XLVI. On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables

John T. Graves M.A. F.R.S.

To cite this article: John T. Graves M.A. F.R.S. (1845) XLVI. On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables, Philosophical Magazine Series 3, 26:173, 315-320, DOI: 10.1080/14786444508645136

To link to this article: http://dx.doi.org/10.1080/14786444508645136

Published online: 30 Apr 2009.

Submit your article to this journal

View related articles [
upon in Lieut.-Col. Sabine's valuable Toronto report contained in the last Number of the Phil. Mag. p. 20, I beg to refer to my papers in the Phil. Mag. for June and July 1842, in which the Plymouth and Leith observations showed that if the barometer or thermometer be observed four times a day at six-hour intervals, commencing at any convenient hour, the result of an annual series would all but equal the mean of one or two-hourly observations. These conclusions are confirmed by Col. Sabine's communication; whence, denoting by
$4 t$ the sums of the observations at $\stackrel{\mathrm{h}}{2}, \stackrel{\mathrm{~h}}{8}, \stackrel{\mathrm{~h}}{14,} \stackrel{\mathrm{~h}}{20}$, by
$4 t^{\prime} \quad . . . \quad . . \quad . . \quad 4,10,16,22$, and $4 t^{\prime \prime} \quad . . . \quad . . . \quad . . . \quad 6,12,18,0$,
results the following Table :-

	Place.	t.	t.	$t^{\prime \prime}$.	Mean value	Mean range.
'Temperature	\{ Toronto	$\stackrel{\circ}{4} \cdot 29$	44.56	44.35	${ }^{\circ} 4 \cdot 40$	11.35
	$\{$ Greenwich.	$49 \cdot 50$	49.70	49.50	$49 \cdot 60$	$10 \cdot 80$
Vapour pressure (inches).	\{ Toronto	$\cdot 260$	-259	-254	. 259	. 057
	$\{$ Greenwich .	-327	-327	-327	-326	$\cdot 047$
Gaseous pressure 29 inches.	\{ Toronto ...	-349	-350	-348	-349	-067
	Greenwich.	-504	$\cdot 506$	-505	-505	$\cdot 045$
Force of wind, lbs. on 1 inch square.	\{ Tor	$161 \frac{1}{2}$	159	146	155 ${ }^{\frac{1}{2}}$	133
	Greenwich.	107	107\%	$105 \frac{3}{4}$	$106 \frac{3}{4}$	427

London, February 17, 1845.
P.S. If one of a party of travellers ascending a high mountain await at one of the stations the return of the others, his six-hourly observations on the thermometer and barometer would give the mean daily height of these instruments, and hence the altitude of the station; whence by the method of differences, the exact altitude of the summit would always be ascertainable.
XLVI. On a Connection between the General Theory of Normal Couples and the Theory of Complete Quadratic Functions of Troo Variables. By John T. Graves, M.A., F.R.S., Examiner in Laros and Jurisprudence in the University of London.*
T HE remarkable researches of Sir W. Hamilton on Quaternions, followed by Prof. De Morgan's very able and

* Communicated by the Author. The continuation of Sir W. R. Hamilton's paper on Quaternions will be found in our last Number, p. 220.
original paper on Triplets (published in the Cambridge Philosophical Transactions), have induced me to recur to the examination of Couples. In the present paper I shall confine myself to the algebraical consideration of the subject.

Couples are of the form $i x+j y$; the variables x and y are called the constituents of the couple, the constants i and j its characteristic coefficients. The couples that I treat of are supposed to follow the analogy of ordinary algebra, subject to the characteristic rule, that "if two couples are equal, their constituents are separately equal." We are precluded from supposing the existence of any linear relation between the coefficients. If we have the equation

$$
\begin{equation*}
i x+j y=i x_{1}+j y_{1}, \tag{1.}
\end{equation*}
$$

we are to assume $x=x_{1}, y=y_{1}$, and are not allowed to establish the equation $i=j \cdot \frac{y_{1}-y}{x-x_{1}}$, if $\frac{y_{1}-y}{x-x_{1}}$ have a determinate value. Hence, if we have $i x+j y=0$, we are bound to assume $x=0, y=0$. This view of couples is derived from the ordinary algebra of imaginary quantities. If

$$
\begin{equation*}
x+\sqrt{-1} y=x_{1}+\sqrt{-1} y_{1} \tag{2.}
\end{equation*}
$$

we have $x=x_{1}$ and $y=y_{1}$.
We are to assume such rules that functions of couples may be couples. The product of two couples is a couple. If we follow the rules of algebra, we shall have

$$
\text { (3.) } \quad(i x+j y)\left(i x_{1}+j y_{1}\right)=i^{2} x x_{1}+i j\left(x y_{1}+y x_{1}\right)+j^{2} y y_{1} .
$$

Sir W. Hamilton, in quaternions, by a happy deviation from the rules of ordinary algebra, makes $i j=-j i$, but we are at present treating of couples which obey ordinary algebraic rules. Possibly science may gain more by the introduction of anomalous couples, but I confine myself at present to normal couples.

In order that $i^{2} x x_{1}+i j\left(x y_{1}+y x_{1}\right)+j^{2} y y_{1}$, which is the product of two couples, may be itself a couple, we must define $i^{2}, i j$ and j^{2} in such a way as to reduce the product to the form $i x_{2}+j y_{2}$. This cannot be effected unless we suppose
(6.)

$$
\left.\begin{array}{rl}
i^{2} & =i \alpha+j \beta \\
i j & =i x+j x^{\prime} \\
j^{2} & =i \beta^{\prime}+j \alpha^{\prime} \tag{A.}
\end{array}\right\}
$$

$\alpha,{ }^{\prime} \alpha, \beta,{ }^{\prime} \beta, x,{ }^{\prime} x$ being constants capable of being connected by linear relations. They may be termed "the connected constants of multiplication."

If we assume

$$
\begin{equation*}
(i x+j y)\left(i x_{1}+j y_{1}\right)=i x_{2}+j y_{2} \tag{7.}
\end{equation*}
$$

we shall obtain from (3.) and the equations (A.),

$$
\left.\begin{array}{l}
x_{2}=\alpha x x_{1}+x\left(x y_{1}+y x_{1}\right)+\beta^{\prime} y y_{1} \tag{8.}\\
y_{2}=\alpha^{\prime} y y_{1}+x^{\prime}\left(x y_{1}+y x_{1}\right)+\beta x x_{1}
\end{array}\right\} .
$$

In normal couples, the equations

$$
\begin{equation*}
i^{2} \cdot j=i . i j, \quad j^{2} \cdot i=j . i j, \tag{9.}
\end{equation*}
$$

hold good by virtue merely of the assumed rules of multiplication, without the necessity of assuming any linear relation between i and j. We proceed to investigate the relations which must subsist among the constants $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, x, x^{\prime}$, in order to satisfy this condition.

Since $i^{2} j=i . i j=j . i^{2}$, we have, by (5.) and (4.), (10.) $\quad i^{2} x+i j x^{\prime}=i j \alpha+j^{2} \beta$.

Since $j^{2} i=j . i j=i . j^{2}$, we have, by (5.) and (6.), (11.) $i j x+j^{2} x^{\prime}=i^{2} \beta^{\prime}+i j \alpha^{\prime}$.

Substituting in (10.) and (11.) the values of $i^{2}, i j$ and j^{2} given by equations (A.), we get from (10.),
(12.) $(i \alpha+j \beta) x+\left(i x+j x^{\prime}\right) x^{\prime}=\left(i x+j x^{\prime}\right) \alpha+\left(i \beta^{\prime}+j \alpha^{\prime}\right) \beta$. Similarly, we get from (11.),
(13.) $\left(i x+j x^{\prime}\right) x+\left(i \beta^{\prime}+j \alpha^{\prime}\right) x^{\prime}=(i \alpha+j \beta) \beta^{\prime}+\left(i x+j x^{\prime}\right) \alpha^{\prime}$.

Arranging (12.) and (13.), we obtain

$$
\begin{align*}
& i\left(x x^{\prime}-\beta \beta^{\prime}\right)+j\left(x^{\prime}\left(x^{\prime}-\alpha\right)-\beta\left(\alpha^{\prime}-x\right)\right)=0, \tag{14.}\\
& j\left(x x^{\prime}-\beta \beta^{\prime}\right)+i\left(\beta^{\prime}\left(x^{\prime}-\alpha\right)-x\left(\alpha^{\prime}-x\right)\right)=0 . \tag{15.}
\end{align*}
$$

It is evident that the two equations (14.) and (15.) will be satisfied, independently of any linear relation between i and j, if we suppose, in conformity with the characteristic rule of couples,
(16.) $x x^{\prime}-\beta \beta^{\prime}=x^{\prime}\left(x^{\prime}-\alpha\right)-\beta\left(\alpha^{\prime}-x\right)=\beta^{\prime}\left(x^{\prime}-\alpha\right)-x\left(\alpha^{\prime}-x\right)=0$.

The three equations (16.) are (as it is not difficult to perceive) equivalent to the two following :

$$
\begin{equation*}
\frac{x^{\prime}}{\beta}=\frac{\alpha^{\prime}-x}{x^{\prime}-\alpha}=\frac{\beta^{\prime}}{x} . \tag{17.}
\end{equation*}
$$

The two equations (17.) express the relations which, in every system of normal couples, connect the constants of multiplication. It is easy to see that the equations (17.) will be satisfied by integer values of the constants, if we suppose that the three equal fractions in (17.) are each equal to $-\frac{p}{q}$; and if we take (18.) $x^{\prime}=p \rho, \beta=-q \rho, \alpha^{\prime}-x=p \eta, x^{\prime}-\alpha=-q \eta, \beta^{\prime}=-p \theta, x=q \theta$.

318 Mr. John T. Graves on the Theory of Couples.

By these assumptions we are enabled to make the six connected constants, $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, x, x^{\prime}$, depend upon five arbitrary and unconnected constants, p, q, ρ, η, θ. Certain limited variations of sign might be allowed in our last assumptions consistently with the integer character of the constants of multiplication. Thus it would appear more natural to assume the equal fractions in (17.) each equal to $+\frac{p}{q}$ instead of $-\frac{p}{q}$, and to give positive values to every numerator and denominator, taking

$$
\text { (19.) } x^{\prime}=p g, \beta=q \rho, \alpha^{\prime}-x=p \eta, x^{\prime}-\alpha=q \eta, \beta^{\prime}=p \theta, x=q \theta \text {. }
$$

To this there would be no objection on principle, and the results to which it would lead would be convertible with those which follow. The assumptions (19.) were, in fact, nearly those which I at first made, but I found upon trial that the signs of (18.) are those which give the greatest concinnity to the subsequent calculations.

By substituting in equations (A.), in place of the connected constants of multiplication, their values as determined by equations (18.), we get

$$
\left.\begin{array}{l}
i^{2}=i(p \rho+q \eta)-j q \rho \tag{20.}\\
i j=i q \theta+j p \rho \\
j^{2}=j(q \theta+p \eta)-i p \theta
\end{array}\right\} .
$$

From equations (B.) we get the following system of equations, defining a general rule of multiplication to which all normal couples will be found to conform:

$$
\left.\begin{array}{l}
\text { (23.) } \quad\left(i p_{1}+j q_{1}\right)\left(i p_{2}+j q_{2}\right)=i p_{3}+j q_{3} \\
\text { (24.) } p_{3}=\left(p_{\varrho}+q \eta\right) \cdot p_{1} p_{2}+q \theta \cdot\left(p_{1} q_{2}+q_{1} p_{2}\right)-p \theta \cdot q_{1} q_{2} \tag{24.}\\
\text { (25.) } q_{3}=(q \theta+p \eta) \cdot q_{1} q_{2}+p \rho\left(p_{\rho} q_{2}+q_{1} p_{2}\right)-q q_{\rho} \cdot p_{1} p_{2}
\end{array}\right\} .
$$

If we express the couple $i p+j q$ by the notation (p, q), and arrange equations (24.) and (25.), the multiplication of normal couples will be expressed by the following system:
(28.)

$$
\left.\begin{array}{c}
\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)=\left(p_{3}, q_{3}\right) \tag{26.}\\
p_{3}=p p_{1} p_{2} \rho+q p_{1} p_{2} \eta+\left(q p_{1} q_{2}+q q_{1} p_{2}-p q_{1} q_{2}\right) \theta \\
q_{3}=q q_{1} q_{2} \theta+p q_{1} q_{2} \eta+\left(p q_{1} p_{2}+p p_{1} q_{2}-q p_{1} p_{2}\right) \rho
\end{array}\right\} \text {. (D.) }
$$

A comnection between the theory of multiplication of normal couples and the resolution into factors of quadratic functions of two variables, will appear from the investigation to which I now proceed. Thus the theory of couples becomes connected with that of quadratic equations. We may treat i and j as ordinary algebraic quantities, and endeavour to deduce their values in terms of p, q, ρ, η, θ, by means of the
equations (B.). Eliminating j between (20.) and (21.), we get

$$
\begin{equation*}
j=-\frac{i^{2}-i\left(p_{\rho}+q \eta\right)}{q \varrho}=\frac{i q \theta}{i-p g} \tag{29.}
\end{equation*}
$$

Hence we find upon arranging,
(30.) $\quad i^{2}-\left(2 p_{\rho}+q \eta\right) i+\left(p^{2} \rho+p q \eta+q^{2} \theta\right) \rho=0$.

In like manner, by eliminating i between (21.) and (22.), we find
(31.) $\quad j^{2}-(2 q \theta+p \eta) j+\left(p^{2} \rho+p q \eta+q^{2} \theta\right) \theta=0$.

Upon solving (30.), we get

$$
\begin{equation*}
i=\frac{2 p \rho+q \eta \pm q \sqrt{\eta^{2}-4 \rho^{\theta}}}{2} ; \tag{32.}
\end{equation*}
$$

and similarly, upon solving (31.), we get

$$
\begin{equation*}
j=\frac{2 q \theta+p \eta \mp p \sqrt{\eta^{2}-4 \rho^{\theta}}}{2} . \tag{33.}
\end{equation*}
$$

It will be found upon examination, that, in order to satisfy the equation (21.), we must make the positive sign of the radical in (32.) correspond to the negative sign in (33.), and vice versá.

Let the two values of i given by (32.) be denoted by i_{1} and i_{g}, and let the corresponding values of j be denoted by j_{1} and j_{2}. Let

$$
\begin{equation*}
p^{2} \varrho+p q \eta+q^{2} \theta=u, \tag{34.}
\end{equation*}
$$

and let

$$
\begin{equation*}
p_{n}^{2} \rho+p_{n} q_{n} \eta+q_{n}^{2} \theta=u_{n} . \tag{35.}
\end{equation*}
$$

Then we shall have (as will be found upon trial) the three following connected equations:
(38.)

$$
\left.\begin{array}{r}
i_{1} i_{2}=u \rho \tag{36.}\\
i_{1} j_{2}+j_{1} i_{2}=u \eta \\
j_{1} j_{2}=u \theta
\end{array}\right\} .
$$

Hence we obtain the leading theorem,

$$
\begin{equation*}
\left(i_{1} p_{n}+j_{1} q_{n}\right)\left(i_{2} p_{n}+j_{2} q_{n}\right)=\| u_{n^{\circ}} \tag{39.}
\end{equation*}
$$

Further, we have, by the equations (C.), since both i_{1}, j_{1} and i_{2}, j_{2} satisfy the equations (B.),

$$
\left.\begin{array}{ll}
\text { (40.) } & \left(i_{1} p_{1}+j_{1} q_{1}\right)\left(i_{1} p_{2}+j_{1} q_{2}\right)=i_{1} p_{3}+j_{1} q_{3} \tag{40.}\\
\text { (41.) } & \left(i_{2} p_{1}+j_{2} q_{1}\right)\left(i_{2} p_{2}+j_{2} q_{2}\right)=i_{2} p_{3}+j_{2} q_{3}
\end{array}\right\} .
$$

p_{s} and q_{B} having the same values as in (24.) and (25.), or, as in (27.) and (28.)
Multiplying together (40.) and (41.), we get by (39.),
(42.) $\quad u u_{1} \cdot u u_{8}=u u_{3} ;$
and, dividing both sides of (42) by u, we obtain, finally, the interesting result,

$$
\begin{equation*}
u \cdot u_{1} \cdot u_{2}=u_{3} . \tag{43.}
\end{equation*}
$$

This theorem may be expressed as follows:
" The continued product of three functions of the form

$$
x^{2} \rho+x y \eta+y^{2} \theta
$$

is of the same form." x and y are supposed to be constant, and ρ, η and θ to be variable.

In symbols at length, we have
(44.) $\left(x^{2} \rho+x y \eta+y^{2} \theta\right)\left(x_{1}^{2} \rho+x_{1} y_{1} \eta+y_{1}^{2} \theta\right)\left(x_{2}^{2} \rho+x_{2} y_{2} \eta+y_{2}^{2} \theta\right)$

$$
=x_{3}^{2} \varrho+x_{3} y_{3} \eta+y_{3}^{2} \theta,
$$

x_{3} and y_{3} having the values following:
(4.5.) $x_{3}=x x_{1} x_{2} \rho+y x_{1} x_{2} \eta+\left(y x_{1} y_{2}+y y_{1} x_{2}-x y_{1} y_{2}\right) \theta$.
(46.) $y_{3}=y y_{1} y_{2} \theta+x y_{1} y_{2} \eta+\left(x y_{1} x_{2}+x x_{1} y_{2}-y x_{1} x_{2}\right) \rho$.

This appears to be the most important quadratic modulus theorem which the extended theory of normal couples furnishes. It admits of a great number of interesting particular cases. For example, making x in (44.) equal to $1, \rho=1$, $y=0$, the first factor is reduced to 1 , and we get the theorem,
" The product of troo functions of the form
is of the same form."
If, further, we make $\eta=0$ and $\theta=1$, we get the well-known theorem,
"The product of two sums of two squares is a sum of two squares."
P.S. "The product of two sums of eight squares is a sum of eight squares." To Euler is due a corresponding theorem relating to sums of four squares, which was extended by Lagrange, who added coefficients to the squares. As Euler's theorem is connected with Hamilton's quaternions, so my theorem concerning sums of eight squares may be made the basis of a system of octads or sets of eight, and was actually so applied by me about Christmas 1843. I mention this in consequence of the idea suggested by Mr. Cayley in the last Number of this Magazine. But the full statement and proof of the theorem concerning sums of eight squares, and of several other new theorems connected with the doctrine of numbers, must be reserved for another time.

[^0]
[^0]: XLVII. Account of a nero Experiment in Electro-Statical Induction. By Prof. Matteucci, in a Letter to Dr. Faraday. My dear Faraday,

 IHOPE it will not be disagreeable to you if I describe an experiment which I performed in one of my late lectures on electro-statical induction, in which I dwelt entirely upon

