glass. I f  the ordinate be zero, i.e. if the abscissa exceed 
numerically the half-width of the object-glass, the term in 
question vanishes. The first appearance of it corresponds to 

in which a is the entire width of the object-glass and ~:, the 
linear period in the image. By (17a), 

a t _  X fsin ,8 ½ .x  
E, e sin • e sin 

so that the condition is, as before, 

sin a = rX,. 

When A,  has appeared, its value is proportional to the ordinate 
at * = s .  Thus in the case of a circular aperture ( a=  2I{) we 
]lave 

yx=o = R~/{1--r~X2/e ~ sin:~} . . . . .  (63) 

The above investigation relates to a row of lmninous points 
emitting light of the same intensity and phase, and it is 
limited to those points of the imago for which V (and q) 
vanish. I f  the object be a grating radiating under similar 
conditions, we have to retain cosqy in (12) and to make 
an integration with respec~ to q. Taking this first, and 
introducing a factor e+kq, we have 

~+~ . . . .  (64) 2k 
e +tcq c o s  qy dq -- 

.j _® U +.y "~" 

This is now to be integrated with respect to y between the 
limits --y and -I-y. I f  this range be finite, we have 

(" +u 2k dy 
Limitk=0.]_u ~-+-~, -- 2% . . . .  (65) 

independent of the length of the particular ordinate. Thus 

s Ca = = 27r c o s T x d x  , . . . .  (6(~) 

the integration with respect to x extending over the range for 
vchieh y is finite, that is, over the width of the object-glass. 
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I f  this be 2R, we have 

+:Cdq = sinpR.  (67) 47r,~o. 

From (67) we see that the image of a lmninous line, all 
parts of which radiate in the same phase, is independent of the 
form of the aperture of the object-glass, being, for example, 
the same for a circular aperture as for a rectangular aperture 
of equal width. This case differs fl'om that of a self-luminous 
line, the images of which thrown by circular and rectangular 
apertures are of different types * 

The comparison of (67) with (20), applicable to a circular 
aperture, leads to a theorem in BesseFs functions. For, when 
q is finite, 

C = ~R ~ ~&{'/(p~ +q~)R}. ¢ (p~ + ¢) . . . . .  (68) 

so that, setting R-"  1, we get 

yo ® Jl{__~ (p~ + qu) } s inp 
~/(p~+q~) dq . . . . . .  P (69)t  

The application to a grating, of which all parts radiate in 
the same phase, proceeds as before. If, as in (58), we 
suppose 

a(p)  = & + . . . + A , . c o s s p + . . . ,  (70) 
we have 

A, = Cq cos s 2 dp ; . . . . . .  (71) 

from which we find that A, is 4rr '~ or 0, according as the 
ordinate is finite or not finite at x = s. The various spectra 
enter and dizappear under the same conditions as prevailed 
when the objec~ was a row of points ; but now they enter dis- 
continuously and retain constant values, instead of varying 
with the particular ordinate of the object-glass which cor- 
responds to x = s .  

We will now consider the corresponding problems when 
the illumination is such that each point of the row of points 
or of the grating radiates independently. The integration 
then relates to the intensity of the field as due to a single 
source. 

By (9), (10), (11), the intensity I ~ at the point (p, q ) o f  
the field, due to a single source whose geometrical image is 

• .Eric..Brit., " Wave Theory," p. 434. 
Jr This may be verified by means of Neamann's formula (Gray & 

Matthews, ' Bessel's Functions' (70) p. 27). 
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situated at (0, O) is given by 

x ~ f ~  = {SS cos (,P*+ ~V) d*av}'+ {5S sin (P**~V) d~av}' 
= ~Scos (pp.vt+qyt) dxtdy '  x ~Seos (,px+gy)dxdoq 

+ 55sin ( ,px '+qJ) dx'd~,' xyfs in  (,px+gy) dxdy  

= SS55 cos {,p(* '-*)+q(y-v)} a.dv d. 'dV', .  (V~) 
the integrations with respect to x r, y/, as well as those with 
respect to .v, tl, being over the area of the aperture. 

In the present application to sources which are periodically 
repeated, the term in cos s_p of the Fourier expansion repre- 
senting the intensity at various points of' the image has a 
coefficient found by multiplying (72) by eos~ T and inte- 
grating with respect to 29 from p =  - -m to p =  + ~ .  I f  the 
object be a row of points, we may take g = 0  ; if it be a 
grating, we have to integrate with respect also to ~/ from 
q = - - m  t o q = + m .  

Considering the latter case, and taking first the inte- 
grations with respect to p, q, we introduce the factors 
e :F~p-x-kq, the ,plus or minus being so chosen as to make 
the elements of the integral vanish at infinity. After the 
operations have been performed, h and k are to be supposed 
to vanish% The integrations are performed as for (60), 
(64), and we get the sum of the two terms denoted by 

2hk 
{h~+ (xr--x+s)~}{ ~ +  ('a'--Y?} " (73) 

We have still to integrate with respect to daed~dx~dq '. 
As in (65)~ since the range for j always includes y~ 

y 2k d#' 
Limit~=o k~ + (y,_y)~ -- 2~r ; 

and we are left with 

h~+ (~ - ._+s)~  . . . . . .  (74) 

I f  s were zero, the integration with respect to x' would 
he precisely similar; but with s finite it will be only for 
certain values of x that (a~'--x__+ s) vanishes within the range 
of integration. Unless this evanescence takes plaee, the limit 
when h vanishes becomes zero. The effeet of the integration 
with respect to x' is thus to limit the range of the subsequent 

* The process is that employed by Stokes in his evaluation of the 
integral intensity, Edin. Trans. xx. p. 317 (1853). See also Erie. Brit., 
" Wave Theory," p. 431. 
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integration with respect to x. The result may be written 

2~r~Sydxd2/ . . . . . .  (75) 

upon the understanding that, while the integration for y 
ranges over the whole vertical aperture, that for x is limited 
to such values of x as bring x ~ s  (as well as x itself) within 
the range of the horizontal aperture. The coefficient of the 
Fourier  component of the intensity involving cos sp, or 
cos (2r~rp/pl), is thus proportional to a certain part of the 
area of the aperture. Other parts of the area are inefficient, 
and might be stopped off without influencing the result. 

The limit to resolution, corresponding to r---- 1, depends only 
on the width of the aperture, and is therefore for all forms of 
aperture the same as for the case of the rectangular aperture 
already fully investigated. 

I f  the object be a row of points instead of a row of lines, 
q=O, and there is no integration with respect to it. The 
process is nearly the same as above, and the result for the 
coefficient of the rth term in the Fourier expansion is pro- 
portional to Sy~d.v, instead of ~ydm, the integration with 
respect to x being over the same parts of the aperture as 
when the object was a grating, The application to a circular 
aperture would lead to an evaluation of 

+ :  J12(u) cos su du. 
u ~ 

XVI.  The Operation Groups of order 8p, p being an# prime 
number*. By G. A. MILL, s, Ph.D.t 

CCORDING to Sylow's theorem these groups contain 
kp+ 1 conjugate subgroups of order p and b ~  1 in the 

equation 
8p 

Hence they must contain a self-conjugate subgroup of this 
order when p > 3 and p=/~7. We shall first consider all the 
possible groups that contain such a self-conjugate subgroup. 

* M. Levavasseur gives an enumeration of these groups, without ex- 
plaining how they were obtained, in Comptes tgendus, March 2, 1896. 
His enumeration is not quite correct. He states that there are three 
groups which exist only when p--1 is a multiple of 4 without being also 
a mt/ltiple of 8. We shall prove that there are only two such groups. 

Communicated by the Author. 


