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XVII.  On the Maintenance of Vibrations by _Forces of Double 
ffrequency, and on the Propagation of Waves through a 
Medium endowed with a Periodic Structure. By Lord 
RAYLEIGH, See. R. S.~ Professor of Natural Philosophy in 
the Royal Institution*. 

T t tE nature of the question to be first considered may be 
best explained by a paragraph from a former paper t, 

in which the subject was briefly treated. "There is also 
another kind of maintained vibration which, from one point of 
view, may be regarded as forced, inasmuch as the period is 
imposed from without, but which differs from the kind just 
referred to (ordinary forced vibrations) in that the imposed 
periodic variations do not tend directly to displace the body 
from its configuration of equilibrium. Probably the best- 
known example of this kind of action is that form of Melde's 
experiment in which a fine string is maintained in transverse 
vibration by connecting one of its extremities with the vibra- 
ting prong of a massive tuning-fork~ the direction of motion of 
the point of attachment being parallel to the length of the string~. 
The effect of the motion is to render the tension of the string 
periodically variable; and at first sight there is nothing to 
cause the string to depart from its equilibrium condition of 
straightness. It  is known, however, that under these circum- 
stances the equilibrimn position may become unstable, and 
that the string may settle down into a state of permanent and 

Communicated by the Author. 
" On Maintained Vibrations." Phil. Mag. April 1883, p. 229. 
" When the direction of motion is transverse~ the case falls under the 

head of ordinary forced vibrations." 
-Phil. Mag. S. 5. Vol. 24. No. 147. August 1887. L 
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vigorous vibration whose period is the double of  that of  the 
point o f  attachment"*. Other examples of acoustical interest 
are mentioned in the paper. 

My attention was recalled to the subject by Mr. Glaisher's 
Address to the Astronomical Societyt~ in which he gives an 
interesting account of the treatment of mathematically similar 
questions in the Lunar Theory by Mr. Hill $ and by Prof. 
Adams§. The analysis of Mr. Hfll is in many respects in- 
comparably more complete than that which I had attempted ; 
but his devotion to the Lunar Theory leads the author to pass 
by many points of great interest which arise when his results 
are applied to other physical questions. 

By a suitable choice of the unit of time, the equation of 
motion of the vibrating body may be put into the form 

d~w dw 
dt ~ {- 2k ~ -  + (Oo + 201 cos 2t)w----0; . (1) 

where k is a positive quantity, which may usually be treated as 
small, representing the dissipative forces. (O0+ 201 COS 2pt) 
represents the coefficient of restitution, which is here regarded 
as subject to a small imposed periodic variation of period ~r. 
Thus ®o is positive~ and O1 is to be treated as relatively 
small. 

The equation to which ]gr. Flill's researches relate is in 
one respect less general than (1), and in another more general. 
I t  omits the dissipative term proportional to k; but, on the 
other hand, as the Lunar Theory demands~ it includes terms 
proportional to cos4t, cos 6t~ &c. Thus 

d~w "0 ~/~ + [  0+2Olcos2 t+202cos4t+ . . . )w-- - -0 ;  (2) 

or d~ w 
dt ~ + Ow = O, . . . . . . . . . . . .  (3) 

where 
O = E . O . e  ~"~, . . . . . . . . . . . .  (4) 

n being any integer, and i representing ~/(--1).  In the 
present investigation O_,---- ®,. 

* "See Tyndalt's ' Sound,' 3rd. ed. ch. iii.§ 7, where will also be found 
a general explanation of the mode of action." 

Monthly Notices, Feb. 5887. 
~: "On the Part of the Motion of the Lunar Perigee which is a Func- 

tion of the Mean Motions of the Sun and Moon~" Acta Mathematica, 8:1, 
5886. Mr. Hill's work was first published in 1877. 

§ "On the Motion of the Moon's Node, in the case when the orbits 
of the Sun and Moon are supposed to have no Eccentricities, and when 
their Mutual Inclination is supposed to be indefinitely small." Monthly 
Notices, Nov. 1877. 
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It will be convenient to give here a sketch of Mr. Hill's 
method and results. Remarking that when O1~ 03, &c. vanish~ 
the solution of (3) is 

w=Keia+KIe-i~t~ . . . . .  (5) 

where K, K / are arbitrary constants~ and c=  ~/(®0), he shows 
that in the general case we may assume as a particular solution 

w=X.b.ei~t+ ~i"~, . . . . . .  ( ~ )  

the value of c being modified by the operation of @i, &e., and 
the original term be do~ being accompanied by subordinate 
terms corresponding to the positive and negative integral 
values of n. 

The multiplication by ®, as given in (4), does not alter the 
form of (6); and the result of the substitution in the differ- 
ential equation (3) may be written 

(c + '2~n)~b~--X.O._ .b .  = 0, . . . .  (7) 

which holds for all integral values of m, positive and negative• 
These conditions determine the ratios of all the coefficients 
b,~ to one of them, e. ff.~ be, which may then be regarded as 
the arbitrary constant. They also determine c, the main sub- 
ject of quest. Mr. Hill writes 

En] = ( c +  2n)~--O0; . . . . .  (8) 
so that the equations take the form 

• . . + [ - - 2 ] b - 2 - -  01 b-l--Oeb o -  03 bl--@4b~--...=O, 
. . . - -  01 b-2+[--17b-1--®l b o -  02 bl--Oab2--.. .=O, 
• . . - -  0,2 b_~-- 01 b-l+[OJb0-- 01 bl--O2 62- . .  .=O, 
• . . - -  03 b-2-- 02 b-1--01 bo~ [--1]bl--Oa b2--...=O~ 
• . . - -  ®4 b-2-- 08 b-l--O~bo-- 01 b i + [ 2 ] b 2 - - . ' . = %  

The determinant formed by eliminating the b's from these 
equations is denoted by ~(c) ;  so that the equation from which 
c is to be found is 

~ ( c ) = 0  . . . . . . .  (10) 

The infinite series of values of c determined by (10) cannot 
give independent solutions of (3)~--a differential equation 
of the second order only. It  is evidi~nt~ in faet~ that the 
system of equations by which c is determined is not aItered if 
we replace c by c + 2v, where v is any positive or negative 
integer• Neither is any change incurred by the substitution 
of --c for c. " ] t  follows that if (10) is satisfied by a root 
c=co, it will also have, as roots~ all the quantities contained 
in flae expression + c o + 2n~ 

L'2 

• ( 9 )  
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where n is any positive or negative integer or zero. And 
these are all the roots the equation admits of ; for each of the 
expressions denoted by [n] is of two dimensions in c, and may 
be regarded as introducing into the equation the two roots 
2 n + c  o and 2n--c  o. Consequently the roots are either all 
real or all imaginary; and it is impossible that the equation 
should have any equal root unless all the roots are integral." 

On these grounds Mr. Hill concludes that ~ ( c )  must be 
such that 

(c)----A [cos (vrc)--cos (VrCo)] (11) 
identically, where A is some constant independent ofc ;  whence 
on putting c = O, 

~r~(0)----a[1--cos (vreo)], . . . .  (12) 
in which, if we please, c o may be replaced by c. The value 
of A may now be determined by comparison with the parti- 
cular case O~=O, O~=O~ &c., fbr which of course c=~gOo. 
Thus if ~ ( 0 )  denote the special form then assumed, i. e. the 
simple product of the diagonal constituents, 

~ ' (0 )  = A l l - - c o s  (~r ~/®o)3, . . . . . .  (13) 
and 

1-cos(Trc) _ sin s(½~rc) _ ~ ( 0 )  . (14) 
1--cos (vr './®0) - -s in  ~ (½vr,,/Oo) -- ~ ' (0)" 

The fraction ~ ( 0 ) - - ~ / ( 0 )  is denoted by D(0). I t  is the 
determinant formed from the original one by dividing each 
row by the constituent in the diagonal, so as to reduce all 
the diagonal constituents to unity, and by making e vanish. 
Thus 

1--  cos (~rc) 
= [] (o), . . . . .  ( i5) 

1 -  cos 0 r , / 0 o )  
where 

o (o) = 

. . . +  1 01 02 03 04 
4 2 - 0 o  4 ~ - 0 o  4 2 - 0 o  4 2 - 0 o ' ' "  

01 01 O~ 03 
2 2 -  Oo + 1 --  ~-~---0o-- 2 2 -  0 o - -  "2 ~ -  O o " "  

02 O, Oj 02 
0 2 - 0  o 0 ~ - 0 o  + 1 . . .  0 2 - 0 o  0 ~ -  Oo 

0 3 O~ 01 O 1 
' " - - 2  ~ - 0 o  2~--®o 2~--®o + 1 2 2 _ _ 0 o . . .  

04 03 02 O~ 
• "' - -  4 ~ -  Oo 42 --  Oo 4 ~ -  Oo 4" --  Oo + 1 . . .  

(:6) 
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The value of D (0) is calculated for the purposes of the Lunar 
Theory to a high order of approximation. I t  will here suffice 
to give the part which depends upon the squares of O1, O~, &e. 
Thus 

• . cot  ( } ~ -4O o)  [" 012 032 + 032 + . .  
[] (0)=1+ ~ - ~ o  Li-~Go + ~ ~-~-6o "J'l 

Another determinant, V(0),  is employed by Mr. Hill, the 
relation of which to [] (0) is expressed by 

V(O) = 2  sin 2 (}~r¢Oo).  [] (0); (18) 
so that the general solution for c may be written 

cos (~'c) = l - - V ( 0 )  . . . . . . . .  (19) 
Mr. Hill observes that the reality of e requires that 1 --V(0) 

should lie between -- 1 and + 1. In the Lunar Theory this 
condition is satisfied; but in the application to Acoustics the 
case of an imaginary c is the one of greater interest, for the 
vibrations then tend to increase indefinitely. 

Cos (~rc) being itself always real, let us suppose that 7re is 
complex, so that 

c = a + i B ,  

where a and B are real. Thus 
cos ~rc= cos ~ra cos i~'/3--sin ~ra sin i~'f~; 

and the reality of cos ~re requires either (1) that ~ = 0 ,  or (2) 
that a----n, n being an integer. In the first case c is real. In 
the second 

cos ~rc= _+_ cos iTr~= 1--  V (0), . . (20) 
which gives but one (real) value of/K I f  l - - V ( 0 )  be positive, 

c= +if~+*2n; . . . . . . .  (~1) 
but if 1--~7 (0) be negative, 

cos ~re~- --cos i~r/3, 
whence 

c = + _ i f ~ + 2 n + l  . . . . . .  (2*2) 

The latter is the case with which we have to do when ®0, and 
therefore c, is nearly equal to unity ; and the conclusion that 
when c is complex, the real part is independent of O1, O~, &e. 
is of importance. The complete value of w may then be 
written 

w = e ~t Eb,d  T M  + e -at Zbt .d t('+~'), • (*23) 

the ratios of b. and also of bJ being determined by (9). After 
the lapse of a sufficient time, the second set of terms in e -~# 
become insignificant. 

(17) 
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In the application of greatest acoustical interest O o (and c) 
are nearly equal to unity; so that the free vibrations are per- 
formed with a frequency about the half of that introduced 
by O1. In this case the leading equations in (9) are those 
which involve the small quantities [0] and [--1] ;  but for 
the sake of symmetry, it is advisable to retain also the equa- 
tion containing [1]. If  we now neglect O~, as well as the b's 
whose suffix is numerically greater than unity, we find 

b_~ be bl 
0 , [ 1 ]  = [ 1 ] [ - - 1 ]  --  0 1 [ - - 1 ] '  (24) 

and 
[o][I] [ - I ] - o ? ( [ i ]  + [ - I ] }  =o. (25) 

For the sake of distinctness it will be well to repeat here 
that 

[0]=c~--O0, [ - -1]=(c- -27--O0,  [1]=(c+2)~--O °. 
Substituting these values in (25), Mr. Hill obtains 

(c ~ -  O0) { (~ + 4 -- Oo) : -  16c ~ } -- 20?{c: + 4--  O0 } = 0, 

and neglecting the cube of (c~--@o), as well as its product with 

(c ~ -  o0) ~ + ~ ( o 0 - 1 )  ( c : -  o0) + o ?  = o; 
and from this again 

c~= 1H-w/{ (O0-- 1)~--O, ~ } . . . . . .  (26) 
It appears, therefore, that c is real or imaginary according 

as (Oo--1) ~ is greater or less than Ox 2. In the problem of 
the Moon's apse, treated by Mr. Hill, 

Oo=1"1588439, O1:  --0"0570440; 

and in the corresponding problem of the node, investigated by 
Prof. Adams, 

O o = 1" 17804,44973,149, 
O~: 0"01261,68354,6. 

In both these cases the value of c is real, though of course 
not to be accurately determined by (26). 

Mr. Hill's results are not immediately applicable to the 
acoustical problem embodied in (1), in consequence of the 
omission of k, representing the dissipation to which all actual 
vibrations are subject. The inclusion of this term leads, 
however, merely to the substitution for (c + 2n)2--Oo in (8) of 

(~ + ~n) ~ -  2ik(~ + a n ) -  %; 
so that the whole operation of k is represented if we write 
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(c--ik) in place of c, and (@0--k 2) in place of Oo. Accordingly 
cos ~ ( e - i k ) = 1 -  V'(0),  . . . .  (27) 

Vt(0) differing from V (0) only by the substitution of Oo--k 2 
for Oo. 

If 1--V'(0) lies between + l ,  (c--ik) is real, so that 
c=ik+_~ + 2n . . . . . .  (28) 

In this case both solutions are affected with the factor e -~*, 
indicating that whatever the initial circumstances may be, the 
motion dies away. 

It may be otherwise when l--V/(0) lies beyond the limits 
+__ 1. In the case of most importance, when Oo is nearly equal 
to unity, 1--V'  (0) is algebraically less than --1. If 

c o s i ~ r ~ = - - l + V ' ( O ) ,  . . . . .  (29) 
we may write 

c = l + i ( k + t 3 ) + 2 n  . . . . . . .  (30) 

Here again both motions die down unless/9 is numerically 
greater than k, in which case one motion dies down, while the 
other increases without limit. The critical relation may be 
written 

cos (i~k)= --1 + V'(0) . . . . . .  (31) 

From (30) we see that, whatever may be the value of k, the 
vibrations (considered apart from the rise or subsidence indi- 
cated by the exponential factors) have the same frequency as 
if" k, as well as O1, O~, &c. vanished. 

Before leaving the general theory it may be worth while to 
point out that Mr. Hill's method may be applied when the 
coefficients of d:w/dt ~ and dw/dt, as well as of w, are subject 
to given periodic variations. We may write 

d~w dw 
~ -  +~F-~- + O w = 0 ,  . . . . . .  (32) 

where 
fTP~-~d~neUint , "ffff=~x?]neeint , O=EO~e ~'t. (33) 

Assuming, as before, 
w=Znb~e ~a+~i~t, . . . . .  (34) 

we obtain, on substitution, as the coefficient of e T M ,  
-- E~b~ (c + 2n)~dPm-. + iE.b~ (c + 2n) ~2,~-~ + Y.b~ Om-n, 

which is to bo equated to zero. The equation for c may still 
be written 

~(c)-----0, . . . . . . .  (35) 
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where 
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, • • . • • • • , • • • • • • • • • 

. . . [ - - 2 , 0 ] ,  [--1,  --1], [0, --2], [1, --3], [2, - - 4 ] , . . .  

. . .  [--2,  1], [ - -1 ,0] ,  [0, --1], [1, --2], [2, - - 3 ] , . . .  

. . .  [ --2,  2], [--1, 1], [0,0],  [1, --1], [2, - - 2 ] , . . .  

. . . [ - 2 , 3 ] ,  [ - -1 ,2 ] ,  [0,1],  [1,0],  [ 2 , - - 1 ] , . . .  

. . .  [--2,  4], [ - -1 ,3] ,  [0, 2], [1, 1], [2,0],  . . .  
. * • . • • * • . • . • • • • • • . • 

and 
In, = (c+ + (37)  

By similar reasoning to that employed by Mr. Hill we may 
show that 

= t  (cos cos  eo) 
+ B (sin ~'c-- sin 7rCo)..., 

where A and B are constants independent of c ; and, further, 
that 

~ ( 0 )  = A ( 1 - -  cos ~rc) --B sin 7re. .  (38) 

If  all the quantities q>,, ~Fr, Or vanish except q~o, We, Oo, 
~ ( 0 )  reduces to the diagonal row simply, say ~ ' (0 ) .  Let 
% c2 be the roots of 

¢p d~w dw 
o-rift + ~ o  ~ -  +OoW=0 , . . . .  (39) 

then 
~/(0) ---A(1 -- cos ~rcl) --B sin ~rcl, 

=A(1  -- cos ~rc2) --B sin ~rc~ ; 

so that the equation for e may be written 

(0), 1-- cos rcc, sin ~rc, 
~ ' (0 ) ,  1-- cos ~rcl, sin ~rcl, =0.  (40) 
~ ' (0) ,  1-- cos ~rc:, sin rrc~, 

In this equation ~ ( 0 ) - - ~ ( 0 )  is the determinant derived 
from ~(0)  by dividing each row so as to make the diagonal 
constituent unity. 

I f . . .  ~-1, W0, Wl.-.vanish (even though . . .  ~b_l, qbo, O1.. " 
remain finite), ~(e) is an even function of c, and the co- 
efficient B vanishes in (38). In this case we have simply 

1 - cos ~ro ~(0)  
1-- cos ~r~/Oo -- ~ '~ - ) '  

exactly as when ~1, ~-~, ~b~, ~ - 2 . . .  vanish. 

. .  
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Reverting to (24), we have as the approximate particular 
solution, when there is no dissipation, 

e(e- 2)it ~ it e(C+ 2)it 
w =  + ( 4 : )  

I f  e be real, the solution may be completed by the addition 
of a second, ibund from (41) by changing the sign of c. Each 
of these solutions is affected w~th an arbitrary constant mul- 
tiplier. The realized general solution may be written 

R cos (c--  2)t + S sin (c -- 2)t 

Rcoset+Ssinet Rcos(c+2)t+Ssin(c+2)t . .(42) 
+ Oi + (c + 2) '~- Oo ' 

from which the last term may usually be omitted, in conse- 
quence of the relative magnitude of its denominator. In this 
solution c is determined by (26). 

When c ~ is imaginary, we take 
. . . . .  (43) 

so that 
c~=l+2is, c---l+is, c- -2=-- l+is .  

The particular solution may be written 

w =  e-.t ~Ole-,t+ (1--Oo--2is)e ' t t  ; . (4~) 

or, in virtue of (43), 

w=e-,t{(1--Oo+O1) cost+2ssint} ; (45) 
or, again, 
w = e-'t{ ~/(O1 + 1 --Oo). cost + ~/(O1--1 + Oo). sin t } . .  (46) 

The general solution is 

'tO = R e  - s t  { ( 1 - -  O 0 -{- •1) COS t + 2s sin t } 

+Se  ~t { (1- -Oo+Oi)cos t - -2ss in t } j ' ""  (47) 

R~ S being arbitrary multipliers. 
One or two particular cases may be noticed. I f  O0=1,  

2s=O1, and 
w=R'e-~t{cos t+ sin t} 

+ S'e ~t { cos t--  sin t } ~ . . . . .  (48) 

Again, suppose that 
O ? = ( O o -  1) ~ , . . . . . .  (49) 

so that s vanishes, giving the transition between the real and 
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imaginary values of e. Of the two terms in (46), one or 
other preponderates indefinitely in the two alternatives. 
Thus, if O r = l - - ® 0 ,  the solution reduces to cos t ;  but if 
O1 = -- 1 + 8o, it reduces to sin t. The apparent loss of gene- 
rality by the merging of the two solutions may be repaired in 
the usual way by supposing s infinitely small. 

When there are dissipative forces, we are to replace e by 
( c - - i k ) ,  and O by (O0--/c~); but when k is small the latter 
substitution may be neglected. Thus, from (26); 

c-- 1 + ik + ½ v' t (O0-- 1) 2 -  O13 I. (50) 

Interest here attaches principally to the case where the radical 
is imaginary; otherwise the motion necessarily dies down. 
15 as before, 

4s2=®1~--(00--1)  ~, . . . . .  (51) 

e = l + i k + i s ,  c - - 2 = - - l + i k + i s ,  . (52) 
and 

e(e-e)it e e it 
w ~  

( c _ i k _  + -ff[, 
or 

w = e -(k+')t { 01e -i t  + (1 -- O o -  2is)eit~, 
or 

w----c -(k+')t { (1 --Oo-t- O1) cos t q- 2s sin t } . .  (53) 

This solution corresponds to a motion which dies away. 
The second solution (found by changing the sign of s) is 

w = e ; " - k ) t { ( 1 - - ® o + 0 1 )  cos t - - 2 s  sin t } . .  (54) 

The motion dies away or increases without limit according as 
s is less or greater than k. 

The only case in which the motion is periodic is when s =  k, 
or 

4k =07-(00-1) ; . . . . .  (55) 
and then 

w = ( 1 -  O0--®1) cos t - - 2 k  sin t. (56) 

These results, under a different notation, were given in my 
former paper*. 

I f  O0=1,  we have by (51), 2 s = O ;  and from (53), (54), 

w---Re-(~+8)t {cos t +  sin t} -b Se-(k-8)t {cos t - -s in t t . .  (57) 

* In consequence of an error of sign, the result for a second approxima- 
tion there stated is incorrect. 
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In the former paper some examples were given drawn from 
ordinary mechanics and acoustics. To these may be added 
the case of a stretched wire, whose tension is rendered periodi- 
cMly variable by the passage through it of an intermittent 
electric current. It is probable that an illustration migh~ be 
arranged in which the vibrations are themselves electrical. 
®o would then represent the stiffness of a condenser, Wo re- 
sistance, and ~P0 self-induction. The most practicable way of 
introducing the periodic term would be by rendering the self- 
induction variable with the time (q)l)" This could be eff~cted 
by the rotation of a coil forming part of the circuit. 

The discrimination of the real and imaginary values of o is 
of so much importance, that it is desirable to pursue the ap- 
proximation beyond the point attained in (26). From (11) 
we find 

9 ( 1 )  1 + cos (~'c) 
9 ' ( 1 )  - 1 +  cos (5s) 

from which, or directly, we see that if c= 1, corresponding to 
the transition case between real and imaginary values, 

9 ( 1 ) = 0  . . . . . . . .  (59) 

If, as we shall now suppose, {93, {93... vanish, (59) may be 
written in the form 

where 

• * ° • • • • • • • 

. . . 1 ,  a~, 1, 0, 0, 0 . . .  
• . .  0, 1, al, 1, 0, O . . .  
• . . 0 ,  0, 1, al, 1, 0 . . .  
• . . 0 ,  O, O, 1, a2, 1 . . .  

• , • • • , * , • • 

= o , .  (60) 

{9o--1 {90--9 ®0--25 (61) 
al-~ ~1 ~ a2 = ~1 ~ a3 ~--" {91 

The first approximr~tion, equivalent to (26), is found by 
considering merely the central determinant of the second 
order involving only al ; thus, 

al '~--l=0 . . . . . . .  (62) 

The second approximation is 

a2,/ 
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The third is 

aa'{a,--13}~{(at-- 1 1 - ) ' - - 1 } - - 0 , . . .  (64) 

a s - - -  
a3 

and so on. The equation (60) is thus equivalent to 

1 1 1 
a~-- - - -  . . .  -- ___1 ; (65) a2-- aa-- a4-- 

and the successive approximations are 

NI=  +__Dx, N~= +D~, . . . .  (66) 
where 

N~ N~ 

are the corresponding convergents to the infinite continued 
fraction*. 

In terms of O0~ O1, the second approximation to the equa- 
tion discriminating the real and imaginary values of e is 

(Oo-- 1)(Oo--9)--O1~= ± Oj((9o--9). (67) 

One of the most interesting applications of the foregoing 
analysis is to the case of a laminated medium in which the 
mechanical properties are periodic functions of one of the 
coordinates. I was led to the consideration of this problem 
in connexion with the theory of the colours of thin plates. 
I t  is known that old superficially decomposed glass presents 
reflected tints much brighter~ and transmitted tints much 
purer, than any of which a single transparent film is capable. 
The laminated structure was proved by Brewster ; and it is 
easy to see how the effect may be produced by the occurrence 
of nearly similar laminm at nearly equal intervals. Perhaps 
the simplest case of the kind that can be suggested is that of 
a stretched string, periodically loaded, and propagating trans- 
verse vibrations. We may imagine similar small loads to be 
disposed at equal intervals. If, then, the wave-length of a 
train of progressive waves be approximately equal to the 
double interval between the loads, the partial reflexions from 
the various loads will all concur in phase, and the result must 
be a powerful aggregate reflexion, even though the effect of 
an individual load may be insignificant. 

* The relations of determinants of this kind to continued fractions has 
been studied by Muir (Edinb. Prec. vol. viii.). 



Vibrations by Forces of Double Frequency. 157 

The general equation of vibration for a stretched string of 
periodic density is 

27rx . 2~'x 47rx 
P°+Plc°s I + P l / s m - / - + P 2 c ° s  l 

+p2rs in4~x+  .) d2w -d~w 
. .  - ~ -  = ' ~ ' d - ~ ,  . (6S) 

l being the distance in which the density is periodic. We 
shall suppose that pl ~, p2~,.., vanish, so that the sines dis- 
appear, a supposition which involves no loss of generality 
when we restrict ourselves to a simple harmonic variation of 
density. If  we now assume that w ~ e ipt, or o~ cos pt, we 
obtain 

d~w 
d~ ~ + (0o+201 cos 25+202 cos 4 ~ + . . .  )w=0,  (69) 

where $=~rx/l, and 
O p21~po p~l~pl 

o =  ~--~-T' 2 0 ~ =  ~ - -~T '  &e.; . (70) 

and this is of the form of Mr. ttill's equation (2). 
When e is real, we may employ the approximate solutions 

(41), (44). The latter (with ~ written for t) gives, when 
multiplied by cospt or sinpt~ the stationary vibrations of the 
system. From (41) we get 

cos [pt+(c--2)~] cos [pt+c~] (71) 
w =  ( c _ 2 f l _ O o  -t 01 ' 

in which, if c = 1 nearly, the two terms represent waves pro- 
gressing with nearly equal velocities in the two directions. 
Neither term gains permanently in relative importance as x is 
increased or diminished indefinitely. 

It is otherwise when the relation of O0 to O1 is such that c 
is imaginary. By (44) the solution for w, assumed to be 
proportional to eOt, now takes the form 

l + (1--0o-- 

+Se'$ {Ole'(Pt-~)+(1--Oo+2is)e'~Pt+~)~.) (72) 

Whatever may be the relative values of R and S, the first 
solution preponderates when x is large and negative, and the 
second preponderates when x is large and positive. In either 
extreme case the motion is composed of two progressive waves 
moving in opposite directions~ w]wse amplitudes are e~ual in 
virtue o]'(43). 

The meaning of this is that a wave travelling in either 
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direction is ult imately totally reflected. For  example, we may 
so choose the values of  R and S that  at the origin of  x there 
is a wave (of given strength) in the positive direction only, 
and we may  imagine that  it here passes into a uniform medium, 
and so is propagated on indefinitely without change. But,  
in order to maintain this state of  things, we have to suppose 
on the negative side the coexistence of  positive and negative 
waves~ which at sufficient distances from the origin are of  
nearly equal and ever-increasing amplitudes. I n  order there- 
fore that  a small wave may emerge at x=0~  we have to cause 
intense waves to be incident upon a face of the medium cor- 
responding to a large negative x~ of  which nearly the whole 
are reflected. 

I t  is important  to observe that  the nltimate totality of  re-  
flexion does not  require a special adjustment between the 
frequency of the waves and the linear period of  the lamination. 
The condition that c should be imaginary  is merely that  01 
should numerically exceed ( 1 - - 0 0 ) .  I f  X be the wave-length 
o f  the vibration corresponding to e ~pt and to density Po, 

p2po 4 
~r~T --  ~2,  . . . . . .  (73)  

and thus the limits between real and imaginary  values of  c 
are given by 

~ Pl . . (74) . . . . .  

I f  Pl exceeds these limits a train of  waves is ultimately totally 
reflected, in spite of the finite difference between ~ X and l*. 

A detailed experimental examination of various cases in which a 
laminated structure leads to a powerful but highly selected reflexion 
would be of value. The most frequent examples axe met with in the 
organic world. It  has occurred to me that Becquerel's reproduction of 
the spectrum in natural colours upon silver plates may perhaps be expli- 
cable in this manner. The various parts of the film of subchloride of 
silver with which the metal is coated may be conceived to be subjected, 
during exposure~ to stationary luminous waves of nearly definite wave- 
length, the effect of which might be to impress upon the substance a 
periodic structure recurring at intervals equal to half the wave-length of 
the light; just as a sensitive flame exposed to stationary sonorous waves 
is influenced at the loops but not at the nodes (Phil. Mag. March 1879~ 
p. 153). In this way the operation of any kind of light would be to pro- 
duce just such a modification of the film as would cause it to reflect 
copiously. . that particular. . kind of light. I abstain at present from deve- 
loping this suggestion, m the hope of soon finding an opportunity of 
making myself experimentally acquainted with the subject. 
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In  conclusion, i t  may be worth while to point out the ap- 
plication to such a problem as the stationary vibrations of a 
string of variable density fixed at  tw-o points. A distribution 
of density, 

2 ~ x  4ma 
p , + p l c o s ~ + p 2 c o s - - - +  . . . . . .  (75) 1 

is symmetrical with respect to the points x=O and x=Ql, 
and between those limits is arbitrary. It is therefore possible 
for a string of this density to vibrat,e with the points in ques- 
tion undisturbed, and the law of displacement will be 

25-x 45-x 67rx 
w =  c ~ s ~ t { ~ , s i n ~ + ~ ~ s i n - + ~ ~ s i n -  1 I +...). (76) 

When, therefore, the problem is attacked by the method of 
Mr. Hill, the value of c obtained by the solution of (69) must 
be equal to 2. By (15) this requires 

a (0) =o. . . . . . .  (77) 

This equation gives a relation between the quantities OD, 01, 
0,, ... ; and this again, by (7G), determines p, or the fre- 
quency (p/27r) of vibration. 

Since @,=4 nearly, the most important term in  (17) is 
that involving 02. The first approximation to (77) gives 

0 0 = 4  + 0, ; 
whence, by (70), 

. . . . . .  - T (78) 

To this order of approximation the solution may be obtained 
with far greater readiness by the method given in my work 
on Sound*; but i t  is probable that, if the solution were 
required in a case where the variation of density is very con- 
siderable, advantage might be taken of Mr. Hill's determinant 

(0). There are doubtless other physical problems to which 
a similar remark would be applicable. 

Terling Place, Witham, 
June 19,1887. 

* 'Theory of Sound,' vol. i. § 140. In comparing the results, it must 
be borne in mind that the length of the string in (78) is denoted by + I .  


