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L X I I I .  On the Division of Space with Minimum Partitional 
Area. By  Sir WILLIAM TEO~SON*. 

1. THIS problem is solved ill foam, and the solution is 
_1_ interestingly seen in the multitude of film-enclosed 

cells obtained by blowing air through a tube into the middle 
of a soap-solution in a large open vessel. I have been led to 
it by endeavours to understand, and to illustrate, Green's 
theory of " extraneous pressure " which gives, for light tra- 
versing a crystal, Fresnel's wave-surface, with Fresnel's sup- 
position (strongly supported as it is by Stokes and Rayleigt~) 

f velocity of propagation dependent not on the distortion- 0 . . . . .  , 

normal, but on the line of vibration. I t  has been admirably 
illustrated, and some elements towards its solution beautifully 
realized in a manner convenient for study and instruction, 
by Plateau, in the first volume of his Stat[que des Liquides 
soumis aux seules _Forces Moldculaires. 

2. The general mathematical solution, as is well known, is 
that every interface between cells must have constant cur- 
vaturet throughout, and that where three or more interfaces 
meet in a curve or straight line their tangent-planes through 
any point of the line of meeting intersect at angles such that 
equal forces in these planes, perpendicular to their line of 
intersection, balance. The minimax problem would allow any 
number of interfaces to meet in a line ; but for a pure minimum 
it is obvious that not more than three can meet in a line, and 
that therefore, in the realization by the soap-film, the equi- 
librium is necessarily unstable if four or more surfaces meet 
in a line. This theoretical conclusion is amply confirmed by 
observation, as we see at every intersection of films, whether 
interracial in the interior of groups of soap-bubbles, large or 
small, or at the outer bounding-surface of a group, never more 
than three films, but, wherever there is intersection, always 
just three films, meeting in a line. The theoretical conclusion 
as to the angles for stable equilibrimn (or pure minimum 
solution of the mathematical problem) therefore becomes, 
'~;poly , that every angle of meeting of fihn-surfimes is exactly 

3. The rhombic dodecahedron is a polyhedron of plane sides 
between which every angle of meeting is 120°; and space can 

Communicated by the Author. 
rtpBV "curvature" of a surface I mean sum of curvatures in mutually 

pe endicular normal sections at any point; not Gauss's " curvatura 
integra," which is the product of the curvature in the two "principal 
normal sections," or sections of greatest and least curvature. (See 
Thomson and Tait's ' Natural Philosophy,' part i. §§ 130, 136.) 
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504 Sir W. Thomson on the Division of Space 

be filled with (or divided into) equal and similar rhombie 
dodecahedrons. Hence it might seem that the rhombie 
dodecahedron is the solution of our problem for the case 
of all the cells equal in volume, and every part of the boundary 
of the group either infinitely distant from the place considered, 
or so adjusted as not to interfere with the homogeneousness 
of the interior distribution of cells. Certainly the rhombie 
dodecahedron is a solution of the minimax~ or eguilibrium- 
problem; and certain it  is that no other plane-sided poly- 
hedron can be a solution. 

4. But it has seemed to m% on purely theoretical con- 
sideration, that the tetrahedral angles of the rhombie dodeca- 
hedron *, giving, when space is divided into such figures, 
twelve plane films meeting in a point (as twelve planes from 
the twelve edges of a cube meeting in the centre of the cube) 
are essentially unstable. That it  is so is proved experi- 
mentally by Plateau (vol. i. § 182, fig. 71) in his well-known 
beautiful experiment with his cubic skeleton frame dipped in 
soap-solution and taken out. His fig. 71 is reproduced here in 
fig. 1. Instead of twelve plane films stretched inwards from 
the twelve edges and meeting in the centre of the cube, it  
shows twelve films, of which eight are slightly curved and four 
are planet, stretched from thetwelve edges to a small central 
plane quadrilateral film with equal curved edges and four 
angles each of 109 ° 28'. Each of the plane films is an 
isosceles triangle with two equal curved sides meeting at 
a corner of the central curvilinear square in a plane perpen- 
dicular to its plane. I t  is in the plane through an edge and 
the centre of the cube. The angles of this plane curvilinear 
triangle are respectively 109 ° 28', at the point of meeting of 
the two curvilinear sides : and each of the two others half of 
this, or 54 ° 44 / . 

5. I find that by blowing gently upon the Plateau cube 
into any one of the square apertures through which the little 
central quadrilateral film is seen as a line, this film is caused 

¢~ The rhombie dodecahedron has six tetrahedral angles and eight tri- 
hedral angles. At each tetrahedral anglo the plane faces cut one another 
successively at 120 ° , while each is perpendicular to the one remote from 
it; and the angle between successive edges is cos-~, or 70 ° 32'. The 
obtuse angles (109 ° 28') of the rhombs meet in the trihedral angles of the 
solid figure. The whole figure may be regarded as composed of six square 
pyramids~ each with its alternate slant faces perpendicular to one another, 
placed on six squares forming the sides of a cu-bo. The long diagonal 
of each rhombic face thus made up of two sides of pyramids conterminous 
in the short diagonal, is 42 times the short diagonal. 

t I see it inadvertently stated by Plateau that all the twelve films are 
"ldg~rement courbdes." 
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wlth Minimum Partitional Area. 

to contract. If I stop blowing before 
it contracts to a point~ it springs back 
to its primitive size and shape. I f  I 
blow still very gently but for a little 
more time~ the quadrilateral contracts 
to a point~ and the twelve films meeting 
in it immediately draw out a fresh little 
quadrilateral film similar to the former, 
but in a plane perpendicular to its plane 
and to the direction of the blast. Thus~ 
again and again~ may the films be trans- 
formed so as to render the little central 
curvilinear square parallel to one or 
other of the three pairs of square aper- 
tures of the cubic frame. Thus we 
see that the twelve plane films meeting 
in the centre of the cube is a configura- 
tion of unstable equilibrium which may 
be fallen from in three different ways. 

6. Suppose now space to be filled 
with equal and similar ideal rhombic 

505 

Fig. 1. 

dodecahedrons. Draw the short dLgonal of every rhombic 
face, and fix a real wire (infinitely thin and perfectly stiff) 
along each. This fills space with Plateau cubic frames. 
Fix now, ideally, a very small rigid globe at each of the 
points of space occupied by tetrahedral angles of the dodeca- 
hedrons, and let the faces of the dodecahedrons be realized by 
soap-films. They will be in stable equilibrium, because of the 
little fixed globes ; and the equilibrium would be stable without 
the rigid diagonals which we require only to help the imagina- 
tion in what follows. Let an exceedingly small force~ like 
gravity*~ act on all the films everywhere perpendicularly to 
one set of parallel faces of the cubes.- I f  this force is small 
enough it will not tear away the films from the globes; it 
will only produce a very slight bending from, the plane 
rhombic shape of each fihn. Now annul the little globes. 
The films will instantly jump (each set of twelve which meet 
in a point) into the Plateau configuration (fig. 1), with the 
little curve-edged square in the plane perpendicular to the 
determining forc% which may now be annulled, as we no 
longer require it. The rigid edges of the cubes may also be 
now annulled~ as we have done with them also ; because each 
is (as we see by symmetry) pulled with equal forces in oppo- 
site directions, and therefore is not required for the equi- 

* To do for every point of meeting of twelve films wha~ is done by 
blowing in the experiment of § 5. 
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506 Sir W. Thomson on the Division of Space 

librium~ and it is clear that the equilibrium is stable without 
theme. 

¢* The corresponding two-dimensional problem is much more easily 
imagined; and may probably be realized by aid of moderately simple 
appliances. 

Between a level surface of soap-solution and a horizontal plate of glass 
fixed at a eentimetre or two above it, imagine vertical film-partitlons to 
be placed along the sides of the squares indicated in the drawing (fig. 2) : 

Fig. 2. 
these will rest in stable equilibrium if thick enough wires are fixed ver- 
tically through the corners of the squares. Now draw away these wires 
downwards into the liquid: the equilibrium in the square formation 
becomes nnstabl% and the films instantly run into the hexagonal forma- 
tion shown in the diagram ; provided the square of glass is provided with 
vertical walls (for which slips of wood are convenient), as shown in plan 
by the black border of the diagram. These walls are necessary t~ main- 
tain the inequality of pull in different directions which the inequality of 
the sides of the hexagons implies. By inspection of the diagram we see 
that the pull is T/a per unit area on either of the pair of vertical walls 
which are perpendicular to the short sides of the hexagons ; and on either 
of the other pair of walls 2 cos 30 ° × T/a ; where T denotes the pull of the 
film per unit breadth, and a the side of a square in the original formation. 
Hence the ratio of the pulls per unit of area in the two principal directions 
is as 1 to ]'732. 
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with Minimum Partitional Area. 507 

7. We have now space divided into equal and similar tetra- 
kaidecahedral cells by the soap-film ; each bounded by 

(1) Two small plane quadrilaterals parallel to one another ; 
(2) Four large plane quadrilaterals in planes perpendicular 

to the diagonals of the small ones ; 
(3) Eight non-plane hexagons, each with two edges common 

with the small qnadrilaterals~ and four edges common with 
the large quadrilaterals. 

The films seen in the Plateau cube show one complete 
small quadrilateral, four halves of four of the large quadri- 
laterals, and eight halves of eight of the hexagons, belonging 
to six contiguous cells; all mathematically correct in every 
part (supposing the film and the cube-frame to be infinitely 
thin). Thus we see all the elements required for an exact 
construction of the complete tetrakaidecahedron. By making 
a clay model of what we actually see, we have only to 
complete a symmetrical figure by symmetrically completing 
each half-quadrilateral and each half-hexagon~ and putting 
the twelve properly together, with the complete small quadri- 
lateral, and another like it as the far side of the 14-faced 
figure. We thus have a correct solid model. 

8. Consider now a cubic portion of space containing a 
large number of such cells, and of course a large but a 
comparatively small number of partial cells next the boundary. 
Wherever the boundary is cut by film, fix stiff wire; and 
remove all the fihn from outside, leaving the cubic space 
divided stably into cells by films held out against their tension 
by the wire network thus fixed in the faces of the cube. I f  
the cube is chosen with its six faces parallel to the three pairs 
of quadrilateral films~ it is clear that the resultant of the 
whole pull of fihn on each face will be perpendicular to the 
face, and that the resultant pulis on the two pairs of faces 
parallel to pairs of the greater quadrilaterals are equal to one 
another and less than the resultant pull on the pair of faces 
parallel to the smaller quadrilaterals. Let now the last- 
mentioned pair of faces of the cube be allowed to yield to 
the pull inwards, while the other two pairs are dragged out- 
wards against the pulls on them, so as to keep the enclosed 
volume unchanged ; and let the wirework fixture on the faces 
be properly altered, shrunk on two pairs of fhees, and extended 
on the other pair of faces, of the cube, which now becomes a 
square cage with distance between floor and ceiling less than 
the side of the square. Let the exact configuration of the 
wire everywhere be always so adjusted that the ceils through- 
out the interior remain, in their altered configuration, equal 
and similar to one another. We may thus diminish, and if we 
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508 Sir W. Thomson on the Division of Space 

please annul, the difference of pull per unit area on the three 
pairs of sides of the cage. The respective shrinkage-ratio 
and extension-ratio, to exactly equalize the pulls per unit area 
on the three principal planes, (and therefore on all planes), are 
2 -~, 2 ~, 2 ~, as is easily seen from what follows. 

9. While the equalization of pulls in the three principal 
directions is thus produced, work is done by the film on the 
moving wire-work of the cage, and the total area of film is 
diminished by an amount equal to W/T, if W denote the 
whole work done, and T the pull of the film pet" unit breadth. 
The change of shape of the cage being supposed to be per- 
formed infinitely slowly, so that the film is always in equi- 
librium throughout, the total area is at each instant a mini- 
mum, subject to the conditions 

(1) That the volume of each cell is the given amount; 
(2) That every part of the wire has area edged by it ; and 
(3) That no portion of area has any free edge. 
10. Consider now the figure of the cell (still of course a 

tetrakaidecahedron) when the pulls in the three principal 
directions are equalized, as described in § 8. It must be 
perfectly isotropic in respect to these three directions. Hence 
the pair of small quadrilaterals must have become enlarged 
to equality with the two pairs of large ones, which must have 
become smaller in the deformational process described in 
§ 8. Of each hexagon three edges coincide with edges of 
quadrilateral faces of one cell ; and each of the three others 
coincides with edges of three of the quadrilaterals of one of 
the contiguous cells. Hence the 36 edges of the isotropic 
tetrakaidecahedron are equal and similar plane arcs ; each of 
course symmetrical about its middle point. Every angle of 
meeting of edges is essentially 109 ° 28 / (to make trihedral 
angles between tangent planes of the films meeting at 120°). 
Symmetry shows that the quadrilaterals are still plane 
figures; and therefore, as each angle of each of them is 
109 ° 28 / , the change of direction from end to end of each arc- 
edge is 19 ° 28/. Hence each would be simply a circular arc 
of 19 ° 28 ~, if its curvature were equal throughout; and it 
seems from the complete mathematical investigation of § § 16, 
17, 18 below, that it is nearly s% but not exactly so even to a 
first approximation. 

Of the three films which meet in each edge, in three 
adjacent cells, one is quadrilateral and two are hexagonal. 

11. By symmetry we see that there are three straight lines 
in each (non-plane) hexagonal film, being its three' long dia- 
gonals; and that these three lines, and thereibre the six 
angular points of the hexagon, are all in one plane. The arcs 
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wlth Minimum Partitional Area. 509 

composing its edges are not in this plane, but .in planes, makin g, 
as we shall see (§ 12), angles of 54 ° 44 r with it. For three 
edges of each hexagon, the planes of the arcs bisect the angle 
of 109 ° 28 r between the planes of the six corners of contiguous 
hexagons ; and for the other three edges are inclined on the 
outside of its plane of corners, at angles equal to the supple- 
ments of the angles of 125 ° 161 between its plane of corners 
and the planes of contiguous quadrilaterals. 

12. The planes of corners of the eight hexagons consti- 
tute the faces of an octahedron which we see, by symmetry, 
must be a regular octahedron (eight equilateral triangles in 
planes inclined 109 ° 281 at every common edge). Hence these 
planes, and the planes of the six quadrilaterals, constitute a 
plane-faced tetrakaideeahedron obtained by truncating the six 
corners* of a regular octahedron each to such a depth as to 
reduce its eight original (equilateral triangular) faces to equi- 
lateral equiangularhexagons. An orthogonal projection of this 
figure is shown in fig. 3. I t  is to be remarked that space 
can be filled with such figures. For brevity we shall call it 
a plane-faced isotropie tetrakaidecahedron. 

13. Given a model of the plane-faced isotropic tetrakaidcca- 
hedron, it is easy to construct approximately a model of the 
minimal tetrakaidecal~edron, thus : - -Place on each of the six 
square faces a thin plane disk having the proper curved arcs of 
19 ° 281 for its edges. Draw the three long diagonals of each 
hexagonal face. Fill up by little pieces of wood, properly cut, 
the three sectors of 60 ° from the centre to the overhanging 

Fig. 3. ~'ig. 4. 
edges of the adjacent quadrilaterals. Hollow out symmetrically 
the other three sectors, and the thing is done. The result is 
shown in orthogonal projection, so far as the edges are con- 
cerned, in fig. 4 ; and as the orthogonal projections are equal 
and similar on three planes at right angles to one another~ 

This figure (but with probably indefinite extents of the truncation) 
is given in~books on mineralogy as representing a natural crystal of red 
oxide of copper. 
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510 Sir W. Thomson on the Div4sion of Space 

this diagram suffices to allow a perspective drawing from any 
point of view to be made by "descriptive geometry." 

14. No shading could show satisfactorily the delicate cur- 
vature of the hexagonal faces, though it may be fairly well 
seen on the solid model made as described in § 12. But it is 
shown beautifully, and illustrated in great perfection, by 
making a skeleton model of 36 wire arcs for the 36 edges 
of the complete figure, and dipping it in soap solution to 
fill the faces with film, which is easily done for all the faces 
but one. The curvature of the hexagonal film on the two 
sides of the plane of its six lofig diagonals is beautifully shown 
by reflected light. I have made these 36 arcs by cutting 
two circles~ 6 inches diameter~ of stiff wire, each into 18 parts 
of 20 ° (near enough to 19 ° 28t). It  is easy to put them 
together in proper positions and solder the corners, by aid of 
simple devices for holding the ends of the three arcs together 
in proper positions during the soldering. The circular cur- 
vature of the arcs is not mathematically correct, but the error 
due to it is, no doubt, hardly perceptible to the eye. 

15. But the true form of the curved edges of the quadri- 
lateral piano films, and of the non-plane sufaces of the hexa- 
gonal films, may be shown with mathematical exactness by 
taking, instead of Plateau's skeleton cube, a skeleton square 
cage with four parallel edges each 4 centimetres long: and 
the other eight, constituting the edges of two squares each 

/ 

Fig. 5. Fig. 6. 

J 2  times as long, or 5"66 eentim. Dipped in soap-solution 
and taken out it always unambiguously gives the central 
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w~th i~n~mum Partitlonal Area. 511 

quadrilateral in the plane perpendicular to the four short 
edges. It shows with mathematical accuracy (if we suppose 
the wire edges infinitely thin) a complete quadrilateral, four 
half-quadrilaterals, and four half-hexagons of the minimal 
tetrakaidecahedron. The two principal views are represented 
in figs. 5 and 6. 

16. The mathematical problem of calculating the forms of 
the plane arc-edges, and of the cm'ved surface of the hexa- 
gonal faces, is easily carried out to any degree of approxima- 
tion that may be desired ; though it would be very laborious, 
and not worth the troubl% to do so further than a first ap- 
proximation, as given in § 17 below. But first let us state 
the rigorous mathematical problem; which by symmetry 
becomes narrowed to the consideration of a 60 ° sector B C B ~ 
of our non-plane hexagon, bounded by straight lines C B, C B t, 
and a slightly curved edge B E B I, in a plane, Q, through 

-t4 .A 
E l l  

FI" 

Fig. 7. 

B B l, inclined to the plane B C B l at an angle of tan-14/2, or 
54: ° 44 t. The plane of the curved edge I call Q, because it is 
the plane of the contiguous quadrilateral. The mathematical 
problem to be solved is to find the surface of zero curvature 
edged bg B C B l and cutting at 120 ° the plane Q all along the 
intersectional curve (fig. 7). It is obvious that this problem is 
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512 Sir W. Thomson on the Division of Space 

determinate and has only one solution. Taking C A for axis 
of x ; and z perpendicular to the plane B C B I : and regarding 
z as a function of x, y, to be determined for findin.g the form 
of the surface, we have, as the analytical expression of the 
conditions 

- -Z  + 1 +  (1); 
+ dx dj dx @ d * V -  

and 
dz ~ dz 2 \ -~ /  . dz _ u \ x -  

when z=(a--x)  ~/2 ) 

17. The required surface deviates so little from the plane 
B C B' that we get a good approximation to its shape by 
neglecting dz~/dx "~, dz/dx, dz/dy, and dz2/dy ~, in (1) and (2), 
which thus become 

V z=0 . . . . . . . .  (3), 
and 

dz ¢ 2  
d x -  2 - - -  alas ='094735, when x = a - z / ~ / 2 ,  (4), 

~7 ~ denoting (d/dx)~+ (d/dy) 2. The general solution of (3), 
in polar coordinates (r, ¢) for the plane (% y), is 

~ ( A c o s m ¢ + B s i n m ¢ ) r  m, . . . .  (5), 

where A, B, and m are arbitrary constants. The symmetry 
of our problem requires B = 0 ,  and m--3 .  (2 i+1) ,  where i is 
any integer. We shall not take more than two terms. It 
seems not probable that advantage could be gained by taking 
more than two, unless we also fall back on the rigorous equa- 
tions (1) and (2), keeping dz~/dx 2 &e. in the account, which 
would require each coefficient A to be not rigorously constant 
but a function of r. At all events we satisfy ourselves with 
the approximation yielded by two terms, and assume 

z = Ar 8 cos 3¢ + A'r ~ cos 9¢ . . . .  (6); 

with two coefficients A, A t to be determined so as to satisfy 
(4) for two points of the curved edge, which, for simplicity~ 
we shall take as its middle,. E ( ¢ = 0 ) ;  and end, B ( ¢ - 3 0  ° -  ). 
~ow remark that, as z is small, even at E, where it is 
greatest, we have, in (4), x- -a  or r - -a  sec ¢. Thus, and 
substituting for dz/dx its expression in polar (r, ¢) coor- 
dinates, ~vhich is 

dz dz dz 
~-~ =- ~ cos ¢--  ~ sin ¢ . . . .  (7), 

D
ow

nl
oa

de
d 

by
 [

Pe
ki

ng
 U

ni
ve

rs
ity

] 
at

 2
3:

53
 1

8 
Ju

ne
 2

01
6 



with Minimum Partitional Area. 513 

we find, from (4) with (6), 
(by case 4)---0) A +  3a6A~='031578a -~ . (8), 

(and by case 4)= 30 °) A--~4a6A ' = '031578.  ~.  a -~ (9) ; 
whence 

At=  _ ½ 9_ x "031578. a - 8 -  -- 9 x "0001735. a -s " 9 1  

----- --"001561. a -s, 
A - - i r a  6~:~ .031578.a-2 -- ~ ' - - ~ 1 / ×  =209  x "0001735. a -2 

= '036261.  a -  ; 
and for required equation of the surface we have (talcing 
a =  1 for brevity) 

z =  "03626. r 3 cos 34)--'001561 r 9 cos 94) (10). 
= '03626. r 3 (cos 34)--'043. r e cos 94) ) J 

18. To find the equation of the curved edge BEB/~ take, as 
in (4), 

x = l - - z , ¢ / 2 = l - - $ ,  where $ denotes zx/2 . (11). 
Substituting in this, for z, its value by (10)~ with for r its 
approximate value sec 4)~ we find 

1 ('03626 sec 3 4) cos 34)--'001561 sec ~ 4) cos 9¢) (12) 

as the equation of the orthogonal projection of the edg% on 
the plane BCBI~ with 

AN=y---- tan¢;  and N P = ~  (13). 
The diagram was drawn to represent this projection roughly, 
as a circular arc, the projection on BCB f of the circular arc of 
20 ° in the plane Q, which, before making the mathematical 
investigation, I had taken as the form of the arc-edges of the 
plane quadrilaterals. This would give 1/35 of CA, for the 
sagitta, AE ; which we now see is somewhat too great. The 
equation (12), with y=O, gives for the sagitta 

AE ='0245 × CA . . . . . .  (14), 
or, say, 1/41 of CA. The curvature of the projection at any 
point is to be found by expressing sec 3 4) cos 34) and sec 9 4) cos 9~b 
in terms of y----tan~, and taking d2/dy ~ of the result. 

By taking x/(3/2) instead of x/(1/2) in (12), we havo tho 
equation of the arc itself in the plane Q. 

19. To judge of the accuracy of our approximation, let us 
find the greatest inclination of the surfhce to the plane BOB r. 
For the tangent of the inclination at (r, 4)) we have 
(dz 2 dz 2 ~ 

+ ~ ) _  = ' 1 0 8 8 . r  (1--2 × "129. r%ec 64) + "129~r~2) ~ (15). 
dr" 
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514 Sir W. Thomson on the Determination of 

The greatest values of this will be found at the curved bound- 
ing edge, for which r "-- sec ~b. Thus we find 

1+  + (16). 
='0948,  and therefore inclination= 5 ° 25 t at E ~. 
= '1892,  , , , = 10 ° 43 t at B 

Hence we see that the inaccuracy due to neglecting the 
square of the tangent of the inclination in the mathematical 
work cannot be large. The exact value of the inclination at 
E is tan -~ ( - -  , /2) --120°~ or 5 ° 16 r, which is less by 91 than 
its value by (16). 

LXIV.  On the Application off tl~e Dec'i-ampere or the Centl- 
ampere Balance to tire Determination of the Electromotive 
Forces of Voltaic Cells. By Sir WILLIA~t T~oMso~¢, F.R.S.* 

T H E  method described in this paper for the determination, 
in absolute measure, of the electromotive forces of vol- 

taic cells, consists in the use of one of my standard ampere- 
balances instead of the tangent-galvanometer in the method 
given in the following statement, which I quote from Kohl- 
rausch's ' Physical Measurements,' pp. 223, 224, 230:--"  .The 
only methods applicable to inconstant elements, of which the 
electromotive force varies with the current-strength, is to bring 
the current to zero by opposing an equal electromotive force. 
Poggendorff's method, which is very convenient, as it involves 
no measurement of internal resistance, requires the use of a 
galvanoscope, G, a galvanometer, T, and a rheostat, R, andj 
in addition, that of an auxiliary battery, S, of constant electro- 
motive force, greater than either of those which are to be 
compared. The arrangemen~ of the experiment is shown in 
the figure. In ~he left division of the c. "r 
circuit are the galvanoscope G, and 
the electromotive force E to be mea- 
sured ; in the right, the auxiliary 
battery S and the galvanometer T. 
E and S are so ,placed that their 
similar poles are turned towards each 
other. In the middle part of the cir- Fig. 1. 
cult, which is common to both batteries, is the rheostat R. 

"As  much rheostat resistance W must now be intercalated 

Communicated by the Author, being a paper read at the Manchester 
Meeting of the :British Association, with additions. 
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