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LONDON, EDINBURGH, ~.N~) DUBLIN 

PHILOSOPHICAL MAGAZINE 

AND 

JOURNAL OF SCIENCE. 

[FIFTH SERIES.] 

A U G U S T  1881. 

X. On tile Electromagnetic Tlteor# of Ligltt. By LORD 
RAYLEmH, F.R.S., Professor of Experimental Pfiysics in 
the University of Cambridje*. 

T HE claims of the theory propounded by Maxwell, accord- 
ing to which light consists of a disturbance in a medium 

susceptible of dielectric polarization, are so considerable that it 
is desirable to extend its application as far as possible to 
various optical phenomena. The question of the velocity of 
propagation in vacuum and in singly or doubly refracting 
transparent dielectrics was considered by Maxwell himself; 
and the agreement with experiment, though far from perfect, 
is sufficiently encouraging. More recently it has been shown 
by Helmholtzt, Lorentz:~, Fitzgerald §, and J. J. Thomson It, 
that the same theory leads to Fresnel's expressions ibr the 
intensity of light reflected and refracted at the surface of sepa- 
ration of transparent media, and that the auxiliary hypotheses 
necessary in this par~ of the subject agree with those required 
to explain the laws of double refraction. In this respect the 
electromagnetic theory has a marked advantage over the older 
view, which assimilated luminous vibrations to the ordinary 
transverse vibrations of elastic solids. According to the latter, 
Fresnel's laws of double refraction~ fully confirmed by modern 

* Communicated by the Author. 
~" Crelle, Bd. lxxii., 1870. 1: Schl5milch, xxil., 1877. 
§ Phil. Trans. 1880. I] Phil. ~-~ag. April 1880. 

Phil. Mag. S. 5. Vol. 12. No. 73. Aug. 1881. G 
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82 Lord Rayleigh on the 

observation*, require us to suppose that in a doubly-refractlng 
crystal the rigidity of the medimn varies with the direction of 
the strain; while, in order to explain the facts relating to the 
intensities of reflected light, we have to make the inconsistent 
assumption that the rigidity does not vary in passing from 
one medium to another. A further discussion of this subject 
will be found in papers published in the Philosophical Maga- 
zine during the year 1871. 

I f  the dielectric medium be endowed with sensible conduc- 
tivity, the electric vibrations will be damped; that is to say, 
the light will undergo absorption, with a rapidity which Max- 
well has calculated. By supposing the conductivity to be so 
great that practically complete absorption takes place within 
a distance comparable with the wave-leng~h, we may obtain a 
theory of metallic reflection which is not without interest, 
although the phenomena of abnormal dispersion show that it 
cannot be regarded as complete. 

For an isotropic medium at rest we have the equations 
(Maxwell's 'Electricity and Magnetism,' §§ 591, 598, 607, 
610, 611) 

u=p+~aJ~ &c., . . . . . .  (1) 

K__p &e., (2) 
f = 4 7 r  ' . . . . . . .  

p = ¢ P ,  &c., . . . . . . . .  (3) 

p = _  dF dT 
dt d x ,  &C., . . . . .  (4) 

dH dG &c., . . . . . .  (5) 
a--  d~/ d z '  

a = t ~ ,  &c., . . . . . . . .  (6) 

--~yy de'dE &e. ; . . . . . .  (7) 4~ru --- 

in which f,  g, ]~ are the electric displacements, p,  q, ~. the 
currents of conduction, u, v, w the total currents, P, Q, 1~ the 
components of electromotive force, K the specific inductive 
capacity, C the conductivity, a, fl, 7 the components of mag- 
netic force, a, b, c the components of magnetization, /z the 
magnetic capacity, F, G, H the components of electrokinetic 
momentum, and xtr the electric potential. 

* Glazebrook, Phil. Trans. 1879. 
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Electromagnetic Theory of Light. 83 

From (2), (4), and (5) we get 

4~ ~ K  d~ = - - ~  ~ d ~ l = ~ / a c ' "  (8) 
In the case of K constant, equation (8) expresses that the 

electric displacement ~(fdx+gdy) round a small circuit in 
the plane of xy corresponds to the electromotive force round 
the circuit, represented by de/St. 

Again, from (1), (2), (3), (6), (7), 

4r," + =dy tl, dz I~ 
From equations (8) and (9) the problem of reflection can be 
investigated. In order to limit ourselves to plane waves of 
simple type, we shall suppose that K, ~, and C are indepen- 
dent of z, and that the electric and magnetic fimctions are inde- 
pendent of z and (as dependent upon the time) proportional to 
d "t. The two principal cases will be considered separately~ 
(1) when the electric displacements are perpendicular to the 
plane of incidence, (2) when they are executed in that plane. 

Case 1. This is defined by the conditions 
f=O, g=O, and (accordingly) c--O. 

Thus 

ina=--4~r h ,  inb=4~r~x ~,  . (10) 

4~(in+ ~ _ ) h =  d b d a (11) 
dx l~ dy I • . . . .  

Eliminating a and b from (10) and (11), we get 
d 1 h 

~ y ) ~ + n  K t l - - m - ~ - - ) ~ - 0 .  (12) 

Case 2. Here the special conditions are 
h=0~ a=0~ b=0.  

We have 

4~.{ d f d . . . . .  (13) 
kdy K dx 

+tr-,,,' (14) 
whence by elimination o f f  and g, 

i .. 

G2 
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84 Lord Rayleigh on the 

Equations (12) and (15) simplify considerably in their ap- 
plication to a uniform medium, assuming the common form 

d ~ d ~ 
dx--~ + ~ +n~t*K( 1-47rnCK-~)=O" (167 

To express the boundary conditions let us suppose that ,v= 0 
is the surface of transition between two uniform media. From 
(12) we learn that the required conditions for case 1 are that 

h and 1 d [h~  

must be continuous. 
In like manner, for case 2 we see from (15) that 

Can  d 1 d ( ~ )  

must be continuous. 
If  the media are transparent, or but moderately opaque, we 

have to put C = 0. The differential equation is of the form 
d ~ an 
dx~ z + -@ +n~t~K=0 . . . . .  (17) 

In ease 1 the boundary,conditions are the continuity of the 
l d  

dependent variable and of ~ d-xx' and in case 2 the continuity 

of the dependent variable and of-~ d Analytically, the 
dar" 

results are' thus of the s~me form in both cases. I f  0 and 0x 
are respectively the angles of incidence and refraction, the ratio 
of the reflected to the incident vibration is in case 1 

tan 01 
tan 0 /~l 
tan 01 /ff . . . . . . .  (18) 

tan 0 +/-h 
and in case 2 

tan 61 K 
tan 0 K 1 
tan01 K '  . . . . . .  (19) 
~-n--0 + K1 

in which K,/~ relate to the first, and K1, ~1 to the second 
medium; while the relation between 82 and 0 is 

Klm : K/~= sin 2 0 : sin ~ 01 . . . . .  (20) 

As Helmholtz has remarked, Frosnel's formulm may be 
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Electromagnetic Theory of Light. 85 

obtained on two distinct suppositions. I f  t~1 =/~, 

(18) = sin (01--0) 
sin (01 + O)' 

and 
tan (0 l -  0) 

(19) = tan (01 + O); 

but if K I =  K, then (19) identifies itself with the sine-formula, 
and (18) with the tangent-formula. Electrical phenomena, 
however, lead us to prelbr the former alternative, and thus to 
the assmnption that the electric displacements are perpendi- 
cular to the plane o f  polarization. The formulm for the 
refracted waves, which follow from those of the reflected waves 
iu virtue of the principle of energy alone, do not call for de- 
tailed consideration. 

In the problem of perpendicular incidence, we have from 
(12)~ iftt  be constant and (3 zero, 

dx ~ K + n~/~K = 0  . . . . . .  (21) 

For an application of this equation to determine the influence 
of defective suddenness in the transition between two uniform 
media, the reader is referred to a paper in the eleventh volume 
of the Proceedings of the Mathematical Society. 

In order to obtain a theory of metallic reflection, C must be 
considered to have a finite value in the second medium. The 
symbolical solution is not thereby altered fi'om that applicable 
to transparent media, the effect of the finiteness of C being 
completely represented in both cases by the substitution of 
K(1--i4~rnCK-') for K. Thus~ if tt be constant, the formula 
for the amplitude and phase of the reflected wave in case 1 is 
to be found by transformation of (18), in which the imaginary 
angle of refraction 01 is connected with 0 by the relation 

X~(1--i4vnCK~-') : K =  sin ~ O: sin ~ t~,. (22) 

In like manner the solution for case 2 is to be found by trans- 
ibrmation of (19) under the same supposition. 

With regard to the proposed transformations, the reader is 
referred to a paper by Eisenlobr* and to some remarks there- 
upon by myself~f. The results are the formulm published 
without proof by Cauchy. From the calculations of Eisenlohr 
it appears that Jamin's observations cannot be reconciled with 
the formulae without supposing K1 : K, i. e. the real part of 
the square of the complex refractive index, to be negative--a 

" Pogg. Ann. t. cir. p. 368. t Phil. Mug. May 1872. 
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86 Lord Rayleigh on the 

further proof that much remains to be done before the elec- 
trical theory of metallic reflection can be accepted as complete*. 

The same fundamental equations (8) and (9) will now be 
applied to the problem of determining the effect on a train of 
plane waves of a small variation in the quantities K and/~ 
which define the medium. A similar method will be adopted 
to that already used for light in a paper " O n  the Scattering 
of Light by small Pa~icles"t, and i-nmy book 'On the Theory 
of Sound,' § 296, the principle of which consists in an ap- 
proximation depending upon the neglect of the higher powers 
of the small variations AK and A/~. 

Let us suppose that a train of plane waves, in which the 
electric displacement is parallel to z, and magnetization parallel 
to y, propagates itself parallel to x undisturbed until it falls 
upon a region where the generally constant values of K and 
/~ become K + AK and/~ + Akg. If  AK and A/~ were zero, 
the wave would pass on as before ; but under the circum- 
stances secondary waves are generated, which diverge from 
the region of disturbance, and are ultimately, when AK and 
A/~ are small enough, proportional in magnitude to these 
quantities. As the expression of the primary waves we may 
take 

ho----ei'~t e ik~, . . . . . . .  (23) 

and corresponding thereto, by (8), 

bo=4~rkn-l K - l d n t e  ~k~, . . . .  (24) 

in which, if X denote the wave-length, k=2~r/X,  and n /X  is 
the velocity of propagation (K/~)-½. The complete values of 
the functions being represented, as before, byf~ g~ h~ a, b, c, we 
shall put 

f - - - - /o ' l - f lT f2T . . .&c . ,  a-~ao+al  + . . .  &c., 

f o . . . a o . . ,  being independent of AK and A/~, f l . . . a l . . .  
being of ~he first order, f ~ . . .  a~.. .  of the second order~ and 
so on, in these quantities. In the actual case re, go~ ao~ Co 
vanish, and only he and be are finite. 

From (8) an[l (9) with C=0,  we get 

July 15.--I see that Lorentz, in a pamphlet Over de Theo~qe d~r 
Te~agkaatsing en JBrekin.q van her JLicht (Arnhem~ 1875), has developed a 
theory of metallic reflection similar to that indicated in the text, and has 
noticed the same difficulty in the application to experiment. 

t Phil. Mag. June 1871. 
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Electromagnetic Theory of Light. 87 

dc 
dy dx 

4~r{~  dh 

db 4~r;dh df + K  d ( h & K _ , ) _ K d ( f A K _ , ) } = K ~ .  

de db , d , d r ' ]  
dy dz 
da de d .  ,- d , dy, (26) & ~ + ~ ( a a ~ - ) - ~ ( c a ~ - ) = 4 ~  

I 
db da d 1 d 1 dh [ 

By differentiation of the tlrst equation of (26) and substi- 
tution from (25), we get, having regard to 

d f d g  dh ~ + ~ + ~ = o ,  . . . . .  (~7) 

which is a consequence of (1), (3), (7), 

i_K d? f d 2 f d~.f d~.f d 2 = ~ + ~ + ~ +K{'d~\ + d ~ (  fAK-~'~ 
dz ~ ) '.J " j 

d~ - - K ~  (t, aK-') --K d--Z~# (ghK- ')  dxd.  

~K d2 [ ~ ~ K  d ~ + 
4~r dydt ~CA~-'j 4~r ~ d t  (~a~-'), 

or, remembering that the functions as dependent upon time 
vary a s  eint~ 

_ K ~ ( g A K - 0 _  K d~ ~ q ,  aK-,) 

inl~K d i 4 in~K4~r dyd (cAI~_~) ~ ~(bAl~-)=O,  (28) 

with two similar equations in y and h. 
Introducing now the expansion in powers of AK and A~ 

we get as the first approximation 

v A+~:A-K (/,oaK-')-inl~K d (boA/~_,)=0 ' 
4~r dz 

(25) 
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88 Lord Rayleigh on the 

or, on substitution for bo in terms of h0 from (23), (24), 

~ 7 2 f l + ~ A - K  d'~ (hoAK-1)--ik~d (hoA~-')=O, ('29) dx dz a~ 
and 

V ~ g l + k 2 g , - - K ~  (hoAK-') =0 ,  . . . . . .  (30) 

d 2 
V'hl + k'hx + I{ ( ~  + ~y~)(hoA K -') 

• d 1 + zk~ ~ (h0A~ - )-- 0. (31) 

The solution of (29) is 
K ~f~e  -'kr d 2 

f~=--~'-~j,).) ~ dxdz(hoAK-Odxdy dz 

ik,  ~ ( e  -'~ d (hoAK_,)dxdydz ' (32) 
4 v j j j  ~. dz 

where r, equal to C { (a -- x): + (fl - g ) :  + (~/--z) ~ }, is the dis- 
tance of the element of volume dx dy dz from the point a~/~ 7 
at which f l  is to be estimated. 

In applying (32) to the calculation of a secondary wave at 
a distance from the region of disturbance, we may conveniently 
integrate it by parts. Thus, 

A _ - - _ 4 ~ y y y h o A K - ~  d2 (e-~,') \ - - ~  ] dx dy dz 

~z k-T-]  dx dy dz. 

From the general value of r, 
d (e-'k" / _ 7--z e-'k~(1 + ikr) 

~ - 7 - ] -  ~ ~ , . . . . .  , ( 3 3 )  

d~.dzk~r e fe-'~'~ a--x~. V--zr e-'k'(3+3ikr--k~r2)r ~ • (34) 

I f  r be sufficiently great in comparison with X, only the high- 
est power of kr in the above expressions need be retained ; 
and if r be also great in comparison with the dimensions of 
the region of disturbane% supposed to be situated about the 
origin of coordinates. ( a - - x ) / r  &c. may be replaced by a/'r 
&c. Thus, 

d (e-ikr) qt ike -ik~ 
~ - - ~ J = 7  ~ ; 

~,~ ~, ; 
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Electromagnetic Theory of Light. 89 

and the expression for f l  becomes 

~rrL ~" JJJ 
--i~y.fyhoAl~-'e -ikr dxdydz]. 

For the sake of brevity we will write this 

S,=~_~ Lk~ rKp ~ _,Q}],_~ , (3~) 
where 

P='fYYh°AK-'e-'~'~'r, dxdX dy dZ,dz, } 
• . . . .  ( 3 6 )  

Q = . ! ~  h°A/~-le-/~r dy 
In like manner from (30) and (31), 

k ~ r ~ , )  ~ , ]  (37) 
g l =  ~ L ~,-- ~j,  . . . . . . . .  

Equations (35), (37), (38) express the electric displace- 
ment in the secondary waves. Since a f +  ~g + 7h = 0, the dis- 
placement is perpendicular to the direction of the secondary 
ray. The general expression for the intensity is found by 
adding the squares off, g, h ; but it will be sufficient for our 
present purpose to limit ourselves to the case where the second- 
ary ray is perpendicular to the primary ray, i. e. to the case 
a =0.  Then 

2 2 2 2 ~  f'+g'+h'--16~r,%~[KP ~ + ~ Q ~ J .  • (39) 
If P and Q are both finite, there is no direction along which 
the secondary light vanishes. We find by experiment, how- 
ever, that the light scattered by small particles on which pola- 
rized light impinges does vanish in one direction perpendicular 
to the original ray ; and thus either P or Q must vanish. Now, 
when the particles are ver) small, we have 

P=hoAK-'e-'~'~dxdydz, Q=hoA,-'e-'k"~S~dxdydz; (40) 

so that if P vanishes~ AK----0; and if Q vanishes, A/~----0. 
The optical evidence that either AK or A/~ vanishes is thus 
very strong; while electrical reasons lead us to conclude that 
it is h/~. 

If we write T for the volume of the small particle, we get 
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90 Lord Rayleigh on tlte 

from (40), as the special forms of (35), (37), (38) applicable 
to this case, 

hi = vrT ei(,t._~ ) F-- KAK -I a~ + ~: +/zh/~ -i ~.}. (43) 
X2r k r ~ 

If  AA=0, as we shall henceforward suppose, f : g = a  :fl, 
showing that the electrical displacement is in the plane con- 
taining the secondary ray and the direction of primary elec- 
trical displacement (z), and 

2 a2 + / 32 

so that the intensity is proportional to the square of the sine 
of the angle between the secondary ray and the direction of 
the primary electrical displacement. The blue colour of the 
light scattered from small particles is explained by the occur- 
rence of )~2 in the denominators of the expresslons ibrf l  , gl, lh; 
but for further particulars on this subject the reader must be 
referred to my previous papers. 

Equations (35), (36), &c. are rigorously applicable, however 
large the region of disturbance, if the square of AK may 
really be neglected. From them we see that, under the cir- 
cumstances m question, each element of a homogeneous 
obstacle acts independently as a centre of disturbance, and 
that the aggregate effect in any direction depends upon the 
phases of the elementary secondary disturbances as affected by 
the situation of the element along the paths of the primary 
and of the secondary light. In fact, 

P = AK-lei~tSSSei~*e-ikr dx dy dz. 

If  0, ~b be the angles defining (in the usual notation) the direc- 
tion of the secondary ray, and re correspond to the origin of 
coordinates, we have 

P =AK-~d¢.t-m) S~S ei~e'+"in°co~+~i~°'i~q~+~°'°) dxdy dz; (44) 

and the question now before us for consideration is the value 
of the integral in (44) as dependent upon the size of the 
obstacle and the direction of the secondary ray. It is evident 
that the formulm are applicable only when the whole retarda- 
tion of the primary light in traversing the obstacle can be 
neglected in comparison with the wave-length ; but if this 
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Electromagnetic Theory o /L igh t .  91 

condition be satisfied, there is no further limitation upon the 
size of the obstacle. In the case where the secondary ray 
forms the prolongation of the primary~ or deviates sufficiently 
little from this direction, the exponential in (44) reduces to 
unity, signifying that every element of the obstacle acts alike, 
any retardation of phase at starting due to situation along the 
primary ray being balanced by an acceleration corresponding 
to a less distance to be travelled along the secondary ray. At 
a greater or less obliquity, according to the size of the obstacl% 
opposition of phase sets in; and at still greater obliquities the 
resultant can be found only by an exact integration. Its in- 
tensity is then less~ and generally much less, than in the first~ 
case--a conclusion abundantly borne out by observation. 

The simplest example of this kind is that afforded by an 
infinite cylinder (e. g. a fine spider-line), on which the light 
impinges perpendicularly to the axis, so that every thing 
takes places in two dimensions. This case is indeed not 
strictly covered by the preceding formulm~ on account of the 
infinite extension of the region of disturbance; but a moment's 
consideration will make it clear that each elementary column 
here acts according to the laws already described--that is to 
say, gives rise to a component disturbance whose phase is de- 
termined by the situation of the element along the primary 
and secondary rays. If  the angle between the two rays be 
called X, we have to consider the value of 

~ e  ~k('+"c°sx+wi'x) dx  (l~. 

Introducing polar coordinates r~ O~ we find 

x + x cos x + !/ sin x = 2r cos ½ x cos ( O--½ X) ; 

so that the integral 

----~S e~k~ ' ~ co, ½ x . co~ o r dr dO 

| {cos ( k cos ½x cos o )  

+ i sin (2kr cos ½ X cos 0) } ~ dr dO 

=   j[J0(2kr cos ½X) rd , . . . . . . .  

f b  

(45) 

Jo denoting the Bessel's function of zero order. 
The integration with respect to r indicated in (45) can be 

effected by known properties of Bessel's functions; and the 
result is expressible by a function of the first order. We get 

~a J~(2ka cos ½ X); . . . . . . .  (46) 
kcos½:~ 
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92 Lord Rayleigh on rite 

and J1 is defined by 
Z ( Z 2 Z 4 Z 6 ) 

= 1 -  + 2 . 4  2 . 4  6 S + . . . .  ( 47 )  

I f  cos~x----0 (i. e. in the direction of original propagation), 
(46) becomes ~'a ~, every element of the area acting alike. 
This is the maximum value. When X is such that 

2kacos~x--~r × 1"2197, 

the secondary light vanishes, at a ~reater angle revives, then 
vanishes again, and so on, the angms being of course func- 
tions of the wave-length. If  we conceive the cylinder to 
increase in size gradually from zero, the scattered light 
vanishes first in the backward direction ;~= 0, in which direc- 
tion evidently the greatest differences of phase occur. Every 
thing is determined by the course of the function J1; and (46) 
within the limits of its application embodies the theory of 
Young's eriometer. 

We will now consider the case of an obstacle in the form of 
a sphere. If  z be a coordinate measured perpendicularly to 
the plane containing the primary and secondary rays, formu]a 
(46), multiplied by dz, will represent the effect of' a slice of 
the sphere, whose radius is a and thickness dz, and what 
remains to be effected is merely the integration with respect 
to z. For this purpose we write z---c sin ~b, a t  e cos ~b, where 
c is the radius of the sphere. The integral then takes the form 

k ~ x j o  ,,,~z,~c cos ½ u cos ,t,) cos~ ,/,.de, (48) 

or, if we expand J1 by (47), and integrate according to a 
known formula, 

2 - - -5-4  7 . 5 . 4  9 . 7 . 5 . 4 . 6  

+ 1 1 . 9 . 7 . o . 4 . 6 . 8 '  , (49)* 

in which m is written for 2kccos½ X. It will be understood 
hat (49), after multiplication by d" tAK -~, gives merely the 

xMue of 1 ) in (36), and that to find the complete expression 
for the secondary light in any direction other factors must be 
introduced in accordance with (35), (37), (38). The angle X, 

" July l & - - I  find for the first root of (49), m=4"50, giving as the 
smallest-obliquity ( I t - X )  at which the secondary light vanishes, 

~r-  X = 2 sin - ~ (4"50/2kc). 
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Electromagnetic Theory of Light. 93 

being that included between the secondary ray and the axis 
of x, may be expressed by 

s i n x =  , / ( ~  + ~ ) + , .  . . . . .  (50) 

Our theory, as hitherto developed, shows that, whatever the 
shape and size of the particles, there is no scattered light in 
a direction parallel to the primary electric displacements, 
except such as may depend upon squares and higher powers 
of the difference of optical properties. In order to render an 
acco.unt of the "residual blue" observed by Tyndall when 
particles in their growth have reached a certain magnitude, it 
is necessary to pursue the approximation. By (28), with At~ 
neglected, we have 

d2 d~" A -1 
V~.5+k~f~+g ~-yZ+~zz~)(f , K ) 

d' . , a~ (h lAK- ' )=0 ,  (51) - -K da--~@ ( g l A K ) - - K d x d z  

and two similar equations in g~ and h2. On the supposition 
that f l ,  gl, hi are known throughout the region of disturbance, 
these equations may be solved in the same way as (29), (30), 
and (31). For the sake of brevity we may confine ourselves 
to the particular direction for which the terms of the first order 
vanish. Thus at a sufficient distance .r' along the axis of z, 

1,2=0 . . . . . . . . . . . . . .  (54) 
We have now to find the values of j ]  and gl within the 

region of disturbance, to which of course (35) &c. are not ap- 
plicable. In the general solution (32), he is a function of x 
only ; so that the elements of the integral vanish in the interior 
of a homogeneous obstacl% and we have only to deal with the 
surface. Integrating by parts across this surface, we find 

_ K " d -1 d d.vdydz f~-- (/,oaK)d-~x 

, K d ~{'{' (h0AK_l) e -;k' • dx  dy  dz,  (55) 4~r da ~ dz r 

r being a function of x and ~ only through (~--x). In like 
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94 Lord Rayleigh on the 

manner 

K d f f [ ' d  (hoAK-') e - ' k ' d x d y d z . .  (56) 

In ~ho case of a small homogeneous sphere, whose centre 
is taken as origin of coordinates, these formulm lead to fairly 
simple results. The triple integral in (55), (56) may readily 
be exhibited in its real character of a surface-integral. Thus 

y ~ f d  (/soAK- 1) 
e-ikr 

dzz r j , )  c r dS, (57) 

where dS is an element of the surface whose radius is c. This 
applies to a sphere of any size; but we have now to introduce 
an approximation depending on the supposition that kc is small. 
As far as the first power of kc, 

- - A K - '  | | ,oo~ L____ dS = - A K - '  
j . j  c r - ~ - , ; j ~  ; 

e ~"' f f z  + ik~  dS 
= - ± K - ' T . ) , )  7 ' 

in which the double integral is the common potential of matter 
distributed over the spherical surface with density (z +ikzx). 
Calling this for the moment V, we have (Thomson and Tait~ 
' :Nat. Phil.' § 536) at any internal point (a,/3, ~/), 

so that 

y y y d  ( / soAK)  dx dy dz 
e-ikr, 

3T ~. 

= - ~ - A  K-' j"(~, + ~ ik~,,,). (58) 
Thus by (55), (56), 

/ l=½KAK-' ik~/e '% g , = 0  . . . . .  (59) 

We are now prepared to calculatef~, g~ from (52), (53). 
These formulm apply to both directions along the axis of z; 
but in what follows it will be convenient to suppose that it is 
the positive direction which is under consideration. In this 
case, if p denote the distance from the centre of the sphere~ 
~r=p_~/and e-i~"=e-~o(1 +iky) approximately; so that 

k2(KAK-1) 2ei(~t-k°) " . el h = - ~ yyy~kr~ .  + ik,y) d,, d~ d~/ 

k4(KAK-1) 2 
_ e ~ ( . t - k p )  - ~ d a  - 12~. -~ y y y v  ~ d3 d~,; 
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.Eleetromagnetlc Theory of Light. 95 

or if~ as befor% T be the volume of the sphere, 

g2=0. 

Comparing (60) and (41), we see that the amplitude of the 
light scattered along z is not only of higher order in AK,but is 
also of the order k2c 2 in comparison with that scattered in other 
directions. The incident light being white, the intensity of 
the component colours scattered along z varies as the inverse 
8th power of the wave-length, so that the resultant light is a 
rich blue. 

There is another point of importance to be noticed. Although 
when the terms of the second order are included the scattered 
light does not vanish along the axis of z, the peculiarity is not 
lost, but merely transferred to another direction. 1)utting 
together the terms of the first and second orders, we see that 
the scattered light will vanish in a direction in the plane of xz, 
inclined to z (towards x) at a small angle 0, such that 

- - K A K - ' ~  AK k~c 2 0 =  --  K i5" (61)  

In the usual case of particles optically denser than the sur- 
rounding medium, AK is positive, from which we gather that 
the direction in which the scattered light vanishes to the second 
order of approximation is 
inclined backwards, so that 
the angle through which 
the Iight may be supposed 
to be bent by the action 
of the particle is obtuse. 

The fact that, when the 
primary light is polarized, 
there is in one perpendi- 
cular direction no light 
scattered by very small 
particles, was stated by 

( 
Stokes*; but it is, I believe, to Tyndall that we owe the obser- 
vation that with somewhat larger particles the direction of 
minimum illumination becomes oblique. I do not find, how- 
ever, any record of the direction of the obliquity (that is, of 
the sign of the small angle 8), and have therefore made a few 
observations for my own satisfaction. 

In a darkened room a beam of sunlight was concentrated 

* Phil. Trans. 1852, § 183. 
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96 Lord Rayleigh on the 

by a large lens of '2 or 3 feet focus; and in the path of the light 
was placed a beaker glass, containing a dilute solution of hy- 
posulphite of soda. On the addition of a small quantity "of 
dilute sulphurie acid a precipitate of sulphur slowly forms~ 
and during its growth manifests exceedingly well the pheno- 
mena under consideration. The more dilute the solutions~ the 
slower is the progress of the precipitation. A strength such 
that there is a delay of four or five minutes before any effect 
is apparent~ will be found suitable; but no great nicety of ad- 
justment is necessary. By addition of ammonia in sufficient 
quantity to neutralize the acid, the precipitation may be 
arrested at any desired stage. More time is thus obtained to 
complete the examination ; but the condition of things is not 
absolutely permanent, the already precipitated sulphur appear- 
ing to aggregate itself into large masses. 

In the optical examination we may~ if we prefer it~ polarize 
the primary light; but it is usually more convenient to analyze 
the scattered light. In the early stages of the precipitation 
the polarization is complete in a perpendicular directioa, and 
incomplete in oblique directions. After an interval the pola- 
rization begins to be incomplete in the perpendicular direc- 
tion, the light which reaches the eye when the nicol is in the 
position of minimum transmission being of a beautiful blu% 
much richer than any thing that can be be seen in the earlier 
stages. This is the moment to examine whether there is a 
more complete polarization iu a direction somewhat oblique ; 
and it is found that with 0 positive there is in fact an oblique 
direction of more complete polarization~ while with 0 negative 
the polarization is more imperfect than in the perpendicular 
direction itself. 

The polarization in a distinctly oblique direction, however, 
is not perfect~ a feature for which more than one reason 
may be put forward. In the first place~ with a given size of 
particles, the direction of complete polarization indicated by 
(61) is a function of the colour of the light, the value of'0 
being three or four times as large for the violet as for the red 
end of the spectrum. The experiment is, in fact, much im- 
proved by passing the primary light through a colourod glass 
held in the window-shutter. Not only is the oblique direction 
of maximum polarization more definite and the polarization 
itself more complete, but the observation is easier than with 
white light, by the uniformity of the colour of the light scat- 
tered in various directions. If  we begin with a blue glass, we 
may observe the gradually increasing obliquity of the direction 
of maximum polarization; and then by exchanging the blue 
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Electromagnetic Theory of Liffht. 97 

glass for a red one, we may revert to the original condition of 
things, and observe the transition from perpendicularity to 
obliquity over again. The change in the wave-length of the 
light has the same effect as a change in the size of the par- 
ticles; and the comparison gives curious information as to the 
rate of growth. 

But even with homogeneous light it would be unreasonable 
to expect an oblique direction of perfect polarization. So long 
as the particles are all very small in comparison with the 
wave-length~ there is complete polarization in the perpendi- 
cular direction; but when the size is such that obliquity sets 
in~ the degree of obliquity will vary with the size of the par- 
ticles, and the polarization will be complete only on the very 
unlikely condition that the size is the same for them all. I t  
must not be forgotten~ to% that a very moderate increase in 
dimensions may carry the particles beyond the reach of our 
approximations. 

The fact that at this stage the polarization is a maximum 
when the angle through which the li_~ht is turned exceeds a 
right angle is the mor~worthy of note.as the opposite result 
would probably have been expected. By Brewster's law this 
angle in the case of a plate is less than a right angle; so that 
not only is the law of po]arization for a very small particle 
different from that applicable to a plate, but the first effect of 
an increase of size is to augment the difference. 

We must remember that our recent results are limited to 
particles of a spherical form. It is not difficult to see that, 
for elongated particles, the terms in (AK) 2 may be of the same 
order with respect to kc as the principal term; so that if 
(AK) 2 be sensible, mere smallness of the particle will not 
secure complete evanescence of scattered light along z. The 
general solution of the problem for an infinitesimal particle of 
arbitrary shape must raise the same ditiqeulties as beset the 
general determination of the induced magnetism developed in 
a piece of soft iron when placed in a uniform field of fbrce. 
In the case of an eliipsoidal particle the problem is soluble ; 
but it is perhaps premature to enter upon it, until experiment 
has indicated the existence of phenomena likely to be explained 
thereby. 

For an infinitesimal particle in the form of a sphcr% we may 
readily obtain the complete solution without any approxima- 
tion depending upon the smallness of AK. We know by the 
analogous theory of magnetism~ that a dielectric sphere situated 
in a uniform field of electric force will undergo electric dis- 
placement of" uniform amount, and in a direction parallel to 
that of the force. Thus the complete solution applicable to 

Phil. Mag. S. 5. Vol. 12. :No. 73. Aug. 1881. H 
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98 Lord Rayleigh on the 

an infinitely small sphere is obtained from (29), (30), (31) by  
writing h for h0; where by h is denoted the actual displace- 
ment (parallel to z) within the particle, and by h0 the displace- 
ment in the enveloping medium under the same electric force. 
I f  K ~ be the specific inductive capacity for the particle, the 
ratio of h : h 0 is 3K r : K ~ + 2K ; and in this ratio the results 
expressed in (41), (42), (43) are to be increased. I f  we 
extract the factors K A K  -~ which there occur, we get 

K'+2-----K K ' + 2 ~  ~-7 = - -  K ~ + 2 K  ; 
so that 

3 ( K ' - - K )  ~rT a~/ 
f =  K' + 2K X2r r 2 e~("t-~)' &e. . (62) 

We  learnTrom (62) that our former result as to the eva- 
nescence of the secondary light along z is true for an infinitely 
small spherical particle to all orders of AK. 

We will now return to the two-dimension problem with the 
view of determining the disturbance resulting from the impact 
of plane waves upon a cylindrical obstacle whose axis is 
parallel to the plane of the waves. There are, as in the pro- 
blem of reflection from plane surfaces, two principal c a s e s -  
( l )  when the electric displacements are parallel to the axis of 
the cylinder taken as axis of z, (2) when the electric displace- 
ments are perpendicular to this direction. 

Case 1 . - -F rom (12), with C = 0 , / ~ =  constant, 

or if~ as before, k=2~r/X, 

d j '  + k  = 0 ,  . . . . . .  (63) 

in which k is constant in each medium, but changes as we 
pass from one medium to another. From (63) we see that 
the problem now before us is analytically identical with that 
treated in my book on Sound, § 343, to which I must refer 
for more detailed explanations. The incident plane waves are 
represented by 

einteikX ~ eint  eikr cos o 

-- e"*{ a0(kr) + 2iJ~(kr) cos t~ + . . .  + 2i"Jm(kr) cos m O + . . .  } ; (64) 

and we have to find for each value of m an internal motion 
finite at the centre, and an external motion representing a 
divergent wave, which shall in conjunction with (64) satisfy 
at the surface of the cylinder ( r - c )  the condition that the 
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Electromagnetic Theorg of Light. 99 

function and its differential coefficient with respect to r shall 
be continuous. The divergent wave is expressed by 

B0~o + B1~1 cos 0 + B2~2 cos 20 + . . . ,  

where 5ko, ~tl, &e. are the functions of kr defined in § 341. 
The coefficients B are determined in accordance with 

Bm { kc d ~  Om 

= 21- { Ec a .  (kc) ag(E ) - kc a.,'(kc) }, 
except in the ease of m = 0 ,  when 2i m on the right-hand 
side is to be replaced by i m. In working out the result we 
suppose kc and Ec to be small; and we find approximately for 
the secondary disturbance corresponding to (64) 

* = ( 2 ~ k r )  ~dl"t-~) [k'2c~2 Ec~ k%'~(k'2e~--Ec~)8 c o s 0 ] ;  (65) 

showing, as was to be expected, that the leading term is inde- 
pendent of 0. 

For case 2, which is of greater interest, we have from (15), 

d 1 d d 1 d + l ) c = 0 .  (66)* 

This is of the same form as (63) within a uniform medium, 
but gives a different boundary condition at a surface of transi- 
tion. In both cases the function itself is to be continuous; 
but  in that with which we are now concerned the second con- 
dition requires the continuity of the differential coefficient 
after division by k 2. The equation for Bm is therefore 

d,k. E k (Ec) 

=2ira {kc Jm(kc) J,~'(Ec)--Ec J~(Ec)  J~'(kc)}, 

with the understanding that the 2 is to be omitted when m = 0. 
Corresponding to the primary wave d("t+~)~ we find as the 
expression of the secondary at a great distance from the cy- 
linder, 

~ =  (~ikr)~e'C"t-~') L-- - l~  ( EY- - k% ~) 
Ec, ~ k rz -- E 1 ~4 ~4 k~ -- E2 ] 

-  cos0- .   cos20. (67) 

The term in cos 0 is now the leading term; so that the second- 

* In (66) c is the ma_o'netice comp.onen b .and not the radius, of the eylln- 
tier. So many letters are employed m the electromagnetic theory, that it 
is difficult to hit upon a satisfactory notation. 

H2 
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100 On the .Electromagnetic Theory of Light. 

ary disturbance approximately vanishes in the direction of the 
primary electrical displacements, agreeably with what has 
been proved before. It should be stated here that (67) is not 
complete to the order k% 4 in the term containing cos 0. The 
calculation of the part omitted is somewhat tedious in general; 
but if we introduce the supposition that the difference between 
k '~ and k ~ is small, its effect is to bring in the factor (1 --¼k~c~). 

Extracting the factor (k~2--k~), we may conveniently write 
(67) 

k ' 2 - k  'z ¢r ½. k'% ~+k% 2 
4F= --k~e ~ ( ~ )  e'("t-~")[ c°s O 16 

~ e  2 "1 
cos 20J, • ( 6 s )  

In the directions cosO=O, the secondary light is thus not 
only of high order in ke,:but is also of the second order in 
(k ' --k) .  For the direction in which the secondary light 
vanishes to the next ' " " ' have approxxmatlon, we 

½7r--O= ~g(kt2c~--k~c2)= k~c2 K ' - - K  (70) 
16 K ' 

'This corresponds to (61) for the sphere ; and is true if ke, Uc 
be small enough, whatever may be the relation of k r and k. 
For the cylinder, as for the sphere, the direction is such that 
the primary light would be bent through an angle greater than 
a right angle. 

I f  we neglect the square of (U2--k~), the complete expression 
corresponding to (69) is 

cos  0 (1  - ¼t. e cos 0 =  cos 0 1 1 -  k :d  cos 03. 
This may be compared with the value qbt.ained by the former 
method, viz. cos 0 Jl(2kc cos ½0)--kc Cos {0, and will be found 
to agree with it as far as the square of kc. 

If  we suppose the cylinder to be extremely small, we may 
confine ourselves to the leading terms in (65) and (67). Let 
us compare the intensities of the secondary lights emitted in 
the two cases along 0=0 ,  i. e. directly backwards. From (65) 

U%2--k% 2 
2 ' 

while from (67) qE at --k% ~ 1¢.~ + k2 

in which 
k~% '2 + k% ~ k'~c~ 

cos 0-- 16 ~ cos 20 

k~2c~_ k~c ~ k% ~ 
= cos 0-- 16 ~ -  c°s2 0. (69) 
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Results obtabted in a Recaleulation of the Atomic Weights. 101 

The opposition of sign is apparent only, and relates to the dif- 
ferent methods of measurement adopted in the two cases. In 
(65) the primary and secondary disturbances are represented 
by h/K, but in (67) by the magnetic function c. If  we express 
the solution in the second case in terms of the electric thne- 
t!on g, we shall find (see 13) that the ratio of c to g changes 
sign when we pass fi'om the primary light propagated along 
--x to the secondary light propagated along + x. The actual 
ratio Of amplitudes in the two cases is thus (k~+k2)/2k 2, or 
(K /+K) /2K .  Unless the difference between K ~ and K be 
neglected, the two components of unpolarized light are scat- 
tered along this direction in different proportions, that compo- 
nent preponderating in which the electric displacement is 
parallel to the axis of the cylinder. The secondary light is 
therefore partially polarized in the plane perpendicular to the 
axis. 

June 1881. 

XI. An Abstract "of the Results obtained in a Recalculation 
of tlw Atomic Weights. By FRA2qK WIGGLESWORTH 
CLARKE, S.B., Professor of Chemistry in the University of 
Cincinnati*. 

D URING the past three years I have been engaged upon 
a recalculation of all the atomic-weight determina- 

tions which have been published from the time of Berzelius's 
earlier investigations down to the present date. 3/Iy purpose 
has been to reduce all similar series of experiments to com. 
men standards, to calculate the probable error of each series, 
to combine the results into general means, and then to deduce 
the atomic weights in such a way that each value should 
represent a fair average of all the trustworthy estimations. 
In other words, I have sought to bring together all the vast 
number of scattered details, and to derive t'rom them a more 
consistent table of atomic weights than has hitherto been 
found in chemical literature. My complete work will appear 
in due time as a separate volume ; my present intention is to 
give merely a summary of my methods, and my conclusions. 

Taking hydrogen as unity, I necessarily began with the 
ratio between it and oxygen. This ratio has been deter- 
mined accurately in only two ways :--first, by the synthesis of 
water over copper oxide; and secondly, fi'om the relative 
density of the two gases. Ignoring earlier inexact experi- 
ments, we may consider only the data furnished by Dumas~ 
by Erdmann and Marchand, and by Regnault. From Dmnas's 
nineteen syntheses of water we get for oxygen values ranging 

* Communicated by the Author. 
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