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X. On the Electromagnetic Theory of Light. By Lorp
Ravrrian, F.R.S., Professor of Experimental Physics in
the University of Cambridge*.

THE claims of the theory propounded by Maxwell,accord-
ing to which light consists of a disturbance in a medium
susceptible of dielectric polarization, are so considerable that it
is desirable to extend its application as far as possible to
various optical phenomena. The question of the velocity of
propagation in vacuum and in singly or doubly refracting
transparent dielectrics was considered by Maxwell himself;
and the agreement with experiment, though far from perfect,
is sufficiently encouraging. More recently it has been shown
by Helmholtzt, Lorentz{, Fitzgerald §, and J. J. Thomson ||,
that the same theory leads to Fresnel’s expressions for the
intensity of light reflected and refracted at the surface of sepa-
ration of transparent media, and that the auxiliary hypotheses
necessary in this part of the subject agree with those required
to explain the laws of double refraction. In this respect the
electromagnetic theory has a marked advantage over the older
view, which assimilated luminous vibrations to the ordinary
transverse vibrations of elastic solids. According to the latter,
Fresnel’s laws of double refraction, fully confirmed by modern

* Communicated by the Author.
+ Crelle, Bd. 1xxii., 1870. 1 Schlomileh, xxii., 1877,
§ Phil. Trans, 1880. || Phil. Mag. April 1880.

Plil. Mag. 8. 5. Vol. 12. No. 73. Aug. 1881, G
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observation®, require us to suppose that in a doubly-refracting
crystal the rigidity of the medium varies with the direction of
the strain; while, in order to explain the facts relating to the
intensities of reflected light, we have to make the inconsistent
assumption that the rigidity does not vary in passing from
one medium to another., A further discussion of this subject
will be found in papers published in the Philosophical Maga-
zine during the year 1871.

If the dielectric medium be endowed with sensible conduc-
tivity, the electric vibrations will be damped; that is to say,
the light will undergo absorption, with a rapidity which Max-
well has calculated. By supposing the conductivity to be so
great that practically complete absorption takes place within
a distance comparable with the wave-length, we may obtain a
theory of metallic reflection which is not without interest,
although the phenomena of abnormal dispersion show that it
cannot be regarded as complete.

For an isotropic medium at rest we have the equations
(Maxwell’s ¢ Electricity and Magnetism,” §§ 591, 598, 607,
610, 611)

u=p+'%&c., N €Y

K
f= 4_']TP, &C., s e s s e s e (2)
p=CP, &, . . . . . . .. (3

dr  d¥

P=‘——d—t‘—7w,&c., e s e e s (4)
dH dG

a=d—y—--§,&c., e e s s e s (5)

a=pa, e, . . . . . . . . (6)
47‘_“:(%_@5 be; . . . . L L (D

in which f; g, % are the electric displacements, p, ¢, » the
currents of conduction, u, v, w the total currents, P, Q, R the
components of electromotive force, K the specific inductive
capacity, Cthe conductivity, «, B, ¢ the components of mag-
netic force, a, b, ¢ the components of magnetization, p the
magnetic capacity, F, G, H the components of electrokinetic
momentum, and ¥ the electric potential.

* Glazebrook, Phil. Trans. 1879,
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From (2), (4), and (5) we get
d (dI dG) de

4”(@1?—@'1{ =—al\ey " @) @

In the case of K constant, equation (8) expresses that the

electric displacement S( fda+gdy) round a small circuit in

the plane of 2y corresponds to the electromotive force round
the circuit, represented by de/dt.

Again, from (1), (2), (3>: (6), ("),
ar | 471-0 ) dec db Go
4m ( dyp dep - )

From equations (8) and (9) the problem of reflection can be
investigated. In order to limit ourselves to plane waves of
simple type, we shall suppose that K, p, and C are indepen-
dent of z, and that the electric and magnetic functions are inde-
pendent of z and (as dependent upon the time) proportional to
¢, The two principal cases will be considered separately,
(1) when the electric displacements are perpendicular to the
plane of incidence, (2) when they are executed in that plane.

Case 1. This is defined by the conditions

S=0, ¢=0, and (accordingly) ¢=0.

&e. . (8)

Thus
. d h d h
ma=—47r(7 I—%, inb= 47rd B oo (10)
47C db da
4'7r(m+ K )]I, CTZ’/:_(T]/ [_l" « e e (11)

Eliminating o and 4 from (10) and (11), we get

d(1d , 471'0 3
dz \u dm) K dy( )K K(l ——0' (12)
Case 2. Here the special conditions are

h=0, a=0, b=0.
We have

4”(@K_J—f)—mc’ N ¢ &)
47r(m+4”0)f_d (‘\ 47—/m+4_”.9 g___a;ix(l_j); (14)

whence by elimination of f ana g,

=R i) |
Kn?(1—4mn—1CK-?) do \u

Kn2(1—471m‘101é"21)%(,§,)}+#() =0. (15)
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Equations (12) and (15) simplify considerably in their ap-
plication to a uniform medium, assuming the common form
L&, ,
—— — — =i)=u. . 16
Freha T +n?uK(1—4mnCK-1)=0 (16)
To express the boundary conditions let us suppose that =0
i8 the surface of transition between two uniform media. From
(12) we learn that the required conditions for case 1 are that

boald(d
K" ude K)
must be continuous.

In like manner, for case 2 we see from (15) that

° and 1 4 ‘)
7 K(1—47n-'CK-") dz \n

must be continuous.
If the media are transparent, or but moderately opaque, we
have to put C=0. The differential equation is of the form

A
d—‘z§+c'z-.y—-‘,+n2/LK=0. soe e (17)
In case 1 the boundary .conditions are the continuity of the
dependent variable and of 1 gfz" and in case 2 the continuity
1d .
| R s Analytically, the
results are thus of the same form in both cases. If 8 and 6,
are respectively the angles of incidence and refraction, the ratio
of the reflected to the incident vibration is in case 1

tanex_/b
tand  pu,
ey e R (18)

tan @ +;71

1
of the dependent variable and of

and in case 2
tang; K
tand K,
§an91+£{" R ¢ 1))
tand = K,
in which K, p relate to the first, and K, u, to the second
medium ; while the relation between 8, and 8 is
Kyuy: Kp=5in?0:sin*6,. . . . . (20)
As Helmholtz has remarked, Fresnel’s formule may be
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obtained on two distinct suppositions. If u;=p,
sin (6, —0)

(18) = sin (6, +0)’

and 0.—6)
_tan(0,—6)

(19) = tan (0;+9)’

but if K;=K, then (19) identifies itself with the sine-formula,
and (18) with the tangent-formula. Electrical phenomena,
however, lead us to prefer the former alternative, and thus to
the assumption that the electric displacements are perpendi-
cular to the plane of polarization. The formule for the
refracted waves, which follow from those of the reflected waves
in virtue of the principle of energy alone, do not call for de-
tailed consideration.
In the problem of perpendicular incidence, we have from
(12), if u be constant and C zero,
a* I
S (K) =0.. . . . . @)

For an application of this equation to determine the influence
of defective suddenness in the transition between two uniform
media, the reader is referred to a paper in the eleventh volume
of the Proceedings of the Mathematical Society.

In order to obtain a theory of metallic reflection, C must be
considered to have a finite value in the second medium. The
symbolical solution is not thereby altered from that applicable
to transparent media, the effect of the finiteness of C being
completely represented in both cases by the substitution of
K(1—i4mnCK-") for K. Thus, if u be constant, the formula
for the amplitude and phase of the reflected wave in case 1 is
to be found by transformation of (18), in which the imaginary
angle of refraction 6, is connected with & by the relation

Ki(1—idmnCK7 ") : K=sin?@:sin 6. . . (22)

In like manner the solution for case 2 is to be found by trans-
formation of (19) under the same supposition.

With regard to the proposed transformations, the reader is
referred to a paper by Eisenlohr® and to some remarks there-
upon by myselff. The results are the formmlz published
without proof by Cauchy. From the calculations of Eisenlohr
it appears that Jamin’s observations cannot be reconciled with
the formula without supposing K; : K, <. e. the real part of
the square of the complex refractive index, to be negative—a

* Pogg. Ann. t. civ. p. 368, t Phil. Mag. May 1872.
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further proof that much remains to be done before the elec-
trical theory of metallic reflection can be accepted as complete™.

The same fundamental equations (8) and (9) will now be
applied to the problem of determining the effect on a train of
plane waves of a small variation in the quantities K and
which define the medium. A similar method will be adopted
to that already used for light in a paper “ On the Scattering
of Light by small Particles”’t, and in my book ‘On the Theory
of Sound,” § 296, the principle of which consists in an ap-
proximation depending upon the neglect of the higher powers
of the small variations AK and Ap.

Let us suppose that a train of plane waves, in which the
electric displacement is parallel to 2, and magnetization parallel
to y, propagates itself parallel to # undisturbed until it falls
upon a region where the generally constant values of K and
w become K+ AK and p+Ax. If AK and Ap were zero,
the wave would pass on as before; but under the circum-
stances secondary waves are generated, which diverge from
the region of disturbance, and are ultimately, when AK and
Ap are small enough, proportional in magnitude to these
quantities. As the expression of the primary waves we may

take

A L ¢4
and corresponding thereto, by (8),

by=4mkn=K-1enigh= . . . . (24)

in which, if X denote the wave-length, £=27 /A, and /A is
the velocity of propagation (Ku)™. The complete values of

the functions being represented, as before, by 7, g, %, a, b, ¢, we
shall put

f=hHh+hA+ft+.. &, a=a+a+... &,

Jo.++... being independent of AK and Ay, fi...0;...
being of the first order, f;...a;... of the second order, and
so on, in these quantities. In the actual case £y, go, ao,
vanish, and only %, and &, are finite.

From (8) and (9) with C=0, we get

* July 15.—I see that Lorentz, in a pamphlet Over de Theorie der
Terugkaatsing en Breking van ket Lickt (Arnhem, 1875), has developed a
theory of metallic reflection similar to that indicated in the text, and has
noticed the same difficulty in the application to experiment.

+ Phil. Mag. June 1871,
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df _dg -
{————+Kd (FAK-)—K 2 gak— } = Kdt,
w{ % dh+K KAPN SN & (leK n} =K% | (25)
ah d
an{ G- f+Kc—z:®(hAK-1)—Kd—z(fAK-l)}=Kﬂ
o & d d p
AT iy 2 ()= (A=A D,
da__dc
dz d.z
db _da
de  dy

By differentiation of the first equation of (26) and substi-
tution from (25), we get, having regard to

G g dh oL@

(A.u") "d (cAp~")= 47wd o (26)

dh
"'"‘d (bAp~1)— ,“d (abp™") = 4’”‘dtJ

which is a consequence of (1), (3), (7),

Pf_&f  BF &S i .
K=k +@§+—+ (d2 2)(fAK)

K goay GAE™) K dw - (lAK-)

:“‘K d -1 _E_Igi -
Ty AC e A o

4

or, remembering that the functions as dependent upon time
vary as e,

2f+lc2f+K(d2 s )(fAK—l)
(gAK H-K (ﬁAK—l)

mpLK d o
g (A )

with two similar equa’mons in g and &.
Introducing now the expansion in powers of AK and Ay,
we get as the first qppro‘cimation

V=K S (AR~

m/.cK d

4 (opy=0, (28)

m,uK d

- (=) =0,
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or, on substitution for b, in terms of A, from (23), (24),
d? o d
Vit pfx—Km(boAK_’)—lkﬂg;; (hebp=1)=0, (29)
and

&
vzgl + k2gl _KCW (iLOAK- l) =0, e e e e (30)
&P
2 2 -
Vi + B+ K (1 + —df)d(koAK y
+Z']C/L(T‘2‘?(110A,u-l)=0. Coe e (31)

The solution of (29) is

K —ikr g2

ik =ikr
- Zj—:ﬁf—"? = (hAK-)dedyds, . . (32)

where 7, equal to v/ {(e—2)? + (B—y)*+ (y—2)?}, is the dis-
tance of the element of volume dz dy dz from the point «, 8,y
at which £; is to be estimated.

In applying (82) to the calculation of a secondary wave at
a distance from the region of disturbance, we may conveniently
integrate it by parts. Thus,

K dz e~k
Pl 1 WSy
1 ., d e

From the general value of 7,

d (e y—z em#(1 +ikr)

Jé( - )_ - e (33)
a2 se—ikr _a—xy—z e'_".k’(3+32'k7'——]c27‘2) 4
()=t = Lo (39)

If r be sufficiently great in comparison with A, only the high- -
est power of kr in the above expressions need be retained ;

and if 7 be also great in comparison with the dimensions of

the region of disturbance, supposed to be situated about the

origin of coordinates, (¢ —x)/r &c. may be replaced by «/»

&e. Thus,

d (e"""’)_ oy the~ir
dz2\r /T r » °
a2 (e—ikr)! ary K2e—itr

—_— et e
dz dx

.
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and the expression for f; becomes
=k [Ki“l hoAK-'e=i dip dy do
SR 0 Y

W gj‘qlzo Ap=te~*rdady dz] .

L%

For the sake of brevity we will write this

_ B oy v
A= KPS —pQY], . . . (@)

P= qflzoAK“e“"‘" dx dy dz,
Q:fﬁ hoAp~ e de dy dz.

In like manner from (30) and (31),

where

(36)

_F By

gl-— M[KP ‘7‘—2], . . . . . . . . (37)
k? a2+ﬂ? a

h= o [-KPEEE Q2] L L 9)

Equations (35), (37), (38) express the electric displace-
ment in the secondary waves. Since af+Bg +yh=0, the dis-
placement is perpendicular to the direction of the secondary
ray. The general expression for the intensity is found by
adding the squares of /, g, 2 ; but it will be sufficient for our
present purpose to limit ourselves to the case where the second-
ary ray is perpendicular to the primary ray, 7. e. to the case
a=0. Then \

k

f2+ Iy f2= [K2P2@_2+ 2Q2f 39)
g9 =167%2 72 I 21 (

If P and Q are both finite, there is no direction along which
the secondary light vanishes. We find by experiment, how-
ever, that the light scattered by small particles on which pola-
rized light impinges does vanisﬁ in one direction perpendicular
to the original ray ; and thus either P or Q must vanish. Now,
when the particles are very small, we have

P=hOAK—1e—ikrj‘5‘j‘dmdydz, Q_—_],OA/L—1e—ikr5ﬁ'dxdydz; (40)
so that if P vanishes, AK=0; and if Q vanishes, Ap=0.
The optical evidence that either AK or Au vanishes is thus
very strong; while electrical reasons lead us to conclude that
it is Apu.

If we write T for the volume of the small particle, we get
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from (40), as the special forms of (35), (37), (88) applicable
to this case,
7T

fi= T éoi [ RAR-1 %Y —pap= ], L (4)

n= %e«m—m [KAK“%], . R (9))
T [ '+6°
b= T goein[ RAR-12EE a1 43)

If Ap=0, as we shall henceforward suppose, f:g==a:8,

showing that the electrical displacement is in the plane con-

taining the secondary ray and the direction of primary elec-
trical displacement (z), and

2 2

Si+ g R o :;5

>

so that the intensity is proportional to the square of the sine
of the angle between the secondary ray and the direction of
the primary electrical displacement. The blue colour of the
light scattered from small particles is explained by the occur-
rence of A? in the denominators of the expressions for £, g1, 213
but for further particulars on this subject the reader must be
referred to my previous papers.

Equations (35), (36), &e. are rigorously applicable, however
large the region of disturbance, if the square of AK may
really be neglected. From them we see that, under the cir-
cumstances in question, each element of a homogeneous
obstacle acts independently as a centre of disturbance, and
that the aggregate effect in any direction depends upon the
phases of the elementary secondary disturbances as affected by
the situation of the element along the paths of the primary
and of the secondary light. In fact,

P= AK“e""‘Sjj'e”"e‘”" da dy dz.

If 6, ¢ be the angles defining (in the usual notation) the direc-
tion of the secondary ray, and », correspond to the origin of
coordinates, we have

P — AK—lei(nt—kro)SXS eik(#+wsin fcos P+ysinfsin P4z cosd) dz dy dz; (44)

and the question now before us for consideration is the value
of the integral in (44) as dependent upon the size of the
obstacle and the direction of the secondary ray. Itisevident
that the formule are applicable only when the whole retarda-
tion of the primary light in traversing the obstacle can be
neglected in comparison with the wave-length; but if this
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condition be satisfied, there is no further limitation upon the
size of the obstacle. In the case where the secondary ray
forms the prolongation of the primary, or deviates sufficiently
little from this direction, the exponential in (44) reduces to
unity, signifying thatevery element of the obstacle acts alike,
any retardation of phase at starting due to situation along the
primary ray being balanced by an acceleration corresponding
to a less distance to be travelled along the secondary ray. At
a greater or less obliquity, according to the size of the obstacle,
opposition of phase sets in; and at still greater obliquities the
resultant can be found only by an exact integration. Its in-
tensity is then less, and generally much less, than in the first
case—a conclusion abundantly borne out by observation.

The simplest example of this kind is that afforded by an
infinite cylinder (e. g. a fine spider-line), on which the light
impinges perpendicularly to the axis, so that every thing
takes places in two dimensions. This case is indeed not
strictly covered by the preceding formule, on account of the
infinite extension of the region of disturbance; buta moment’s
consideration will make it clear that each elementary column
here acts according to the laws already described—that is to
say, gives rise to a component disturbance whose phase is de-
termined by the situation of the element along the primary
and secondary rays. If the angle between the two rays be
called , we have to consider the value of

‘S'jeik(1+xcosx+y sinx) Jz Jf/
Introducing polar coordinates », 8, we find
z+acosy+ysiny=2rcosty cos(0—%x);
so that the integral
=‘§"§'eq‘kr.2cos%x.coso rdrdf

af 2n
=J‘ J‘ {cos (2kr cos 3y cos B)
e +isin (2kr cos 3y cos )} »dr dO

=2m| Jokrcosty)rdr, . . . . . . . (45)
0

Jo denoting the Bessel’s function of zero order.

The integration with respect to » indicated in (45) can be
effected by known propertios of Bessel’s functions; and the
result is expressible by a function of the first order. We get

k—c—(-)g%—x-Jl(Qkacos%x);. N 1))
2
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and J; is defined by
4

J(a)—f(l—i + 52 D oaten ). (47)
N2 2.4792.47.6 2.4°.6%.8 )

If cos 3¢ =0 (i. e. in the direction of original propagation),
(46) becomes a?, every element of the area acting alike.
This is the maximum value. When  is such that

2kacosiy=mx 12197,

the secondary light vanishes, at a greater angle revives, then
vanishes again, and so on, the ang%es being of course func-
tions of the wave-length. If we conceive the cylinder to
increase in size gradually from zero, the scattered light
vanishes first in the backward direction ¥=0, in which direc-
tion evidently the greatest differences of phase occur. Bvery
thing is determined by the course of the function J;; and (46)
within the limits of its application embodies the theory of
Young’s eriometer.

We will now consider the case of an obstacle in the form of
a sphere. If z be a coordinate measured perpendicularly to
the plane containing the primary and secondary rays, formula
(46), multiplied by dz, will represent the effect of a slice of
the sphere, whose radius is a and thickness dz, and what
remains to be effected is merely the integration with respect
to z. For this purpose we write z=¢ sin ¢, a=—c cos ¢, where
¢ is the radius of the sphere. The integral then takes the form

om [
?&gs‘c%}j; J,(2kccoshxcosp) cos’pdp, . (48)

or, if we expand J; by (47), and integrate according to a
known formula,

2mrc® m? mt mé
~3 {2_ 577 5.479.7.5.4.6

I O } 49)*
1975468 f 49

in which m is written for 2kccosiy. It will be understood
that (49), after multiplication by ¢*AK-', gives merely. the
value of P in (36), and that to find the complete expression
for the secondary light in any direction other factors must be
introduced in accordance with (35), (37), (38). The angley,

* July 15.—1I find for the first root of (49), m=4-50, giving as the
smallest obliquity (w— x) at which the secondary light vanishes,

7—x=2sin™" (450 /2kc).
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being that included between the secondary ray and the axis
of #, may be expressed by

siny= v (B+9)+r. . . . . (50)

Our theory, as hitherto developed, shows that, whatever the
shape and size of the particles, there is no scattered light in
a direction parallel to the primary electric displacements,
except such as may depend upon squares and higher powers
of the difference of optical properties. In order to render an
account of the “residual blue” observed by Tyndall when
particles in their growth have reached a certain magnitude, it
is necessary to pursue the approximation. By (28), with Au
neglected, we have

9 . d2 d?‘ -
Vifo+ Bfs+ K (d—yz + L) (rak-
d? . &’
—-K m (glAh"])—I{m(lllAK—l)=0, (51)

and two similar equations in g; and A,.  On the supposition
that /3, ¢y, #; are known throughout the region of disturbance,
these equations may be solved in the same way as (29), (30),
and (31). For the sake of brevity we may confine ourselves
to the particular direction for which the terms of the first order
vanish, Thus at a sufficient distance »’ along the axis of z,

k2K —1,=tkr 9
f2=—myj‘flAK e dudBdy, . . (52)

K (( I
92=“Wj GAK=1e=* dudBdy, . . (53)
’lg=0. . . . . N . . . . . . . . (54)

We have now to find the values of f; and ¢, within the
region of disturbance, to which of course (35) &e. are not ap-
plicable. In the general solution (82), %, is a function of =
only ; so that the elements of the integral vanish in the interior
of a homogeneous obstacle, and we have only to deal with the
surface. Integrating by parts across this surface, we find

K (('Cd d (e~
fi= Eﬂj}l; (hQAK-Y) e (—7— ) dedy dz=

K d d . ()—l.k"
=—0 a;j‘j‘j‘a; (heAK-1). - dzdyde, (55)

r being a function of # and « only through (a—«). In like
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manner

K da({(d e~
g1,= — E d——ﬁﬂ yz' (}loAK_l) . wa dy dZ. . . (56)

In the case of a small homogeneous sphere, whose centre
is taken as origin of ccordinates, these formulw lead to fairly
simple results. The triple integral in (55), (56) may readily
be exhibited in its real character of a surface-integral. Thus

d —ikr /! ~-ikr
‘f‘f‘f 7 (hAK-2) ¢ — dudydz= —AK-*j\j‘cf 37 ds, (57)

where dS is an element of the surface whose radiusis ¢. This
applies to a sphere of any size; but we have now to introduce
an approximation depending on the supposition that k¢ is small.
As far as the first power of %e,

—ikr int ) s
_AK—zﬂ"lﬁe dS=_AK—xLﬁ‘(z+”‘z”’” —-'élcz) as
c r ¢ JJ 7

int Y
= —AK- %ff tiker g,

r

in which the double integral is the common potential of matter

distributed over the spherical surface with density (z+ ikzz).

Calling this for the moment V, we have (Thomson and Tait,

¢Nat. Phil.’ § 536) at any internal point (a, B, v),
V=dwe(y+Likya);

so that ( +4ibye)

L (haK-1)T"

= —4ATAKR-'én(y +4ibys). . (58)
Thus by (55), (56),
A=3KAR-Yikyen, g=0. . . . . (39)

We are now prepared to calculate f;, g, from (52), (53).
These formula apply to both directions along the axis of z;
but in what follows it will be convenient to suppose that it is
the positive direction which is under consideration. In this
case, if p denote the distance from the centre of the sphere,
' =p—ry and e~#'=¢-#(1 +iky) approximately; so that

2 ~1\2,i(nt—kp)
fom—t (KMl{%Z) et yfyiky(l +iky) du dB dy

4 ~1\2 i(nt—kp)
-
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or if, as before, T be the volume of the sphere,

T . k*c?
fo= %ez(nt—kp)(KAquﬁ, } .. (60)
92=0.

Comparing (60) and (41), we see that the amplitude of the
light scattered along #is not only of higher order in AK, but is
also of the order 4%’ in comparison with that scattered in other
directions. The incident light being white, the intensity of
the component colours scattered along z varies as the inverse
8th power of the wave-length, so that the resultant light is a
rich blue.

There is another point of importance to be noticed. Although
when the terms of the second order are included the scattered
light does not vanish along the axis of ¢, the peculiarity is not
lost, but merely transferred to another direction. Putting
together the terms of the first and second orders, we see that
the scattered light will vanish in a direction in the plane of w2,
inclined to z (towards «) at a small angle 6, such that

B¢ AK k*?
= 20 2R
6=—-KAK B=~K 15° °© * ° (61)

In the usual case of particles optically denser than the sur-
rounding medium, AK is positive, from which we gather that
the direction in which the scattered light vanishes to the second
order of approximation is
inclined backwards,so that
the angle through which
the Tight may be supposed
to be bent by the action ™~
of the particle is obtuse. /

The fact that, when the
primary light is polarized, \J
there is in one perpendi-
cular direction no light
scattered by very small
particles, was stated by
Stokes*; but it is, I believe, to Tyndall that we owe the obser-
vation that with somewhat larger particles the direction of
minimum illumination becomes oblique. I do not find, how-
ever, any record of the direction of the obliquity (that is, of
the sign of the small angle 8), and have therefore made a few
observations for my own satisfaction.

In a darkened room a beam of sunlight was concentrated

* Phil. Trans. 1852, § 183,
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by a large lens of 2 or 3 feet focus; and in the path of the light
was placed a beaker glass, containing a dilute solution of hy-
posulphite of soda. On the addition of a small quantity of
dilute sulphuric acid a precipitate of sulphur slowly forms,
and during its growth manifests exceedingly well the pheno-
mena under consideration. The more dilute the solutions, the
slower is the progress of the precipitation. A strength such
that there is a delay of four or five minutes before any effect
is apparent, will be found suitable; but no great nicety of ad-
Jjustment is necessary. By addition of ammonia in sufficient
quantity to neutralize the acid, the precipitation may be
arrested at any desired stage. More time is thus obtained to
complete the examination ; but the condition of things is not
absolutely permanent, the already precipitated sulphur appear-
ing to aggregate itself into large masses.

In the optical examination we may, if we prefer it, polarize
the primary light; but it is usually more convenient to analyze
the scattered light. In the early stages of the precipitation
the polarization is complete in a perpendicular direction, and
incomplete in oblique directions. After an interval the pola-
rization begins to be incomplete in the perpendicular direc-
tion, the light which reaches the eye when the nicol is in the
position of minimum transmission being of a beautiful blue,
mauch richer than any thing that can be be seen in the earlier
stages. This is the moment to examine whether there is a
more complete polarization in a direction somewhat oblique ;
and it is found that with @ positive there is in fact an oblique
direction of more complete polarization, while with  negative
the polarization is more imperfect than in the perpendicular
direction itself.

The polarization in a distinetly oblique direction, however,
is not perfect, a feature for which more than one reason
may be put forward. In the first place, with a given size of
particles, the direction of complete polarization indicated by
(61) is a function of the colour of the light, the value of
being three or four times as large for the violet as for the red
end of the spectrum. The experiment is, in fact, much im-

roved by passing the primary light through a coloured glass
Eeld in the window-shutter. Not only is the oblique direction
of maximum polarization more definite and the polarization
itself more complete, but the observation is easier than with
white light, by the uniformity of the colour of the light scat-
tered in various directions. If we begin with a blue glass, we
may observe the gradually increasing obliquity of the direction
of maximum polarization; and then by exchanging the blue



Downloaded by [University of Glasgow] at 06:32 07 August 2013

Llectromagnetic Theory of Light. 97

glass for a red one, we may rovert to the original condition of
things, and observe the transition from perpendicularity to
obliquity over again. The change in the wave-length of the
light has the same effect as a change in the size of the par-
ticles; and the comparison gives curious information as to the
rate of growth.

But even with homogeneous light it would be unreasonable
to expect an oblique direction of perfect polarization. So long
as the particles arc all very small in comparison with the
wave-length, there is complete polarization in the perpendi-
cular direction ; but when the size is such that obliquity sets
in, the degree of obliquity will vary with the size of the par-
ticles, and the polarization will be complete only on the very
unlikely condition that the size is the same for them all. It
must not be forgotten, too, that a very moderate increase in
dimensions may carry the particles beyond the reach of our
approximations.

The fact that at this stage the polarization is a maximum
when the angle through which the light is turned exceeds a
right angle is the more worthy of note, as the opposite result
would probably have been expected. By Brewster’s law this
angle in the case of a plate is less than a right angle; so that
not only is the law of polarization for a very small particle
different from that applicable to a plate, but the first effect of
an increase of size is to augment the difference.

We must remember that our recent results are limited to
particles of a spherical form. It is not difficult to see that,
for elongated particles, the terms in (AK)? may be of the same
order with respect to £¢ as the principal term; so that if
(AK)? be sensible, mere smallness of the particle will not
secure complete evanescence of scattered light along 2. The
general solution of the problem for an infinitesimal particle of
arbitrary shape must raise the sams difficulties as beset the
general determination of the induced magnetism developed in
a piece of soft iron when placed in a uniform field of force.
In the case of an ellipsoidal particle the problem is soluble ;
but it is perhaps premature to enter upon 1t, until experiment
has indicated the existence of phenomena likely to be explained
thereby.

For an infinitesimal particle in the form of a sphere, we may
readily obtain the complete solution without any approxima-
tion depending upon the smallness of AK. We know by the
analogous theory of magnetism, that a dielectric sphere situated
in a uniform field of electric force will undergo electric dis-

lacement of uniform amount, and in a direction parallel to
that of the force. Thus the complete solution applicable to

Phil. Mag. 8. 5. Vol. 12, No. 73. Aug. 1881. H
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an infinitely small sphere is obtained from (29), (30), (31) by
writing A for Ay ; where by A is denoted the actual displace-
ment (parallel to z) within the particle, and by %, the displace-
ment in the enveloping medium under the same electric force.
If K/ be the specific inductive capacity for the particle, the
ratio of A : Ay is 3K/ : K'4-2K ; and in this ratio the results
expressed in (41), (42), (43) are to be increased. If we
extract the factors KAK—! which there occur, we get

' /e
K pag-i- SKK i_l)=_?ﬁ§_K2;
K'+2K K'+2K\K’ K K’ +2K

so that

3(K'—K) »T .
f= =R e . ()

We learn from (62) that our former result as to the eva-
nescence of the secondary light along ¢ is true for an infinitely
small spherical particle to all orders of AK.

We will now return to the two-dimension problem with the
view of determining the disturbance resulting from the impact
of plane waves upon a cylindrical obstacle whose axis is
parallel to the plane of the waves. There are, as in the pro-
blem of reflection from plane surfaces, two principal cases—
(1) when the electric displacements are parallel to the axis of
the cylinder taken as axis of z, (2) when the electric displace-
ments are perpendicular to this direction.

Case 1.—From (12), with C=0, u= constant,

(Zlgl,; + T2 +7°uK E:O;

dy*/K K
or if, as before, k=2m/x,
& & h
W+d7f+k2 KL=O, o e 4 4 e e (63)

in which % is constant in each medium, but changes as we
pass from one medium to another. From (63) we see that
the problem now before us is analytically identical with that
treated in my book on Sound, § 343, to which I must refer
for more detailed explanations. The incident plane waves are
represented by

eint eilw = ¢int gikr cosd
=t {Jo(kr) + 20T (kr) cos 0 4. .. + 20", (kr) cosmO+...} 5 (64)

and we have to find for each value of m an internal motion
finite at the centre, and an external motion representing a
divergent wave, which shall in conjunction with (64) satisfy
at the surface of the cylinder (r=c) the condition that the



Downloaded by [University of Glasgow] at 06:32 07 August 2013

Llectromagnetic Theory of Light. 99

function and its differential coefficient with respect to » shall
be continuous. The divergent wave is expressed by

B+ By, cos 0+ Byyry cos 20 +. . .,

where yry, Yy, &c. are the functions of kr defined in § 341.
The coefficients B are determined in accordance with

dir,, d
B, {kc T g (Ve =W A Tu(KC) }
=26 (e d (ko) Tl (We)— ko T (Fe) T (R},

except in the case of m=0, when 2 on the right-hand
side is to be replaced by ¢. In working out the result we
suppose k¢ and ¥'c to be small; and we find approximately for
the secondary disturbance corresponding to (64)

128122 12207/2.2 )22
"l’_(l“ éeimt-kr)[k c2kc _ KR kc)cos@];(%)

T \2¢kr 8
showing, as was to be expected, that the leading term is inde-
pendent of 6.

For case 2, which is of greater interest, we have from (15),

dld, 6 dld »
PRty +1) e=0. . . (66)
This is of the same form as (63) within a uniform medium,
but gives a different boundary condition at a surface of transi-
tion. In both cases the function itself is to be continuous;
but in that with which we are now concerned the second con-
dition requires the continuity of the differential coefficient
after division by k. The equation for B,, is therefore

drm dd . (Kc)
/ /6) — —_ 7
B { e g¥n 5 (ve)—toyn 1

=, {kpAJm (ke) In'(Ke)—F'e Im(Kc) Ju/(ke)},
with the understanding that the 2 is to be omitted when m=0.
Corresponding to the primary wave ¢+, e find as the

expression of the secondary at a great distance from the cy-
linder,

{7 %i(nt—kr) _ﬁ 29 71/29
"’“(mr)e [ 1g (K =F°c) 2
272 2_ 1/
'—k%‘ZI]z/T_i_‘% cos 60— %Ic‘*c‘* Z/:T—% Cos 26’]. . (67)
The term in cos & is now the leading term; so that the second-

# In (66) c is the magnetic component, and not the radius of the cylin-
der. So many letters are employed in the eléctromagnetic theory, that it
is difficult to hit upon a satisfactory notation,
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ary disturbance approximately vanishes in the direction of the
primary electrical displacements, agreeably with what has
been proved before. It should be stated here that (67) is not
complete to the order Z%* in the term containing cos 8. The
calculation of the part omitted is somewhat tedious in general;
but if we introduce the supposition that the difference between
k and %* is small, its effect is to bring in the factor (1—$4%?).

Extracting the factor (#2—#&*), we may conveniently write

(67)
= = \}. ) k22 4+ I
V=R (2@'/@) gt ["Os R T;

2.2
—%ccos%], . (68)

in which
722 2.2 22
cos 0 — é—?%kc— - %—cos 20
2.9_ 122 2 2
= cos 0—-76(;——"1—610—3-—76—46—cos2 6. . . (69)

In the directions cos #=0, the secondary light is thus not
only of high order in k¢, -but is also of the second order in
(¥ —k). For the direction in which the secondary light
vanishes to the next approximation, we have

ke K'—K
tn—0= 75 (K- k)= T e (70)

‘This corresponds to (61) for the sphere ; and is true if ke, Ke

be small enough, whatever may be the relation of # and £.
For the cylinder, as for the sphere, the direction is such that
the primary light would be bent through an angle greater than
a right angle.

If we neglect the square of (k27— £?), the complete expression
corresponding to (G9) is

cos 0(1 —F#*?) — 1§ Kc? cos? = cos O[1— L1 k2? — 1 k% cos 0].
This may be compared with the value obtained by the former
method, viz. cos 6 J(2ke cos )= kc cos 16, and will be found
to agree with it as far as the square of %e.

If we suppose the cylinder to be extremely small, we may
confine ourselves to the leading terms in (65) and (67). Let
us compare the intensities of the secondary lights emitted in
the two cases along #=0, i. e. directly backwards. From (65)

262 — 2t
VYo g
2% By

while from (67) :
¥ o — R JEwE
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The opposition of sign is apparent only, and relates to the dif-
ferent methods of measurement adopted in the two cases. In
(65) the primary and secondary distnrbances are represented
by &/K, but in (67) by the magnetic function ¢. If we express
the solution in the second case in terms of the electric func-
tion g, we shall find (see 13) that the ratio of ¢ to g changes
sign when we pass from the primary light propagated along
—a to the secondary light propagated along + 2. The actual
ratio of amplitudes in the two cases is thus (&4 k%)/2? or
(K'+K)/2K. Unless the difference between K’ and K be
neglected, the two components of unpolarized light are scat-
tered along this direction in different proportions, that compo-
nent preponderating in which the electric displacement is
parallel to the axis of the cylinder. The secondary light is
therefore partially polarized in the plane perpendicular to the
axis.
June 1881,

XI. An Abstract'of the Results obtained in a Recalculation
of the Atomic Weights. By FraNxk WIGGLESWORTH
CLARKE, 8.B., Professor of Chemistry in the University of

Cincinnati*.

DURIN G the past three years I have been engaged upon
a recalculation of all the atomic-weight determina-
tions which have been published from the time of Berzelius’s
carlier investigations down to the present date. My purpose
has been to reduce all similar series of experiments to com-
mon standards, to calculate the probable error of each series,
to combine the results into general means, and then to deduce
the atomic weights in such a way that each value should
represent a fair average of all the trustworthy estimations.
In other words, I have sought to bring together all the vast
number of scattered details, and to derive from therh a more
consistent table of atomic weights than has hitherto been
found in chemical literature. My complete work will appear
in due time as a separate volume ; my present intention is to
give merely a summary of my methods, and my conclusions.
Taking hydrogen as unity, I necessarily began with the
ratio between it and oxygen. This ratio has been deter-
mined accurately in only two ways:—first, by the synthesis of
water over copper oxide; and secondly, from the relative
density of the two gases. Ignoring earlier inexact experi-
ments, we may consider only the data furnished by Dumas,
by Erdmann and Marchand, and by Regnault. From Dumas’s
nineteen syntheses of water we get for oxygen values ranging
# Communicated by the Author,




