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Equation (26) is suitable for use in computations for love 
temperatures. The expanded form for %(0) analogous to 
(24) is suitable for use with high temperatures and is more 
immediately intelligible than (26). This form is 

%(O)=27rvII(a) ~2 (2JII(¢))"-'- 
n~-I n ! 

x ~ a  + n + l  " n + 2  + n + 3  .(27} 

and the corresponding form of the second virial coefficient is 

n = l  ?t ! 

f ( d - a ) d  ~ 2(d--~)-"d (d-~)83~ (28) 
× L" ~-~-+-i n + 2  ÷ n + 3  5"  

x o i i .  The Reflexlon of ,Y-Ra~/s from Imperfect Crystals. 
By C. G. DARWIn, Fellow and Lecturer of Christ's College, 
Cambridge *. 

1. Introduction. 

T HE recent work of Bragg, James~ and Bosanquet J~, on 
the rei]exion of X-rays from rock-salt crystals is of 

extreme importance 'in that it promises more directly than 
any other method to supply information about the actual 
positions which the electrons occupy in the atom. The 
method consists in a study of the intensity with which the 
various faces of the crystal reflect a given wave-length~ and 
is based on the theoretical formulae given by the present 
writerS. These formulae showed that such experiments 
should determine a certain quantity, which is, roughly 
speaking, the amplitude of the wave scattered by all the~ 
electrons in a single atom in the direction of the reflected 
be~lm. A study of the v,rious faces of a crystal gives this 
amplitude as a function of the angle of scattering, and from 
that the positions of the electrons can be inferred~with this 
~econd half of the problem I shall not be here concerned. 
But the deduction of the amplitude from tho experiments 
encountered certain peculiar difficulties ; for the absorption 

* Communicated by the Author. 
J" Bragg, James, and Bo~anquet, Phil. Mug. vol. xli. p. 309, and, 

vol. xlii. p. 1 (1921). 
1: Darwin~ Phil. May. vol. xxvii, p. 315 and p. 675 (1914). 
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coefficient of the crystal is involved in the formula, and there 
were indications that the actual absorption was a good deal 
stronger than usual. This was especially the case in the 
reflexions at small angles, and these small angles are par- 
ticularly important, for by them is tested the truth of' the 
hypothesis that in rock-salt the sodium atoms have passed 
one electron over to the chlorine. The difficulty was over- 
c o m e -  at any rate, partially--by finding the actual absorption 
coefficients for the various directions in the crystal, by a 
study of the reitexions of the internal planes of a set of 
plates of rock-salt. But even this method has an unsatis- 
factory feature; for it was only possible to arrive at a definite 
result by rejecting the observations from certain of the 
plates. I t  is true that the discrepancy was explained by 
the fact that these had had much rougher treatment 
than the rest, but still it suggests a certain measure of 
doubt as to the soundness of the method, or at any rate the 
necessity for an inquiry into it. I t  appeared to me therefore 
to be worth while to re-examine theoretically the reflexion 
from crystals in general, in the hope of clearing up the 
difficulties, and also in the hope that theory would indicate 
some way of obviating them. The whole point evidently 
lies in the imperfections of the crystals, and this introduces 
many complications. I am afraid I have not succeeded in 
welding the parts of the argument rigorously together, but 
in spite of certain gaps in the theory it seems unlikdly that 
there is serious error in the general views to which it leads. 
The work has been rather heavy, but the trouble will have 
been justified, if it helps in determining the positions of the 
electrons in the atom, one of the supremely important pro- 
blems in the present condition of physics. 

There will be frequent occasion to refer to the two papers 
of Bragg, James, and Bosanquet*. When mentioning them 
in the text, I shall, for short, use only the name of the first 
of the authors. The papers themselves will be called 
B.J.B.i .  and B.J.B.ii .  Similarly, my own former papers 1" 
will be denoted D.i. and D. ii. 

2. Previous Theories. 

The theory of the refIexion of X-rays by crystals was 
discussed by the present writer in the papers D.i.  and D. it. 
In D. i. it was assumed that each atom scattered X-rays just 
as though it was alone, and the solution of this interference 

* Zoee. cltt. 
t J5occ. cltt. 
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problem led to a formula for the intensity of reflexion. The 
experimental arrangements to which the calculations were 
adapted were those in vogue at that t ime-- tha t  is, with 
crystal fixed during each observation. This was the 
arrangemen~ used in the experiments of H.  G. J. Moseley 
with the present writer*, and it was to them that the 
theoretical calculations were applied. In  the course of 
those experiments a single, bu t  a fairly good, measure was 
made of the absolute intensity of the reflexion of "whi te  
X- rays"  and also the curve of reflexion against angle was 
found. By means of a quadratm'e it was therefore possible 
to measure the effect of a single atom, and the result was of 
the right order for the number of electrons anticipated. 
Yet it was apparent that the theory was defective, for it 
was calculated that the diffraction pattern of the reflexion 
could at most be a few seconds across, and that even if all 
the available radiation in th is  breadth were reflected the 
total would still be far short of the observed amount. 

2~ow, if the reflexion was perfect over any region, it could 
not be legitimate to treat of the atoms as all scattering in- 
dependently. In D. it. therefore the mutual influence of the 
successive planes was included. I t  was found that over a 
breadth of a few seconds the reflexion was perfect, and that 
in this region the ordinary absorption of the rays by the 
crystal was swamped by a tkr more powerful special extinc- 
flea. These principles led to a modified reflexion formula~ 
but one which could explain the magnitude of the reflexion 
no better than the old. A way was found out of the 
difficulty by supposing the crystal to be a conglomerate of 
small blocks of perfect crystal all orientated approximately 
in the same direction, for such a conglomerate would reflect 
the radiation at many of its blocks~ internal as weli as 
external, and this would much increase the total amount 
reflected. No attempt was made to treat the problem at 
all fully, but a general line of argument suggested that the 
effect would be approximately to reinstate the formula of 
D.i.  without the objections that had before attached to it. 

All the calculations of these papers were based on experi- 
ments in which the crystal was fixed. A. H. Compton t 
carried out a somewhat similar process quite independently, 
but based it on the experimental arrangement which has, in 
fact, proved more convenient in the study of monochromatic 

Moseley and Darwin, Phil. Mag. voI. xxvi. p. 1024 (1913). 
~" Compton, " 1he Intensity of X-Ray Reflexion," etc., :Phys. Rev. 

vol. ix. p. 29 (1917). 
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radia~ion~that in which the crystal turns during the expe- 
riment with a constant angular velocity, so as to integrate the 
e~ect of the crystal. His results were substantially the santo 
as those of the present writer, though naturally in a form 
more convenient for comparison with recent experiments. 
From a mathematical point of view his method has the 
advantage that he had no need to consider Fresnel integrals, 
whereas in my method they were necessary in order to 
secure convergence. I think the identity of results depends 
on the fact that if an integral nearly converges, and is made 
to converge by the introduction of a slight convergency 
factor, then the consequent value is independent of the 
form of tha~ factor. ~fy factor was the Fresnel term, 
Compton made his expression converge by cutting it off 
a~ the end. 4 s  the present paper deals only with small 
crystals, the case will be analogous to Compton's, the con- 
vergence will be assured, and therefore no use will be made 
o f /he  Fresnel terms. 

The same reflexion formula is worked out in B.J.B.i .  I t  
is designed to meet the exact requirements of the work, and, 
though implicitly using the Fresnel integrals, it is free 
from much of the mathematical complication of the earlier 
derivations. 

3. General L\cj, osition off' the l~voblemo 

The imperfection of crystals may take either of two forms, 
warping or cracking. Either tile atoms may be arranged on 
surfaces which are notquite flat, or else they may be arranged 
in blocks, each block a perfect crystal~ but adjacent blocks 
not accurately fitted together. An examination of the sur- 
faces of rock-]salt crystals suggests ttmt the first is probably 
more the nature of its imperfection, but the second is 
much more tractable to mathematics and so has been adopted 
here. 

The whole question turns on the phenmnenon of extinc- 
tion, which may be roughly described as the di,ninution in 
the reflected beam due to the fact that when one part of a 
crystal has reflected some of the radiation, there is less tbr 
the parts behind it to reflect. In Bragg's work observation 
was made on the total ionization as the crystal turns through 
the reflecling angle. :Now, at each instant of the rotation 
there will be a different amount reflected and therefore a 
different extinction, and consequently it will not suffice to 
treat of the mean effect of extinction, without first deter- 
mining it at every setting of the crystal. As will be 

3 F 2  
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seen, this complicates the mathematics of the problem 
considerably, 

With regard to the extinction itself it is found that it exerts 
two effects, which may be called primary and secondary. 
The primary extinction consists in the reduction of the beam 
reflected from a perfect crystal, owing to the defect in the 
radiation which reaches its lower layers. As shown in D. it. 
it may be deduced by considering the multiple reflexions 
between the planes o~' the ccystal, and for a deep crystal it 
leads to perfect reflexion in a region near the reflecting 
angle. At first sight this is a little paradoxical, but it is 
easy to see that the simpler formula, which neglects extinc- 
tion, gives an amount reflected greater than tim amount of 
the incident beam. 

The secondary extinction is due to the reduction in in- 
tensity of the transmitted beam on emerging fi'om the lower 
side of a small crystal in which some reflexion has taken 
place. Its effect is practically to increase the absorption 
coefficient of the crystal by ~n amount that can be calculated 
from the amount of the reflexion. The methods used in 
B.J.B. ii. remove the secondary extinction, but are without 
influence on the primary. In fact, it will appear that no 
experiments of the present type can possibly remove i t ;  
indeed, to do so would require the measurement of the 
actual sizes of the snmll blocks of perfect crystal. This is 
a serious difficulty'in the problem of determining with cer- 
tainty the positions of the electrons in the atom; but it 
should be said that it seems probable that in rock-salt the 
secondary extinction is far more important than the 
primary: for, if the imperfection is due to warping rather 
than cracking, there will be very little primary extinction 
(which depends on the depths of the perfect crystals), 
whereas the secondary extinction will be as effective as 
ever. 

A confusing circumstance of the problem has lain in the 
different physical dimensions of the quantities tha~ occur. 
For example, it is natural to measure the incident beam by 
its intensity, erg.cm.-2sec. -1, whereas the whole rei~exion is 
required, and this is of dimensions erg.sec. -1. This type of 
difficulty is illustrated iu Bragg's formulm, which involve a 
superficially irrelevant angular velocity. I have found it 
very helpful to adopt the terminology of dimensions for the 
various quantities occurring. Thus we shall denote the whole 
ionization produced in the electroscope in a given time as 
e,~ergy. Then, following the dynamical usage, power will 
signify energy per time. Inteasitz/will be power per are,% 
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and amplitude will be the square root of intensity. In the 
example ahove we should thus speak of the " re fec ted  
power." This necessitates a slight, alteration from Bragg's 
terminology. He calls a certain quantity (of zero dimen- 
sions) the "ref lect ing power"  To avoid confusion we shall 
here call it the " integrated reflexion." 

The course of the paper is as follows : - -  
§ 4 treats of the reflexion from a small perfect crystal of 

any shape and bel6nging to any of the Cl'¥stal classes. In 
§ 5 there is found the r~eflexion from a co~nglomerate com- 
posed of a large number of small crystals orientated' nearly 
in the same direction. In both these sections the crystals 
are supposed so thin that absorption and extinction are 
negligible. In § 6 there is a discussion of extinction. In 
§ 7 all the results are cmnbined so as to give the reflexion 
formula for a deep conglomerat% and in §8 the same pro- 
cesses are applied to reflcxion through a p l a t e~ the  method 
o~ B.J.B. it. In  ,~ 9 there is a short discussion or" the rather 
few experimental results by which the theory can be tested. 
For the sake oF completeness, the formula for reflexion 
from a powder of crystals is worked out in § 10. The paper 
concludes with a short general discussion and a summary. 

4. Reflexion from a Small Perfect Crfstal. 
We shall ~h's~ consider the reflexion from a single per[ect 

crystal which is so small that absorption and extinction may 
be completely neglected. Apart frmn this coudition there 
is no restriction on its size or shape, and it may belong to 
any of the crystal classes. Let  it be divided into its funda- 
menial lattice. Call th'e group of atoms in each element of 
the lattice a molecule. We are not here concerned with 
symmetry, and there is a certain amount of arbitrariness 
about the choice of lattice and molecule. For  example, in 
rock-salt it is indifferent whether we take the face-centred 
cubic lattice, with molecules composed of a sodimn atom and 
one of its chlorine neighbours, or the cubic lattice, cont~Sning 
four atoms of each kind. According to the choice the 
answer will take a different form, but it is an elementary 
matter to reconcile the difference. 

Take an origin in the crystal, and draw the z axis perpen- 
dicular to the planes of which the reflexion is ~o be studied. 
Let  xz be the plane of incidence of the rays, and let the 
positive directions of x and z be away from the source. The 
th,'ee primitive translations of the lattice may then be 
taken as a~, av, a; bz: 5v, 0; c~, c~, 0. The determinant of 
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the translations is the volume occupied by the molecule and 
this is l/N, where N is the number of molecules in a cubic 
cenfimetre. If  an incident beam with amplitude Ae i~ct falls 
on the molecule, let the amplitude of the scattered beam at 
distance ~' be .fAJ~(cf-~)/r. Here .fis of the dimensions of a 
length, and, apart from the fact that it applies to molecules 
instead of atoms, is the same as Bragg's (e2/mc ~) F. It will 
depend on the orientation of the incident and scattered rays 
and on the wave-length. It  will also vary from one molecule 
to another, according to the chance -positions of the electrons, 
both on account of heat vibration and of the internal motions 
o~ the atoms. 

Let the incident beam come from an anti-cathode at dis- 
tance R, and let its amplitude at the crystal be A and its 
glancing angle of incidence be ~*. Consider the beam 
scattered to a direction with glancing angle X and azi- 
muthal angle ~ measured about Oz. Then the source is 
at --Rcos~,  0, - -Rsin~,  and the point of observation at 
rcosxcos4F, r eosxs in~r  , - - rs in X. The position o[ a 
molecule is 

x ~ aaz -I- 13bx + ~/cz) 

y=~a~+t~b,~+~lcu~ . . . . ( l ' l )  

Z ~  at(% J 

where a, /3, ~/ are three integers. For an inciden~ beam 
Ad k(~t-~) the wave scattered by this molecule is 

A ( . /~4  ; ) exp ik( ct -- R o ~ - -  ,'~v). (4"2) 

Expanding R ~  and r.o~, the amplitude of the total scattered 
w a v e  lS  

(AI r )d  ~(<~-~-') Z .f:~ exp ik[x  (cos X cos ~ - -eos  ~) 

+ y  cos X sin ~ - -  z (sin X + sin ~)]. 

To find the intensity multiply by the conjugate imaginary. 
I f  J = A  2 is the intensity of the incident beam, this gives 

( J b  "2) Z Z f~vf' . ,o,¢ exp ik [ ( x - -  x') (cos X cos ¢ - -  cos ~') 

+ (y - y ' )  cos X sila ~ - -  (z-- z') (sin X + sin ~)] . . . .  , (4"3) 

where x ' = £ a ~ + B ' b ~ + , ' / % ,  etc. f and its conjugatef '  will 
vary from one molecule to another. We must take the 
mean of (4"3), allowing for the chance variations of f .  
This will be done by a double averaging of all pessible 
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values of a, ~, ~/ and a', fit, ~/, and as all pairs oE molecules 
occur in the sum this is the same as taking the mean o f f  
and squaring its modulus. This quantity will be denoted 
by.f2 ; it is different from the mean intensity scattered by a 
single molecule*. 

Suppose that the crystal is set so that ~" is near 6, where 
8 is given by the equation ]ca sin 9----n~r, which determines 
reflexion in the nth order. For  angles far from this the 
rei]exion is insignificant, so we may put 

~=9+u, X=9+v,  

and treat u, v, ~ as small. This approximation excludes 
all the other reflexions from consideration. The reflected 
intensity is then 

(J/r2)f 2 Z Z exp ik{(x--x')(u--v) sin 9 T ( y - - y ' ) ~  cos 9 
a#-/ a'tr-t' v) cosg}. 

From this a factor exp--2i]~(z--z')sin 9 has been rejected, 
as it is equal to unity.  Now on account of the smallness of 
u, v, ~ the exponential terms only vary slowly with a, ~, ~, 
and so it will be legitimate to replace the summations by 
integrations. The number of terms contained in a volume 
dV is Nd ~r and so the intensity becomes 

(J /r  ~) N2f ~ <6)dV dV' exp ik { F (x H (z -- z') }, -x ' )  + G(y-y ' )  + 
(4"5) 

where F = ( u -  v) sin 9, G = ~ cos 9, t t  = -- (u + v) cos 9, and 
the volume integrations are each taken over the whole 
crystal. 

We shall now suppose that the crystal is put ~hrough one 
o[ Bragg's experiments. Anjns i rument  is placed so that it 
can catch all the reflected radiation. The element of area 
at r is r ~ cos X dx d~ or r 2 cos 9 dv d~, and so (4"5) must be 
multiplied by this and integrated over all values of v and ~r. 
Further,  the crystal is made to rotate with angular velocity ~o 
about the y axis, and the total energy E received by the 
instrument is measured. This is equivalent to an integra- 
tion ~ du/oJ taken over all values of u. Then 

See Bragg, James, and Bosanquet, Zeitsch~iftfitr Physik, vol. viii. 
p. 77 (1921). 
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To perform the integrations change variables from u, v, 
to F, G, t t  ; the latter will all go from -- =v to ~ ,  and 

du dv d ~ = d F  dG dH cosec 20 sec 0, 
and so 

X ' t e:p  k{F(x--x ) + +H(: - - : ' )} .  

This expression can be evaluated by an inversion of the 
order of integration ; I shall not attempt to just ify the pro- 
tess rigorously. First, take the F, G, H integrations between 
the large limits .±F~ ,  etc. Then 

/ ' (~) 
Eo,/J= cosec Lt_] dV' 

sin k F .  (x--xt), sin k G~ (y _y/) sin k H .  (z--:  I) 
x - -  , v  ~ y _ y r  z - -  z I 

Now in the x ~ integration, which is to follow next, the 
presence of F.~ implies that the only important part is near 
x'=.v. Similarly, for yl and z r. Hence it will be valid to 
take these three integrations over all space instead of only 
over the crystal, for the parts outside will contribute 
nothing. We now have 

~ s i n k F ~ ( x . - x ' ) ,  , _  etc. 

The final three integrations then simply yield 

Ero/J = N ' f  2 cosec 20 (2/k) a . ~r 3 . V. 

Now 2~r/k is Che wave-length X. Also we shall adopt the 
notation of B.J.B. it. and write 

Q =N~f2X 3 cosec 20 . . . . .  (¢'7) 
Then 

Eco / J=QV . . . . . . . . .  (4"8) 

Q is of the dimensions of the reciprocal of a length. This 
equation is the same as B . J .B . i . p .  326 (4). A little care is 
needed in considering it, because its physical dimensions are 
different from those of other equations which will occur 
later, though it is similar to them in appearance: 

The factor Q will include the special peculiarities of the 
crystal, such as the weak (1, 1, 1) reflexion of rock-salt. 
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The averaging process will introduce the temperature 
factor e -~i~-'e and, if desired, the meaning of this may 
be modified so as to include the relative motions of the 
atoms in the molecule. There will also be the usual polari- 
zation factor ½(1-bcosu 2~). If  these are put in explicitly 

Q = ~ / ~ x ~  cosec 2e e -"  "°~ ~ ( 1  + cos ~ .ge). (4"9) 

Here fw i l l  represent the mean scattering in the equatorial 
plane of the emergent spherical wave from a molecule ; it is 
the right quantity for determining the distribution of the 
electrons. In this paper we sh~ll only be concerned in 
the deduction of the value of Q and nothing further will be 
said about the other half of the problem. 

The result of this section has been proved without allow- 
ance for the facL that the incident waves are really spherical 
and that the Fresnel zones are exceedingly small in X-ray 
work. I t  is easy to carry out the whole process, ret'dning 
the squares of x, #, z ;  but the formulae are much more 
cumbrous. As they lead to precisely the same result, it is 
not necessary to give them. 

5. Rejlexion from a Conglomerate. 

The next problem to be considered is the reflexion from a 
small imperfect crystal. I t  is supposed to be made up of 
a number of perfect crystals differing slightly in their orien- 
tations, and the whole is to be so thin that extinction and 
absorption are negligible. We shall describe it as a co~- 
glomerate and the component perfect cryst~lls as blocks. 
Suppose that such a conglomerate is put through the same 
experiment as in § 4. At every point of the observing 
instrument the intensity will be the sum of the intensities 
from the separate blocks. Hence the i11tegrated energy 
will be given by (4"8), where now V is the volume of ,'be 
whole conglomerate. But this is not enough; it is also 
necessary to find the actual reflexion when the crystal is 
fixed at any angle of incidence--a much more difficult 
matter. However, Bragg's experiments showed that there 
was reflexion for settings of the crystal differing by as much 
as a degree, which is very much larger than the breadth of 
the diffraction pattern of a single block, and this fact makes 
it possible to approximate. We defer the discussion of the 
size of blocks required for the approximation to be valid. 

Consider a block of volmne W which has normal l, m, --1 
(it is convenient to take it in the negative direction), where 
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l, m are small and are measured with reference to some 
standard direction in the conglomerate, not necessarily the 
mean direction of the blocks. The intensity of the beam 
reflected by a single block is then given by (4"5) provided 
that u--1 is put for u, v+l  for v, and ~ - 2 m t a n t ?  for 5k. 
To specify the distribution of the blocks let 

VF(W, l, m ) d W d l d m  . . . .  (5"1) 

be the number of blocks in the volume V of the con- 
glomerate which are themselves of volumes between 
W and W + d W  and have normals between l, m and 
l+dl, m+dm. It  follows that 

o o  

w z am W F  ( W ,  l, = 1. (5"2) 

The intensity of reflexion in the direction v, ~ is therefore 
obtained by taking (4"5) for a volume W (modified as 
above), multiplying it by (5"1) and integrating over all 
values of W, Z, m that occm'. To obtain the reflected 
power we multiply by r2cosOdvd~ and integrate over 
all values of v ,~ .  The result is 

gN2f ~ cos 0. V dv d$  F(W, l, m)dW dl dm 
a , ,  ~ ) w  

- - ¢ o  

exp ik { (x--x') (u--v-- 2/) sin 0 + (y--y') (5~ cos O--2m sin O) 

- (u + v) cos e } .  (5"3) 

This is a function of the angle of incidence, that is of u, and 
the fact that we are not to integrate for u alters the proce- 
dure. We must use the assumption that the diffraction 
pattern of each block extends over a much narrower angle 
than the distribution of the blocks. Now, if the shape of the 
blocks were known, it would be possible to carry out the six 
last integrations, and, regarding the result as a function of l, 
the l integrand would then consist of the product of two 
functions, one of which vanishes except for a narrow peak. 
It  would then be correct to substitute in the rest of the 
integraud the value of l given by the maximum of the narrow 
peak--that is, to substitute ½(u--v) for 1 in F. We may 
make the same change, even when the order of integrations 
is altered so as to do that for lfirst. The same argument 
also applies for q/" and m. If  l ,  +n=~ denote quantities which 
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are to be made infinite later, the result of the 1 and m 
integrations is 

• u- -v  ~Fc°t0 d~ dVdV' J N  ~f~cos0 V dvd~ F W, 2 
U s i n  ~ 0 " ' 2 

sin k(x -,v') sin 0 . 2 t  sin k(.~--!/) sin O. 2m 
:¢--x' ~ j -  ~' 

x exp--ik(z--z ')(u +v) cos 0. 

In this ~r has been equated to x and y~ to y in all the terms 
that do not involve 1,  m~, Next integrate for v. With 
exactly the same argument, we may put , u  for v in F, and 
this makes the integration possible, The result is 

JN~f  ~- 
. f~  f cot dW ":6)dVdV' 2V d,/, F(w, 0) ) 

k 3 sin 2 O" 

sin k(~'--a/) sin O. 21~ sin k(3/--y') sin O. 2m~o 
,v--w' y --y' 

sin k(z--z') cos O. v X 

The argument of § 4 now shows that the double volume 
integration is equal to ~'3W. Thus the whole effect is 

f j" JN~f2X 3 cosec 20.  V dW W F  (W, u, m r) dm I. 

Let 

Then, using (4"7), the power reflected is 

J V a 0 , ) ,  • . . . . .  (5"5) 
and by (5"2) 

~ ®G(~0du= Q . . . . . .  (5"6) 
- - o o  

The relation (5"5) is practically equivalent to saying thaL the 
incident beam is reflected by those blocks which are at the 
proper angle and no others% 

In order to test the validity of the assumptions made in 
this work, we shall simplify the problem by supposing that 
all the blocks are rectangular of sides ~, V, ff and orientated 

• W i t h  a little modification the same argument  proves the  result  
deduced in generM terms in D. ii, p. 686. 
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according to the error law. Let  ~r be the scatter of the 
blocks--that is, the departure of mean square of' the normal 
of a block from that  of the conglomerate. Then for (5"!) 
we must write 

V exp-- (Z ~ + , ~ ) / 2 ~  ~ (5"7) 
~v~ 2~'~ . . . . .  

! t  is now possible, though still tedious, to work out (5"3) 
down to the last integration, which involves an error function. 
Approximating for this when u is small we find 

e-"~/2" f l _  , l--u~/2cr~ JVQ (5"~) 
~ ¢ ~ C  ~ / ~ .  ksin 0. ~ :J '  

as the expression corresponding to (5"5) ; so the validity of 
(5"5) depends on neglect ing the second term in the, bracket. 
Thus for a first-order reflexion a/$ must be small compared 
to o-. In Bragg's  experiments a was of the order of 1°; so 
to get an accuracy of i per cent. $]a must be of the order 
of 10 4. For spectra of higher orders the conditions are tess 
exacting. 

From the general appearance of the work one may hazard 
a guess that the approximation will be true over a much 
wilier range of values, and would cover the case of a crystal 
imperfect by warping. I t  is, of course, possible al~ays to 
define a function G(u) so as to satisfy (55)  and it will 

probably be always true that G(u)du=Q; but the 

important point is that G(u) /Q should depend only on 
the structure of the conglomerate, for only so will it be 
possible to pass from reflexion of one order to one of another 
and from one set of crystal planes to another. 

6..Extinction. 

The calculations have so far dealt with crystals which are 
so thin that absorption and extinction can be neglected. 
I t  is now hecessary to inquire to what extent this is 
justified. In D. ii. a study was made of the reflexion from 
an infinitely deep perfect crystal, and it was shown that the 
reflexion is practically perfect when the glancing angle (lifters 
from t~ by less than q/kacosO~ where 9=~NfXacosec0 is 
the coefficient of reflexion for u single plane (a quantity of 
zero dimensions); while on either side of this band it falls 
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off rather rapidly to zero. Inside the crystal  the trans- 
mitted beam was found to be extinguished at a rate 
depending on the exact angle, the greatest factor being 
e -2qz/a at the central point. Now if we take the numerical 
value which q would have in Bragg's  experiments, using 
rhodium K~ rays and the (1, 0, O) planes of  rock-salt, we 
find that q = 2 x  10 -~ and 2 q / a = 1 4 0 0 0 .  The ordinary ab- 
sorption, measured by depth, is/z cosec 0 = 1 0 0  ; so it is quite 
cle~.r that extinction will be of far greater  importance. 
Moreover, if we suppose the crystal only a thousand layers 
thick we have 2 q z / a = 2 q x l O 0 0 - - - . O ' 4 )  so in even quite a 
thin layer the extinction may be expected to become con- 
siderable, and its influence must be examined. We shall see 
that it cannot be neglected, but that there is a considerable 
modification in the formulm. 

In D. it. the phenomenon was studied for an infinitely broad 
and infinitely deep crystal. The latter condition is to be 
altered, but to give up the infinite breadth would lead to great 
difficulty and we shall therefore retain this condition. I t  
requires7 however, an alteration in the type of observation, for 
an infinite plane will always reflect the rays from some point of 
its surface and so there will be no definite reflecting position. 
We therefore take a fixed crystal and find the total power 
reflected for a point source. 

Take a crystal composed of m planes, and first consider 
its effect on plane waves. The equations of D. ii. p. 678 are 
applicable. They deal with the multiple reflexions in the 
successive planes of the crystal, allowing, of course, for their 
phase relations. The difference equations connecting '_P~, the 
amplitude of the transmitted wave at the r th plane, with S~, 
that  ot the reflected, take the form ~ 

Sr=--@[Tr-.~(--)n(1--h-ikacosO, ?/)St+ 1 ] 
(6.1) 

T,+I---- ( - - )" (1  - h - - i l e a  cos 0 .  u ) T r - - i q  Sr+l f '  

where h=½l~a cosec 0 is the absorption factor for amplitude. 
The form of the solution will differ from that in D. ii., as the 

It has not been possible to retain completely the same notation as 
D. it. The following are the chief differences :-- 

D. ii . . . . . . . . . . .  0 ~ v 

Here . . . . . . . . . .  O-b u 0 ka cos O . u. 

I am afraid that in D. it. ~ was used in two senses ; on p~ 679 it has the 
same meaning as here, but on p. 681 it is the same as u here. 
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end condition now is Sin=0. The solution is found to be 

So= -iq T0](h + ika cos O. u + e coth me) t 

T,~=e eosech me.  To](h + ika cos 8 .  u + e coth me) , '  (6"2) 

where e'Z=q~ +(h+ikacosO.  u) ~ . . . . .  (6"3) 

Now, as we sa% h is very much smaller than q. I f  we 
neglect it altogether we have 

e--v/q2--(kacos/~.u)  2 for [u l<q]kaeosS . ) .  
(6"4) 

and ~ =  i v / ( l ~  cos e .  u ) ~ -  q~ for I u I > q/t'~ eos 

I t  is then easy to verify that for all values of u 

I T~,,I~+ I S01~= I~0j  ~. 

Further, if h is not quite zero, it may be verified that to a 
first approximation 

IT,~F + IS0l ~= I T0l ~ O--2m]O • • (6'5) 

Thus we can always calculate the intensity of the trans- 
mitted beam by reducing the incident by an amount 
corresponding to ordinary absorption and subtracting from 
it the intensity reflected. This will .play an important part 
in the next section, as it gives rise to the secondary 
extinction. 

Now, consider the reflected beam coming from a point 
source. Following the line of argument .of  D. ii., we may 
resolve the spherical wave into plane, and the whole re- 
flexion is given by integrating the plane wave formula over 
all values of u. The exact form of the answer involves such 
matters as the length of the slit in the observing instrmnent, 
but hero it will suffice to find a quantity that is proportional 
to it. This is 

i s01,d=--9~ I T01 ~ d u / I h + i k a c o s O ,  u +ecoth reel ~. 

- ~  - ~  (,~.6) 

The evaluation of the integral seems to be impossible in 
general, but our object can be achieved by taking advantage 
of the smallness of h and using (6"4). But  there is a com- 
plication ; for unless h actually vanishes, e ~ill have a small 
real part in the outer region, and therefore if m is large 
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enough co thme  will  tend  to uni ty .  This will  b r ing  the 
denomina tor  to the f o r m  it had in D. ii., viz. : 

I ika cos 0 .  u -t- i ~/(/ca cos 0 .  u) ~ -  q: I ~. 

B u t  i~ we put  h = 0  before a l lowing m to become large,  the 
cor responding  expression is 

l ika cos 0 . u  + ~ / ( k a  cos 0 .  u)~--q~ cot m , / ( k a  cos 0 .  u)~-- q'~ 5 

The in tegra l  still converges ,  but  to a d i f ferent  value. To 
avoid this difficulty we must  suppose tha t  the  crys ta l  is so 
th in  tha t  mh is s m a l l - - i t  mus t  be less than  abou t  10 ~ layers 
thick.  F o r  such a c rys ta l  the  real  pa r t  of e will not ma t t e r  
and  we m a y  put  h---0" and  write the re la t ions (6"4) s t ra igh t  
into (6"6). In  spite of its unpromis ing  appea rance  the inte-  
g ra l  can bs evalua ted  and leads to the r e m a r k a b l y  simple 
resul t  * 

.f~°l So I~ du =1Tol~ X~a eqos 0 ~ tanh mq. .  (6"7) 

I f  in this we al low m to become infinite the result  is 

ITop'~ q ka cos 0 '  whereas  the t rue  value f rom D.  ii. should be 

, ~ 8  q 
I J J° 3 ] t a c o s 0 ;  so even in this ex t r eme  case the e r ro r  is 

only  18 per  cent.  for t ak ing  h zero before p u t t i n g  m infinite. 
This shows ttmt the approx imat ion  m a y  be expected ~o hold 
for  quite deep c rys ta l s  with considerable accuracy .  

Now take  the same  prob lem .rod work  it out on the 
pr inciples  of § 4. I t  is easi ly found tha t  

So = - iq T o 1 - -  e x p - -  2mika cos 0 .  u 
2ika cos 0 .  u 

which loads to the resul~ 

~ 1 S 0 1 ~ d ~ = l T 0 1  ~ O,r.mq. (6"8) 
q 

k a  c o s  
-oo 

• This result was first discovered by obtaining an expansion in terms 
of raft. The complete proof may be constructed as follows. Write the 
denominator as the~)roduct of two conjugate imaginaries and split it into 
partial fractions, z~exg express it as a complex integral with argument 
e . . . .  necessitating a cut between -I-q in the e-plane. I t  may then be 
proved that the poles of either fraction in the integrand lie entirely on 
one or other side of the path of integration. Hence the path may be 
replaced by a circle at infinity which contributes nothing~ together with 
a ~mall circle round ~= ~ which introduces the hyperbolic tangent. 
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So we may represent the effect of extinction by introducing 
a correction factor 

tanhmq . . . . . . .  (6"9) 
~ q  

and this is quite accurate for crystals not so deep that the 
ordinary absorption would become important, and remains 
fairly good even for those much deeper. 

Now consider a small block limited in breadth as well as 
depth and irradiated by piano waves. The multiple internal 
reflexions will give a complicated system, which will depend 
on the crystal's shape and will be irregular at its surfaces. 
But it seems reasonable.to represent its effec.~ by calculating 
the intensity of reflexion as though it were of infinite area, 
and then selecting from the reflected rays the cross-section 
which has met the actual crystal. Let d be the mean depth, 
then V/d is the area. The cross-section of the rays is there- 
fore (V/d) sin 0, and so the power reflected is 

IS012 (V/d) sin O. 
Then we have 

= - ~'®{ So I ~ (V/d) sin 0 du/eo. E 
~ a o  

If  we put I To 12=g, d=ma, q2=2Qa~ cot 8/x, 
we thus get Eo~ / J=VQ tanh mq/mq, (6'10) 

which shows that on these assumptions the same correction 
factor is applicable in (4"8) as in (6"8). 

Exactly the same process may be applied to the argument 
of § r,. For though there the crystal was not rotating, yet 
the distribution of the blocks was such that there was an 
integration, equivalent in its effects to the u integration 
here. We may thus say that the reflexion of a conglomerate 
at angle (0 + u) is given by 

JVG(u) . . . . . . .  (6"11) 
provided that 

G ( u ) = Q '  dW d m ' W F ( W ,  u,m'), (6"12) 
a ,  

- - o o  

where Q '=  Q tanh mq/mq . . . . .  (6"13) 

In consequence of this (5"6) becomes 

~ ¢o • • • . . 

G(u) du=Q'. (6"14) 
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The extinction factor is perhaps more properly expressed in 
terms of the depth of the block, rather" than the number of 
its planes, because this will be roughly the same in all direc- 
tions and so will give rise to a formula suitable for comparing 
reflexions of different faces of the crystal. Then the 
extinction factor is 

tanh x/2Qd ~ cot ~?/9~ 
x/2Qd 2 cot ~/~ 

- 1 2 Qd ~ cot 9 8 Q~d 'L cot s 8 (6"15) 
3 ~ + 15 x ~ . . . . . .  

Considering the numerical values in Bragg's experiments, 
it appears that for a block two thousand layers thick the 
correction will be about 5 per cent. 

Thus we see that a conglomerate of cryslals of size d will 
give rise to a Q modified by the extinction factor (6"15). 
This modification is the primary extinction, and as we shall 
see it is untouched by Bragg's method of eliminating extinc- 
tion. The secondary extinction arises in considering the 
action of the transmitted beam on the lower blocks. I t  may 
be calculated by allowing for the ordinary absorption of the 
incident beam and in addition subtracting from it the amount 
of the reflexion. As this last depends on Q' the secondary 
extinction will do so too. 

7. Reflexion from a Face. 

Now consider what happens when a beam strikes the face 
of a thick conglomerate at any angle near the angle of 
retlexion. Imagine the conglomerate divided into successive 
layers. In the first layer it will find a few blocks rightly 
placed, and from each of these a ra) will be reflected. In 
§ 6 we saw that extinction would reduce the intensity of the 
transmitted beam by an amaunt equal to the intensity of 
the reflected beam. After traversing the first layer the 
beam will thus be defective in a few patches, where par- 
ticular blocks have been able to extinguish i t ;  but in 
considering the effect of many layers it will be correct to 
average the intensity after traversing each and so treat it as 
uniform for the next. To obtain the power transmitted 
through a single layer, we shall therefore take the power 
reflected by it, subtract it from the incident aud reduce the 
result by an amount given by the ordinary absorption. 

The whole reflexion from a deep crystal results from the 
Phil. Mag. S. 6. Vol. 43. No. 257. May 1922. 3 G 
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multiple reflexions in the successive layers. The multi- 
plicity is of a different type from that of (6"1) because the 
rays are not now coherent. The problem of these multiple 
reflexions would be exceedingly difficult if it were treated 
exactly; for each layer will, on account of diffraction, 
spread out incident parallel rays into a certain range of 
angles and so will continually change the angle at which 
they attack the successive layers. But, if (as assumed 
in § 5) the crystal is so imperfect that diffraction does not 
change the direction of the rays to an extent comparable 
with the scale of variation in the orientations of the blocks, 
then it will be legitimate to regard the reflected rays as 
coining plane parallel off the crystal (at an angle exactly 20 
to the incident beam). In consequence of this it will be 
possible to replace a highly complicated system of integral 
equations by differential equations of a simple type. 

Suppose that a plane incident beam of total power I strikes 
a deep crystal at angle 0 + u  to the face, and let Eu be the 
total power reflected. Let I~(z) and E~,(z) be the powers of 
the incident and reflected beams at a depth z inside the 
crystal. Suppose that the area of face they strike is B, and 
consider the effect of a layer of thickness Sz. The incident 
beam has cross-section B sin (0+u)  and so its intensity i s  
I~(z)/B sin (0+u) .  The power reflected by the volmno B~z 
will, by (6"11), be therefore I,,(z)$z G(u) cosec (0+u) .  The 
incident beam will lose the same amount through extinction, 
while through absorption it will lose I~(z) Sz~ cosec (0 + u). 
In the same way the reflected beam will be partly reflected 
back again. To treat of it we must regard the conglomerate 
upside down--that is, for F(W, l, m) in (5"1) we must write 
F ( W , - - 1 , - - m )  and also for u , - -u .  Thus G(u) will be 
unaltered in form, and the beam E~(z + ~z), which is coming 
outwards through the layer $z, throws an amount 

E (z + G(u) cosec 
back into the incident direction. Corresponding to this 
there is an amount 

E~(z + ~=) ~z {~, + G(,) } cosec ( O -  u) 

absorbed and extinguished. Balancing up the gains and 
losses we arrive at a pair of equations, 

~I ,  (z) _ /~ + G (u) G(u) 
san (0+u) I (z) + sin ( 0 - u )  

(7.1) 
~E~(z) /~+G(u) E~(z) + G(u) I , 
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These equations will be true even when the scaf~ter of the 
blocks varies with the depth in the crystal, but to make 
progress we shall suppose it cons tan t - - tha t  is, G (u) is not a 
function of z~ This makes the equations linear. The end 
conditions are that  I~(z) and E~(z) should vanish for intl- 
nite z. There is no need to give the solution in de ta i l - -  
Eu the value at the surface is what is required. I~ is * 

E,,/I = s!n + 
sin u cos u ~L 

+ o ta , ,  u)}].  (; .2)  
Thef i r s t  factor represents the influence of having a crystal 

face that is not the true reflexion p l a n e ~ w h e t h e r  because 
the surface is covered by a vicinal face or because it has 
been badly ground. For  the layers into which the crystal 
was divided were drawn parallel to the actual face, and if 
this is not the true reflexion face G(u) will be unsymmetrical  
about u = 0 .  Now suppose that  the source and point of 
observation are in terc t /anged-- thls  is the same as observing 
on the other side of the spectrometer.  We must then draw 
the x axis in the other direction, and so shrill obtain a formula 
involving - -u  instead of u. But  if on this side we take 
u ~ = - - u  we shall have 

Er sin (8 + uq  r 
= ; i ,  e cos C4u + 

Thus if we compare together points where the u of one side 
is the same as the u'  of the other, then clearly 

E ' ~ / E ~ = s i n  (O+u)/siu (O--u). 

In  the case of a fa ir ly  perfect vieinal face all the settings 
which give perceptible reflexion will be not far from 
u = a ,  the inclination of the face, and so the ratio of all pairs 
of corresponding powers will be nearly sin (0 + a) /s in  (0- -a) ,  
and therefore the same will be true of the integrated 
reflexion. This factor may also be derived by  simple con- 
sideration of the area of the crystal on which a limited beam 
would fall in the two eases. The difference of the re- 
flexions was originally observed by Sir W. I t .  Bragg  % and 

• lIfutatis mutandis this is substantially the solution obtained by K. W. 
Lamson, Phys. Rev. w,l. xvii. p. 624, by quite a different method. 
It ~ (7"1) are treated as difference equations his exact form is obtained. 

W. H. Bragg, Phil. Mag. re1. xxvii, p. 888 (1914). At first I 
thought my explanation was different from his; but through corre- 
spondence it b~came evident that we were only regarding the matter 
,from differeat points of view. I wish to express my thanks to him for 
his interest in tim matter. 

3 G 2  
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explained by considering the absorption of the emergent 
beams in the two cases. His argmnent leads to the same 
factor. The influence of the vicinal face can be completely 
eliminated by averaging for both sides, and we shall suppose 
this done. " There is then no need to consider the first 
factor in (7"2) at all. 

Bragg's " reflecting power" (which we are here calling 
the integrated reflexion) was defined by him as Eel/I,  where 
the crystal was turned with angular velocity oJ through the 
reflecting angle and E was the total energy obtained, while I 
was the power of the incident beam. His I is the same as 

ours, his E is our Eu du,/co. Sowe have for the integrated 
L /  

reflexion -® 

S ] 
-® + ,v'[~ +G(u)J=--[G(u)J'~(1--cot2~tan~u) >.(7"3) 

I[ G(u) is small compared with/~ for every value of u, then 
neglecting the small terms of the denominator and using 
(6"4) we have p = Q'I21~. 

Apart fl'om the difference between Qr and Q, this is the 
equation used in B.J.B.i .  

If  G(u) is not always small enough to justify this approxi- 
mation, it may still be small enough to admit of expansion 
in powers of G(u)//~. Then we have 

1 ~  ~° 

I y°°G3(u)(~_cot. Otan, u ) du. 

! 
- ~ ,  ~ ;  . . . .  (7"4) 
y G3(u)du--.gsQ 3 

J 
then y2 and g3 will be constants of the crystal. For m ~  
crystals it will be legitimate to neglect the term involving 
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tan ~ u. Then 
Q, Q,-- 5Q,~ 

P = 2~ --g'~ +g~ 4~  ~ 

I(' the third term is neglected this is in the form used by 
Bragg, who calls g.~Qr tile " extinction coefficient." I f  we 
had considered that every incident and every reflected beam 
had only a single roflexion, then we should have had instead 
of (7.2) 

Eo/r = ~G(u)/{ ~ .  G(u) }, 

and this would lead to the same first two terms in (7"5). 
This idea has been used by Sir W. H. Bragg*,  and it is 
clear that there will be a wide region of values in which it 
will be a very good approximation. 

I t  is evident that a knowledge of p by itself is not sufficient 
to determine the value of Q' ; but (7"2) suggests that it may 
be possible to do so by a study of the slmpe of the reflexion 
curve. For if we know E~ for all values of u we may solve 
(7"2) for G (u). ]f  the first factor is omitted, we have 

2~(E,,/I) (7"6) 
G(u) = 1--2(E~/I)  + (1--cot 2 t~ tan ~ u) (E,,/I) 2" 

A quadrature will then lead to Q' by (6"14), and so the 
secondarv extinction is eliminated. 

I t  thus appears theoretically possible to determine Qr from 
observation on a single face. There is, however, a serious 
objection to the method. ]t  is not reasonable to suppose 
that  G(u ) i s  really independent of the depth;  for grinding 
or even cleaving must necessarily act differently on the 
surface-layers and interior, and if G is an unknown function 
of z, the data arc insufficient for a sohation. If,  in spite of this, 
the process should be valid, there would still be the difficulty 
that Q' may differ from Q. The only possibility of deter- 
mining Q would appear to lie in finding Q~ for several 
crystals, of which the blocks were scattered in various 
degrees. I f  then the results all came the same, there 
would be a presumption that primary extinction was not 
present. Of two discordant values the greater is to be 

W. H. Bragg, Phil. Mag. vol. xxvii, p. 881 (1914), and Proc. Loud. 
Phys. Soc. vol. xxxiii, p. 304 (1921). 
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preferred, and it would be expected that  this greater value 
would be associated with a greater scattering among the 
blocks--that is, a broader region of reflexion. 

8. Reflexion through a _Plate. 

To overcome the dimeulty of the unknown extinction 
Bragg sent X-rays through a crystal plate and observed 
the reflexion from the interior planes. In this case the 
equations for the multiple reflexions take quite a different 
form from (7"1). Suppose the crystal cut into layers 
parallel to its faces, the breadth of a layer being Sx, 
Let I~(x) be the power of the incident beam at depth x 
from the front [ace, E~(x) of the reflected beam. Let  
B be the area of the face on which the rays fall. The 
incident beam now makes angle 0 + u  with the normal to B, 
and so the intensity is I~(x)/Beos (0+u) .  The power 
reflected in the volume BSx is L(x)  ~x G(u) sec (0+u)  and 
the incident ray is reduced by an amount 

L(x) ~* { ,  + QO,)} s e e  (O + u). 

Similarly for the reflected rays. 
n O W  a r e  

~ L ( . )  ~, + G(u)  L ( * )  + 
~ x  - c o s ( O + u )  

~E~( . )  ~ + G(u) Eu(x) + - -  
~ x  cos ( O - , , )  

The differential equations 

GO,) E,,(.) ) 
cos (0 - , , j  [ 

~. (8.1) 
G(u) , ~ ,  t 

co , :~+~;)  ~.cx., j 

The end condition is that E~(x)=0 for x = 0 .  I f  E~ i s t h e  
power of the emerging reflected beam, the solution gives 

G(u) sinh rx  ex p x{ I ,+G(u)}eosOeosu  E / l _  
J * -  c o s ( O + , , )  ~- cos ( O + u )  cos ( 0 - , , )  ' 

where (8'2) 

v / G  ~ cos (0 + u) cos (0 - u) + (/* + G) ~ sin ~ 0 sin 2 u 
T . =  

cos (O+u) cos ( e - u )  

Apart from the first factor in (8"2), u only occurs as a 
square. So, as in § 7, an averaging with the reversed 
beam will eliminate the effect of untrue faces. In most 
cases this will be far less important than it was in § 7, 
because the factor occurs as a cosine and in the important 
cases 6 will be fairly small. 
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The exponential and hyperbolic functions can always be 
expanded, and if G(u)/t~ is not large the series will converge 
rapidly. It  will usually be right to omit the terms involving 
sin~u, etc., even though some of these are multiplied by t~ 
and are being compared with others only multiplied by 
G(u). Then 

= G ( u )  see  0 
and 

EJI=e-"~'[x'G(u)--x'~G:(u)+§x'~G3(u)], . (8"3) 

where x r is written for xsect?. As in §7, if the form of 
E~/][ is found experfinentally, it is possible to solve [8"3) 
and so to obtain G(u),and consequently Q', from observation 
of a single crystal. In this case the process will be free 
from the objection raised in § 7 about non-uniform distribu- 
tion of the blocks; for, in reflecting, the surface does not 
now receive preferential treatment over the interior. The 
primary extinction is again untouched by the process. 

Bragg adopted a method which assumed that he could get 
a series of plates of various thicknesses, for all of which the 
distribution of the blocks was the same. He took the inte- 
grated reflexion of them, and found for each set of reflecting 
planes the thickness which gave maximum reflexion and the 
height of the maximum. ~ow by (7"4)the integrated re- 
flexion may be written as i TM 

o= (E./I)d~=~-,~'[Q'~,-g,Q,~,~+~g~Q,~ 3. (s.~) 
- t o  

This has maximum at 
1 q '  4 Q_" 

, . . . . ( 8 . 5 )  

and the value there is 
Q, Q, ,~ -3 
- 3g ) J • ( 8 . 6 )  

Q 

=Q~e [ , + g , Q ' +  (½g2~-]g3)~}. (8"7) 

Thus Bragg's work determines g2Q r, and if the distribution 
of the blocks is the same as in the crystal used for the 
work of § 7, it follows that his correction for secondary 
extinction is correct to the second order, and from the 
magnitudes of the quantities involved it is improbable that 
the third order is sensible. 
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9. Comparison with J~.vperiment. 

There is not a great deal of material suitable for testing 
these formulm, and the resalt of the test is not very satis- 
factory. The first point of comparison is the curve in 
B.J.B. ii. p. 12, which relates the modified absorption 
coefficient to the integrate:l reflexion of a face. The ordi- 
nate of the curve is given by (8"7) and its abscissa by (7"5). 
The linear form of the curve means that 

Q, 
{ h }. (9.1) 

2 I is practically constant, and this it will be, if g~ Q, g3Q I are 
negligible compared with g~/~. Neglecting these terms we find 

292/~ = 5" 6-- (5"41 × 10-4), 

whence g,=484.  This may be best interpreted by assmning 
an error law of distribution as in (5"7). Then 

G(u) =Q'e-~'2/2~2/v~2--~,T and g2= v'~r/2a, 

which gives o'----6 t. This is a good deal smaller than would 
be expected from the general description of the experiments ; 
for it means that all the reflexion should take place within 
less than half a degree, whereas the paper implies that the 
band of reflexion was nearly a degree broad. A part of 
the discrepancy may be due to the neglect of the further 
terms in (9'1), for it is evident that the series is not very 
rapidly convergent, when, as here, g2QV//~ = 5"6/10"7. 

A more detailed, but still less satisfactory, comparison 
may be made with the reflexion curves of B.J.B. ii. p. 13. 
The experiments dealt with the reflexion through two plates 
of the same thickness, of which the surfaces bad been d i f  
fereutly treated. The information about the curves is not 
quite complete, but can be supplied indirectly. I t  is first 
necessary to find the absolute values cf E,dI .  The curves 
are drawn in arbitrary units, and a constant multiplier must 
be obtained for each from the observed value of its integrated 
reflexion (which is the area of the curve), in terms of that of 
a standard plate of the same thickness. The reflexion of the 
standard was calculated (p. 7) from that of a fac% on 
the principle that for a surface the integrated reflexion is 
Qr/2(~+g:Q'), while for a plate of thickness giving maxi- 
mum reflexion it is Q~/e(~+g2Q'). There is thus the 
assumption that the plato has the same scatter as the face. 
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However, from these data it is possible to get the numerical 
values of E J [  for all values of" u. I t  is found that the 
approximation of (8"3) is quite accurate enough, and this 
equation can be solved for G(u). A quadrature then gives 
Q~. The results are rather disappointing, for the curve A 
gives Q'= '0119,  while B gives Q1='0146. Moreover, the 
extinction coefficients g2Q t come out as 1"01 and 0"47 respec- 
tively, whereas values in the neighbourhood of 5 would have 
been expected. The discrepancy is exactly the same as in the 
evaluation of g2 above. There it was found that the region 
of re flexion ought to be narrower for the observed extinc- 
tion, here that the observed reflexion curve implies less 
extinction than is in fact found. I t  is, of course, possible 
that a part of the difference between A and B may he due to 
a difference of their primary extinctions, and the cause 
suggested at the end of § 7 may be another source of 
discrepancy. 

Finally, our results may be applied to some experiments 
due to Davis and Stempel*. Here the perfection of the 
calcite crystal was enorm0us]y greater than in Bragg's rock- 
salt, and all the approximations are hopelessly wrong. If, 
nevertheless, we apply our formulae to the actual curves we 
may obtain something of an idea of the perfection of the 
crystal. The data are directly in terms of E~/I. They 
were dealing with white X-rays, but there was double 
reflexion in two crystals with p~lrallel faces and it is easy 
to see that dispersion will play no part, so that  the formulae 
for monochromatic rays ~re applicable. Taking the most 
extreme case of all, their fig. 6 (p. 617), we use (7"6) to 
obtain G(u) and from this we get a scatter a = 4 m 8 .  Now 
this is only a little greater than what should be the region of 
complete reflexion in a perfect crystal, and the most remark- 
able thing about it is that not more than half the incident 
beam is reflected. This suggests that a part of the breadth 
of the reflexion is really due ~o imperfection. I t  does not 
appear worth while to carry further the comparison with 
these experiments, both because our methods are not 
applicable rigorously, and because there must certainly be 
a great deal of primary extinction in crystals that are so 
nearly perfect, so that they would be of little use in a 
determination of Q. 

* Davis and Stempel, Phys. Rev. vet. xvii. p. 608 (1921). 
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10. The Powder Method. 

From the preceding sections it appears that the pheno- 
menon of primary extinction is likely to make serious 
difficulty in determining Q by the method of reflexion, 
whether from a face or through a plate. The only way to 
ensure its absence is to use crystal~ so sin,all that it  is bound 
to be negligible. For example, from the numerical data 
of § 6, primary extinction would be absent, if the crystals 
were so small as to be just about invisible under a high- 
power microscope. The only practicable way of using such 
is by the powder method of Debye and Hull, which has 
recently been used quantitatively by Sir W. H. Bragg * 
For the sake of completeness we shall apply our processes 
to this, adopting an arrangement which is probably not the 
most convenient, but which could easily be modified. 

We shall suppose a speck of powder is illuminated by rays 
and shall find the total power thrown off into a cone (of half- 
angle 20), corresponding to one particular set of planes, 
Let the volume be V and let it be composed of small blocks, 
the typical block being of volmne W with normal in the 
direction of colatitudo and longitude ~, ¢. Let the distri- 
bution of the blocks be given by 

VF(W) dW sin co do~ d~. (10"1) 

F is nearly the same as in § 5, but is now independent 
of o~, ~b, as the)" are pointed equally in all directions. We 
have then 

j" w F(W) dW = a, 
to is the inclination of'the normal to the incident beam, and 

so co = ~ -- 0 -- u. Multiplying (4"5) by the appropriate 

factors we have for the whole reflected power arising from 
this set of planes 

JN2f-" cos~ 0 .  V f(3)F(W) dW dud,  f(~)dvd~ ~:6)dV dV ' 

exp ik { ( x -  x')(u--v) sin 0 + @ - - y ' ) ¢  cos 0 

cos0}. (10.3) 

Here J is the incident intensity and of the factor cos 2 0 one 
term is due to the sin to, the other to the r2cosOdvd~ 
integration. The integrations follow the same course as 

• W. H. Bragg, Prec. Lend. Phys. Soc. vol. xxxiii, p. 222 (1921). 
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those in § 4. The result is* 
~JV cos 6 .  Q . . . . . .  (10"4) 

This must then be multiplied by a numerical factor given 
by the symmetry of the crystal according to the following 
rule. I f  the crystal has no centre of symmet}y, add one on 
to its symmetry elements. Now constt'uct the " f o r m "  corre- 
sponding to the planes that are being studied. The number 
of its faces is the required numerical factor for 00"4) ;  by 
virtue of the centre of symmetry it must always be ~n even 
number. For example, in rock-salt the form ibr (1, 0, 0) is 
a cube and the factor is 6 ;  for (1, 1, 0) it is a rhombic 
dodecahedron and the factor is 12;  for most planes the 
number is 48. I t  may sometimes be necessary to apply a 
correction for absorption. This will depend on the shape of 
the powder and is a matter of simple geometry. I t  should 
not be necessary to make any allowance for secondary ex- 
tinction, but if it were needed it could be calculated on the 
principles of § § 7, 8. 

11. Discussion of Results. 
The tests in § 9 were rather unsuccessful, but I do not 

think sufficiently so to condemn our theory out of hand. 
Should further tests prove that the discrepancy is real, it 
appears to me that it would throw doubt, not only on my 
own work, buff also on the validity of tim deduction of Q in 
B.J.B. ii. ; for that deduction can only be founded on some 
theory which must be the same as the present one in 
principle. 

I t  is of course possible that a crystal, imperfect by warping 
instead of cracking, should obey a different rule, but I should 
judge this to be very unlikely. For  (5"5)may be used to 
define a function G(u) for such a crystal, though its expres- 
sion in terms of the imperfection will not be so easy as tbr a 
cracked crystal. With  this G(u), the work of 8§ 7, 8 will 
all stand good, and will determine the relation between the 
extinction and the breadth of the reflexion region, without 
touching the question of the meaning of G(u). As to this 
last, it is a most natural conjecture that (5"6) will be true 
for it, in view of the generality which that  equation has 
already been proved to possess, and so will lead to the right 
value for Q. If ,  as appears probable, rock-salt is warped 
rather than cracked, this will have the advantage that 
primary extinction is unlikely to be important,  and so the 

* The expression does not vanish for 0=~r12 on account of the factor 
cosec 20 in Q. 
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interpretation of experiments will be freed from a source of 
error, the amount of which must be very uncertain. 

We therefore conclude that, to establish beyond doubt the 
validity of the work of Bvagg, James, and Bosanquet, it is 
essential that the work of §§ 7, 8 should he verified by tests 
like those of § 9, and if it should be proved correct, then we 
may have great confidence in their results. Failing this 
verification, the theory on which they eliminated the extinc- 
tion is without good foundation and the results must be 
regarded with seine caution. In this ease, it seems to me 
that the most satisfactory way of determining Q is by the 
powder method of § 10. 

Summary. 
The paper is a theoretical inquiry into the possibility of 

deterufining the arrangement of electrons in the atom from 
the intensities of the X-rays scattered by crystals. This 
problem falls into two stages : first from crystal to molecule, 
then [,'ore molecule to electrons--only the first stage is here 
treated. 

Simple formulm have been given by various writers, and 
the process has been carried out experimentally by Bragg, 
James and Bosanquet. They encountered the difficulty of 
"extinction." This extra absorption falsifies the formu]ve, 
but they measured it directly and so obtained a correction. 
This paper is concerned with seeing whether their correction 
was valid. The point of the problem was known to lie in 
the imperfection of crystals. 

After .a general discussion (§§ l, 2, 3), it is shown (§ 4) 
that if a small perfect crystal of any shape is turned through 
the reflecting angle for monochromatic rays, the amount of 
reflexion determines a quantity Q, which is what is required 
for the second stage of the problem. 

The reflexion is worked out (§ 5)for  a conglomerate of 
small blocks of perfect crystal all orientated nearly in the 
same direction, the conglomerate being so thin that absorp- 
tion and extinction can be neglected. 

Extinction--that is, fhe special absorption of rays at the 
reflecting angle--is shown (§ 6) to lead to two effects, 
primary and secondary. The primary diminishes the 
reflexion from a perfect crystal below the amount given 
by the simpler theory. It  levds to a change in the value 
of Q depending on the depth of the crystal, and none of 
the experimental processes eliminate this change. The 
secondary extinction results from. the reduction in the 
strength of the beam t~ansmittod through the crystal. 
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The reflexioll from the face of a deep impert:ect crystal is 
evaluated (§ 7), and it is shown how the secondary extiuc- 
tion may be eliminated. 

The same process for reflexion from the interior planes of 
a plate is worked out (§ 8), and th~ formulae are justified 
whereby Bragg. James, and Bosanquet eliminated the 
extinction--but only the secondary extinction. 

The theoretical results are coml,ared with experiment (§ 9). 
The experimental data are rather inadequate and the agree- 
ment is not very good. 

The corresponding calculations are done for the powder 
method of" observation on crystals (§ 10). 

The paper concludes with a short discussion (§ 11), 
suggesting the need of further tests. 

X(JIII. Scattering and _Dispersion of Lijht. By U. Do[, 
Research Student in the Institute of" Physical and Chemical 
Research, ~bkyo *. 

A UTHORS differ in their opinions as to the mechanism 
of scattering light by a medium through which the 

light travels. Schuster asserts, however, in his 'Theory 
of Light ' (p. 325) that, if a molecule el' the medium may be 
looked upon as a separate source of scattering, the scatte~'ing 
due to it folloa's undeviatedly the celebrated formula 
of Lord Rayleigh, whatever be the theory we adopt, i t  
will not be without interest, for instance, to notice that 
Jakob KunzT, indeed, derived exactly the same formula 
from an elementary theory of scattering of light by small 
dielectric spheres. 

Ever since the electron theory of matter began its 
striding progress, and the well-known dispersion formula 
was deduced by H. A. Lorentz through his electronian 
analysis of atomic constructions, attempts have been made 
to interpret the absorption of light from the electronian 
standpoint of view. Thus, Drude $ and Voigt § attribute 
it ~o the damping of the oscillations of bound electrons 
in the atoms of the absorbing medimn, the damping pro- 
eess being caused by a resisting force proportiomd to 
the velocity of the electrons. They insert consequently 
a term of this damping in the equation of motion of 

* Communicated by the Author. 
1 Phil. Mug. xxxix, p~ 416 (1920). 
+ P. Drude~ JLehrbuch der Optik~ p. 353. 
§ W. Voigt, Magneto- und Electrooptik, p. 10=t. 


