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XXXII I .  On Maintained Vibrations. By Lord RAYLEIGH, 
.F.R.S., Professor o/Experimental P]~ysics in the University 
of Cambridge*. 

W H E N  ~ vibrating system is subject to dissipative forces, 
the vibrations cannot be permanent, since they are 

dependent upon an initial store of energy which suffers gra 
dual exhaustion. In the usual equation 

d:~ d~ 
dr- ~ + ~ [  +n:~?=O . . . . .  (1) 

is positive, and the solution indicates the progressive decay 
of the vibrations in accordance with the exponential law. In 
order that the vibrations may be maintained, the vibrating 
body must be in connexion with a source of energy. This 
condition being satisfied, two principal classes of maintained 
vibrations may be distinguished. In the first class the mag- 
nitude of the force acting upon the body in virtue of its 
connexion with the source of energy is proportional to the 
amplitude, and its phase depends in an approximately con- 
stant manner upon the phase of the vibration itself; in the 
second class the body is subject to influences whose phase is 
independentlydetermined. 

The first class is by far the more extensiv% and includes 

Communicated by the Author. 
Phil. Mag. S. 5. ¥ol.  15. No. 94. April 1883. S 
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230 Lord Rayleigh on Maintained Vibrations. 

vibrations maintained by wind (organ-pipes, harmonium-reeds, 
~olian harps, &c.), by heat (singing flames, Rijke's tubes, 
&c.), by friction (violin-strings, finger-glasses, &c.), as well as 
the slower vibrations of clock-pendulums and of electromag- 
netic tuning-forks. When the amplitude is small, the force 
acting upon the body may be divided into two parts, one pro- 
portional to the displacement t? (or to the acceleration), the 
second proportional to the velocity dO/dt. The inclusion of 
these forces does not alter the form of (1). By  the first part 
(proportional to 0) the pitch is modified, and by the second 
the coefficient of decay*. I f  the altered x be still positive, 
vibrations gradually die down; but if the effect of the included 
forces be to render the complete value of tc negative, vibra- 
tions tend on the contrary to increase. The only case in 
which according to (1) a steady vibration is possible, is when 
the complete value of x is zero. I f  this condition be satisfied~ 
a vibration of any amplitude is permanently maintained. 

When ~ is negative, so that small vibrations tend to increase, 
a point is of course soon reached after which the approximate 
equations cease to be applicable. We may form an idea of 
the state of things which then arises by adding to equation (1) 
a term proportional to a higher power of the velocity. Let  
us take 

d20 dO iIdO\ 3 
+ ~  + ~  ~ )  +n~0=0 ,  . . . .  (2) 

in which ~ and x' are supposed to be small. The approximate 
solution o f ( 2 )  is 

x~nA 3 
0 =  A sin nt + ~ cos ~nt, . . . .  (3) 

in which A is given by 

. . . . . . . . . . . . .  (4) 
From (4) we see that no steady vibration is possible unless 
and ~' have different signs. :If x and x' be both positive, the 
vibration in all cases dies down ; while if x and ~ be both 
negative, the vibration (according to (2)) increases without 
limit. I f  x be negative and x ~ positive, the vibration becomes 
steady and assumes the amplitude determined by (4). A 
smaller vibration increases up to this :point, and a larger vibra- 
tion ialls down to it. If, on the other hand~ t¢ be positive, while 
~' is negative, the steady vibration abstractedly possible is 

" For more detailed application of this principle to certain cases of 
maintained vibrations~ see Proceedings of the Royal Institution, March 15, 
1878. 
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Lord Rayleigh on Maintained Vibrations. 231 

unstable, a departure in Teither direction from the amplitude 
given by (4) tending al~ ays to increase. 

Of Chef second class the vibrations commonly known as 
forced have the first claim upon our attention. The theory of 
these vibrations has long been well understood, and depends 
upon the solution of the differential equation formed by 
writing as the right-hand member of (1) P cospt in place of 
zero. The period of steady vibration is coincident with that of 
the force, and independent of the natm'al period of vibration ; 
but the amplitude of vibration is greatly increased by a near 
agreement between the two periods. ]'~a all cases the ampli- 
tude is definite and is proportional to the magnitude of the 
impressed force. When the force, though strictly periodic, is 
not of the simple harmonic type, vibrations may be maintained 
by its operation whose period is a submultiple of the principal 
period. 

There is also another kind of maintained ~-ibration which 
from one point of view may be considered to be forced~ inas- 
much as the period is imposed from without, but which differs 
from the kind just referred to in that the imposed periodic 
variations do not tend directly to displace the body from its 
configuration of equilibrium. Probably the best-known ex- 
ample of this kind of action is that form of Melde's experiment 
in which a fine string is maintained in trans~ erse vibration by 
connecting one of its extremities with the vibrating prong of 
a massive tuning-fork, t]te direction of motion of t]te point of 
attachment being parallel to the length of the strin.q*. The 
effect of the motion is to render the tension of the string 
periodically variable ; and at first sight there is nothing to 
cause the string to  depart from its equilibrium condition of 
straightness. It is known, however, that under these circum- 
stances the equilibrium position may become unstable, and 
that the string may settle down into a state of permanent and 
vigorous vibration, w]wse period is the double of l]tat of the 
floznt of attachmentt. 

The theory of vibrations of this kind presents some points 
of difficulty, and does not appear to have been treated hitherto: 
]n the present investigation we shall start from the assumption 
that a steady vibration is in progress, and inquire under what 
circumstances the assumed state of things is possible. 

If  the force of restitution, or "spring," of a body suscep- 
tible of vibration be subject to an imposed periodic variation, 

* When the direction of motion is transverse~ the case falls under the 
head of ol'dinary forced vibrations. 

t See Tyndall's ' Sound,' 3rd ed. ch. iii. § 7, where will also be found 
a general explanation of the mode of action. 

$2  

D
ow

nl
oa

de
d 

by
 [

D
uk

e 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

2:
31

 0
6 

O
ct

ob
er

 2
01

2 



232 Lord ]Rayleigh on Maintained Vibrations. 
the differential equation becomes 

a~Odt- ~ + tc-~dO + (n~_2a sin 2pt)O= 0, . . . (5) 

in which x and a are supposed to be small. A similar equa- 
tion would apply approximately in the case of a periodic 
variation in the effective mass of the body. The motion ex- 
pressed by the solution of (5) can only be regular when it 
keeps perfect time with the imposed variations. It  will 
appear that the necessary conditions cannot be satisfied rigo- 
rously by any simple harmonic vibration; but we may assume 

0 = A1 sin 2t + B1 cos pt + A~ sin 3Tt + B~ cos 3pt 
+ A~ sin 5pt +..., (6) 

in which it is not necessary to provide for sines and cosines of 
even multiples of pt. I f  the assumption is justifiable, the 
series in (6) must be convergent. Substituting in the diffe- 
rential equation, and equating to zero the coefficients of sin24 
cosT4 &c.~ we find 

Al(n ~ -p~) -KpB1-  ~B1-- ~B3 = 0, 
Bl(n 2-1p ~) + KpA1 - - a A  1 --aA3 = 0, 

A~(n ~ --  9p ~) - 3~pBs--  aB~ + =B~ = 0, 
B3(n '~- 9p ~) + 3~pA~ + aA1--A~ = 0, 

A5 (n 2 -  95p ~) -- 5KpB~ --~B~ + ~B~ = 0. 
B~(n'~-- 25p 2) + 5KpA~ + ~A~-- aA~ = 0, 

These equations show that relatively to A1, ]31, As, Bs are of 
the order a; that relatively to As, Bs, A~, B~ are of the order a, 
and so on. If  we omit A3, Bs in the first pair of equations, 
we find as a first approximation, 

AI(~ ~-p~) -- (~p + ~)B1 = 0, 

A~(~p--~) + (~2--#)B~= 0; 
whence 

B: _ n~--p ~ _ a--Kp v'(~--~p) 
• ( 7 )  

and 

Thus, if a be given, the value of p necessary for a regular 
motion is definite ; and p having this value, the regular mo- 
tion is 

6 =  P sin (Tt + e), 
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Lord Rayleigh on Maintained Vibrations. 233 

in which e, being equal to tan -l (B,/A1)~ is also definite. On 
the other hand, as is evident at once from the linearity of the 
original equation, there is nothing to limit the amplitude of 
vibration. 

These characteristics are preserved however far it may be 
necessary to pursue the approximation. I f  A2m+,, B~=+,~ 
may be neglected, the first m pairs of equations determine the 
ratios of all the coeffcients, leaving the absolute magnitude 
open; and they provide further an equation connecting p 
and a, by which the pitch is determined. 

For the second approximation the second pair of equationa 
gives 

aB1 aA1 
As---- n2_ 9~v ~, B~-- -- n 2 9 p ~ ,  

whence 
e=Psin(pt+c)+ eos(3pt+ ); . (9) _p2__ n2 

and from the first pair 

_p-. tan e = ! n + (10) 

while p is determined by 
a4 = a=--.2p 2 . (11) = -  

Returning to the first approximation, we see from (8) ~hat 
the solution is only possible under the condition that a > Kp. 
If  a = ~p, then p = n ; i.e. the imposed variation in the "spring" 
must be exactly twice as quick as the natural vibration of the 
body would be in the absence of friction. From (7) it appears 
that in this case e----0, which indicates that the spring is a 
minimum one eighth of a period after the body has passed its 
position of equilibrium, and a maxnnum one eighth of a period 
before such passage. Under these circumstances the greatest 
possible amount of energy is communicated to the system; 
and in the case contemplated it is just suffcient to balance the 
loss by dissipation~ the adjustment being evidently indepen- 
dent of the amplitude. 

If  a < ap, sufficient energy cannot pass to maintain the 
motion, whatever may be the phase-relation; but if a > ap~ 
the equality between "energy supplied and energy dissipated 
may be attained by such an alteration of phase as shall dimi- 
nish the former quantity to the required amount. The altera- 
tion of phase may for this purpose be indifferently in either 
direction; but if e be positive, we must have 

p== n = -  ¢' ; 
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234 Lord Rayleigh on Maintained Vibrations. 

while if e be negative, 

+ 

If a be very much greater than i¢jo, e=  +¼~r, which indicates 
that when the system passes through its position of equili- 
brium the spring is at its maximum or at its minimum. 

The inference fi'om the equations that the adjustment of 
pitch must be absolutely rigorous for steady vibration will be 
subject to some modification in practice ; otherwise the expe- 
riment could not succeed. ]n most cases n 2 is to a certain 
extent a function of amplitude; so that if n 2 have very nearly 
the required value, complete coincidence is attainable, without 
other alteration in the conditions of the system, by the assump- 
tion of an amplitude of large and determinate amount. 

When a particular solution of (5) has been found, it may be 
generalized by a known method. Thus, if O~A01, we have as 
the complete solution 

O=AOl + BOl ~tO:'e-'tdt • 
~ 0  

which may be put into the form 

O= :DO 1-  BO:j:®O[~e-.tdt. (1 2) 

When t is great, the second term diminishes rapidly~ and the 
solution tends to assume the original form O= P01. 

The number of eases falling under the present head which 
have been discovered and examined hitherto is not great. 
The mysterious son rauque of Savart, which sometimes accom- 
panies the longitudinal vibrations of bars, and is attributed by 
Terquom to an associated transverse vibration, is doubtless of 
this character. Just as in Melde"s experiment already spoken 
of, the periodic variations of tension accompanying the longi- 
tudinal vibrations will throw the bar into lateral vibration, if 
there happen to be a mode of such vibration whose pitch is 
nearly enough coincident with the suboctave of the principal 
note. 

For a lecture illustration we m~y take a pendulum formed 
of a bar of soft iron and vibrating on knii~-edges. Under- 
neath the pendulum is placed symmetrically a vertical bar 
electromagnet, through which is caused to pass an electric 
current rendered intermittent by an interrupter whose fre- 
quency is twice that of the pendulum. The magnetic force 
does not tend to displace the pendulum from its equilibrium 
position, but produces the same sort of effect as if gravity 
were subject to a periodic variation. 
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On the Ultra-red Region of the Spectrum of the Sun. 235 

A similar result is obtained by causing the point of suppor~ 
of the pendulmn to vibrate in a vertical path. If  we denote 
this motion by V=13sin2pt~ the effect is as if gravity were 
variable by the term 4p:fls!n 2pt. Of the same nature are 
the crispations observed by ]) araday and others on the surface 
of water which oscillates vertically. Faraday arrived experi- 
mentally at the conclusion that there were two complete vibra- 
tions of the support for each complete vibration of the liquid. 
This view has been contested by Matthiessen ~, who main- 
rains that the vibrations are isoperiodic. By observations, 
which I hope to find another opportunity of detailing, I have 
convinced myself that in this matter Faraday was perfectly 
correct. The vibrations of water standing upon a horizontal 
glass plate, which was attached to the centre of a vibrating 
iron bar, were at the rate of 15 per second when the vibra- 
tions of the bar were at the rate of 30 per second. The only 
difference of importance between this case and that of the 
pendulum is that, whatever may be the rate of vibration of 
the plate, there is always possible a free water-vibrgtion of 
nearly the same frequency, and that consequently no special 
tuning is called for. 

XXXIV.  On a Measurement of Wave-lenq.ths in the Ultra-red 
Region of the Spectrum of the Sun. B~/ ERNST I)RINGSHEIM% 

I N order to investigate the solar spectrum it is of special 
importance to know the wave-length of the extreme rays 

emitted by the sun, and thus to determine the extent of the 
entire spectrum. Ill order to determine the wave-length of 
the least-refrangible rays, Mfiller$, and subsequently La- 
mansky§, observed with the aid of a thermopile the index of 
refraction of the extreme rays of a spectrum projected by a 
crown-glass or rock-salt prism, and from that index calculated 
the wave-length by means of an empirical ibrmula, the cor- 
rectness of which was controllable only within the limits of 
the visible rays. The untrustworthiness of this method is 
obvious; thus, from the same observation Mfiller calculated, 
by two different formulae, for the extreme wave-length the 
values 0'00177 and 0"0048 miIlim. 

A trustworthy determination of the wave-length is possible 
onl)~ with the aid of the interference of the rays; and this 
course was taken by AbneyH, who succeeded in photographing 

* Pogg. Ann. cxli. ]870. 
J" Translated from Wiedemann's Annalen, 1883, No. 1~ pp. 32-45. 
:t Pogg. Ann. cv. p. 352 (1858). § Ibid. cxlvi. 1872. 
II Phil. Trans. 1880, pp. 653-667. 
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