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The first value =0 evidently represents the case of a
uniform flow in which the stream-surface has the same level
throughout, and it is natural to conjecture that the con-
ditional value o=0 given above applies to the case of a
“standing wave” in the canal.

When o==0 3(8 o) =4N(E) =4 . w24,
() becomes gf Yehi=1. . . . . . . (8

0

Thus, if a standing wave is to be maintained in such a
canal the stream velocity at a great distance from the
elevation (compared with the wave dimensions), above and
below it must be such a function of the depth as to satisty
(6) identically.

When the motion is irrotational () gives U?=gh, which
is the ordinary expression for long waves in such a canal.
The method is, however, inadequate for determining whether
the wave is to be produced in an unimpeded canal or by
obstacles placed perpendicularly across the stream.

1t may be noted that the type of motion given by u="Uz/k
cannot satisfy (6), while, on the other band, the motion
represented by u=U(e[h)¢ can satisfy (6), provided the
surface velocity have the value U%=2gh.

LXXVI. Quaternionic Form of Relativity. By L. SILBER-
sTEIN, Ph.D., University Lecturer in Natural Plilosophy,
Rome*.

IT has been remarked by Cayley t, as early as in 1854,
that the rotations in a four-dimensional space may be
effected by means of a pair of quaternions applied, one as
a prefactor and the other as a postfactor, to the quaternion

* Communicated by Dr. G. F. C. Searle, F.R.S,

+ A. Cayley, Phil. Mag. vol, vii. (1854), and Journ. f. reine w. angew.
Mathem.vol. 50 (1855) ; or‘ Papers,’ vol.ii. Cayley limited himself to the
elliptic, ¢. e. real, votations, but the extension to the hyperbolic and para-
bolic cases was an obvious matter. For the whole subsequent literature
of the subject, see the article of E. Study in the Enrcyclopédie d. Se.
Math., tome i. vol. i. fascicule 3, p. 452; Paris and Leipzig, 1908. Seé
also F. Klein and A. Sommerfeld’s work Ueber d. Theorie des Krevsels,
iv. pp. 989-943 ; Leiprig, 1910, It was in fact a general hint at
Relativity made by these authors on p, 942 that, after T had a whole
year fried in vain a great variety of quaternionic operations for
relativistic purposes, suggested to me the choice of the particular

form (1).
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g whose components are the four coordinates of a space-

point, say
g=agb, . « . . . . (D

where in the case of pure rotation a and b must of course be
either unit-quaternions or at least such that T%q.T%=1;
T denoting the tensor.

On the other hand, it is widely known that the so-called
Lorentz-transformation of the wunion of ordinary space
(2, y,2) and time (¢), which is the basis of the modern
theory of Relativity, corresponds precisely to a (hyperbolic)
rotation of the four-dimensional manifoldness (, y, 2, t), or
of what Minkowski called the  world.”

Hence the obvious idea of representing explicitly the
Lorentz-transformation in the quaternionic shape (1),—
which, together with some allied questions, will be the
subject of the present paper.

To solve this simple problem we have only to write down
the well-known relativistic transformation, i. ., the formule
of Einstein, then to develop the triple product in (1) and
to compare the two.

For our purpose it will be most convenient to put
Einstein’s formulze at once in vector form, eliminating thus
the quite unessential choice of the axes of coordinates. ILiet
the vector v==vu denote the uniform velocity of the system
S’ (#, i, #, ') relatively to the system 8 (2, y, 2, t)*. Let
0, O’ be a pair of points in S and &, respectively, which
coincide with one another for t=1'=0. Callr (=ai+4j +z2k)
the vector drawn in S from O as origin, and r’ the corre~
sponding vector in S', drawn from O’ as origin. Then the
transformation in question may be stated as follows:—The
component of ¥’ normal to the velocity v is equal to that
of r, 7. e.

Y —(ru=r—(mu, . . . . .« (%)
whilst the component of v’ taken along the direction of
motion is altered according to the formula

ro=g(rm)—ut], . « . . . (B)
where y=(1—8%"12, 8 =vje<]1, ¢ = velocity of lightt.

* 7 being a unit-vector in the direction of motion of S’ relatively to S
and v thé absolite maghnitude of its velocity.

4 In these and in all following formule (ru), generally (AB), means
the modern scalar product of the vectors A, B, that is to say AB cos
(A, B); hence (AB) is the negative scalar part of the complete
Hamiltonian product, AB :

(AB)=-—SAB.
On the other hand, the modern vector product VAB is identical with
Hamilton’s VAB.
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Finally, the time is transformed according to
~l,'=v'y|:t— %(rv)]

To get the resultant r' take the sum of («) and of (8) x u.
Then write, for the sake of subsequent convenience,

l=uwt, 1=+/=1,
and similarly I'=qect’.

Thus, the relativistic formula will become

r'=r+(y—1) (ra)u+ Byl g
i) oo

quite independent of any system of coordinate-axes. )

Now, to obtain the required quaternionic representation
(1) of the whole transformation (2), let us introduce the
quaternion

g=r+l=r+uwt,. . . . . . (3)
and similarly ¢=r'+l=r'+wt’. . . . . (3)

Then the problem will consist in finding a pair of quaternions
a, b such that

v +U=a(r+1)b,

and will be solved by developing the right side of this
equation.

Having done this, explicitly, and compared with (2), I
found immediately that the quaternions @, b can differ from
one another only by an ordinary scalar factor, and since this
may be distributed equally among a, b (their tensors entering
ouly by the product), we may as well take simply equal a, b,
say, both=Q. Infact, then, the form (1) is much too general
for our purpose. Thus, to spare the reader any superfluous
complication, let us at once seek for

9=Q¢Q - . . . . . (la)

as the quaternionic equivalent of (2).
Denote the unknown vector and scalar parts of Q by w
and s respectively, ¢, e. write

Q=w+s........(4)
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Then, developing the complete preduct of ¢, Q, by (3} and
(4), and by the tundamental rules of Hamilton’s Calculus,

gQ=Vrw +Iw+ st~ (rw) + s,
and similarly
¢ =QqQ=VwVrw—w(rw) + 2slw + s’r —2s(Wr) -+ {s* — u?)!
= (w4 ) —2(e W)W+ 261w + (£~ )25 (xw),
whence, splitting into the vector and scalar parts,
Y=(v'+s)r-2w)w+2slw l o)
I'=(?~w?)l—2s(rw) |

Comparing this with (2), we get at once, as the conditions
to be fulfilled by w, s,

wé+sz=1 ; S2—wf= ; 23w=4/8ry‘.

(6)

Hence w= i\/(l—ry)72, s=+4/(147)/2, where, to satisfy
the third of the conditions (6}, we must take both square
roots with the upper or both with the lower sign ; therefore

Q== I+ 2+u/{T=9)12),

and since in (1 @) the quaternion Q appears twice, the choice
of the + sign becomes indifferent.

Thus, we obtain finally the required quaternionic eapression
of the relativistic transformation.

¢'=QyQ
with Q=\_}_§(\/m+u\/i—:y)’} e (1)

wW=uu.

u bSez'ng a unit vector in the direction of motion of §' relatively
to D.
_ Observe that y=(1—v?/¢*)~12>1, so that the vector of Q
is imaginary, whilst its scalar is real.
The tensor of Qis 1; thus denoting its angle by «, i.e.,
writing
Q=cosatusina=en,, . . . , (7)

we have, by (1.),
cos o= \/(1 +7)/2, sin “=\/(1-—')')7§
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Hence 8

sin 2a=,/1—n’=1By= m
or

2u=arctg(1,ﬂ)=arctg(¢g) e e e e (8)

Now this is precisely the (imaginary) angle of rotation in the
plane t, #* of Minkowski’s four-dimensional world, corre-
sponding to the transformation (2). Hence, by (L.) and (7),
we may say that one half of this rotation is effected by Q
as a prefactor and the other half by the same quaternion as
a postfactor f. This circumstance throws a peculiar light
on each of our ’s.

But what we are mainly concerned with is their union,
which considered as an operator may be written

0=Q[1Q . . . . - . (L

the vacant place being destined for the operand.

We have just seen that this simple operator converts the
quaternion g=r+ct into its relativistic correspondent ¢'.
Our ¢ is equivalent to Minkowski’s * space-time-vector of
the first kind” or to Sommerfeld’s « Vierervektor ” =, y, 2, L.
These authors call by this same name any such and only such
tetrad of scalars (three real and the fourth imaginary) which

transforms in the same way as a, y, z, [,~—adding where

it is necessary the emphasizing epithet “ Weltvector ” {.

* The axis of # coinciding with u, and « itself being our (ru).

t At the first sight it might seem that, the axis of Q being u, this
quaternion turns r round u, t. e in the plane ¥, z normal to u, while
in Minkowski’s representation the rotation is in the plane z, . DBut
this is only an apparent contradiction. In fact,

Qr=cos a ,r-}sin a . Vur--gscalar,

that is to say, Q as a prefactor turns the transversal component of r
round u by the angle +a and stretches its longitudinal component ;
similarly Q as a postfactor, besides stretching the longitudinal component
of r, turns its transversal component round u by the angle —a, thus
undoing the rotatory eflect of the prefactor. Hence, what remains in the
final result is but a stretching of r’s longitudinal component and a
change of / or £, and this amounts precisely to the Minkowskian rotation
in the plane z, ¢

1 H. Minkowski, Die Grundgleichungen fiir d. elektromagn. Vorginge in
bewegten Korpern, Giotting. Nachrichten, 1908; Raum und Zeit, Phystk.
Zeitschrift, vol. x, (1909), also separatim. A. Sommerfeld, Zur
Relativititstheorre,” 1, and ii., dnnalen d. Physik, vol. xxxii,, xxxii. (1910).

See also the admirably clear and beautiful book Das Relatwititsprinzp
by M. Laue (Braunschweig, 1911), where the whole work of Einstein,
Minkowski, and Sommerfeld, together with the author’s own contributions,
will be found fully developed.
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Similarly we could call our ¢ and any covariant quaternion
a “ world-quaternion ” ; but possibly the less pretentious
name physical quaternion will do as well. Also, at least in
the beginning, no further specification of the “kind ™ is
needed.

Thus @=Q[ ]Q, defined by (L), or by (7) and (8), is
what I should like to call the relativistic transformer of any
physical quaternion.

To get the inverse transformer ™', viz. that which turns
¢’ into g, apply to both sides of the equation ¢'=QqQ the
inverse quaternion Q7' as a pre- and a postfactor ; then,
remembering that Q1Q=QQ~"=1, the result will be

g=Q7'y'Q™,
or o '=Q [ JQ7Y,

and since Q is a unit quaternion, its inverse is also its
conjugate, i.e. Hamilton’s KQ, which may be more con-
veniently written Q. ; hence

w_1=Qc[ :(Qc, e e e e (I.b)

where Q, =cosa—usina. Thus, we see that the inverse
transformer is got from the direct simply by changing the
sign of the angle « or by inverting the direction of u~as it
must be.

Observe that, since the product of quaternions is dis-
tributive, the transforiner  has also the distributive property,
i. e., A, B being any quaternions ¥,

Q[A+B]Q=QAQ+QBQ, . . . . (9)

and consequently, if ® be any scalar differentiator, also

Q[23A]QR=0QAQ,

since Q, being constant, is not exposed to ’s action. A gain,
by the associative property of quaternionic produets, the dot
signifying a separator,

A.QBQ=AQ.BQ,

and so on. For our present purpose we scarcely need a full
enumeration of w’s properties.

* I e. generally complete quaternions but also, more especially, pure
scalars or pure vectors, either simple- or bi-vectors, that 1s to say real
or complex. The heavy type (and this.merely to suit the general
custom) shall be henceforth used ouly for pure vectors, both real and
complex.
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In the above we have been concerned with ¢ as an
example, or in fact the very prototype, of a physical
quaternion.  Another example, which will be needed in
the sequel, is the quaternionic equivalent of Sommerfeld’s
¢ Viererdichte,” or Laue’s ¢ Viererstrom,” say

C=p(t+i~p),. L. (10

which we may accordingly call the ecurrent-quaternion.
Here p means the volume-density of electricity and p the
velocity of its motion relatively to the system S. To prove
that C is a physical quaternion, write p=dr/dt, and con-
sequently

«_ dyg
(/*tp J[’ . . . . . . (10 a)
and notice that, the charges of corresponding volumes in S
and 8’ being equal (by a fundamental postulate), dljp is
itself an invariant of the Lorentz-transformation.

The transformer (I. a) may, of course, be applied not only
to quaternionic magnitudes, hut also to operators, as, for
example, to differentiators, which have the structure of a
quaternion. If ) be an operator of this kind, in the system
S, and Q' its relativistic correspondent in &, and if '=QQQ,
we shall say that the operator Q has the character of a
physical quaternion.

As a chiet' example of such an operator, which also will
be needed for what follows, we shall consider here our
quaternionic equivalent of Minkowski’s matrix called by bim
“lor ” to the honour of Lorentz. This will simply be the
Hamiltonian ¥/ plus the scalar differentiator 9/9l. Let us
denote it by D,

_9
=S4V ... (Y

=9/0l+1i9/9z+j0/0y + kd/0+
Comparing this with
g=Il+r=I+ir+jy+ks,
we see at once that the operator D will transform precisely
as ¢ did, i. e.

D=QDQ. . . . . . . (12

Thus D has the character of a physical quaternion.
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To obtain the above representation of the relativistic
formulz (2) we have introduced the quaternion g=1+r.
Now, for this purpose we might as well have used its con-
jugate, 1. e.,

g=l—r,. . . . . . . (3o

and the corresponding g/=0!'—t'*. It may often be con-
venient to recur to ¢; and it is therefore of some interest
to know how it transforms. Now, a glance at (2) suffices
to see that both of these formule remain unchanged if,
having changed the signs of r, 1’ (and leaving [, I’ as before),
we change also the sign of u. Thus it is seen that

. =QqQ, say =wy, . . . . (Lo

where Q.=cosa—usina=e-ou,

Now ¢, has precisely the same office as ¢, that is to say,
(I.) and (I.c) are but two expressions of one and the same
thing, namely, of the Lorentz-transtormation. Hence ¢, and
any quaternien covariant with ¢, is certainly a physical
quaternion as well as ¢ and its covariants.

Thus, the conjugate of a physical quaternion will again
be a physical quaternion. 1f the original transformed as
g, its conjugate will transform as ¢. If A is covariant
with ¢, then A, is covariant with ¢, and wvice versa.
Speaking of a physical quaternion we shall, when neces-
sary, add the explanation cov. ¢ or cov. ¢.. But generally,
for the sake of shortmess, this will be omitted, and any
letters, as A, B, a, b, &c., without the subscript . will be
used to denote quaternions covariant with ¢q. Observe that,
with the above (formal) extension of our origival definition,
two physical quaternions may be either covariant with
one another or not; in the last case we may call them
antivariant, one being cov. ¢, and the other cov. .. Thus,
by the above convention, A, B, or a, b, will denote pairs of
antivariant quaternions, the first in each pair transforming
as ¢, and the second as ¢..

The above transformer o, = Q,[ ]Q., which by (1.%) becomes
simply identical with @', is, of course, distributive, quite in
the same way as w=Q[ ]Q. Thus the sum, or difference, of
two mutually covariant (but not of antivariant) physical
quaternions will again he a physical quaternion.

* It can be proved immediately that (¢.)'=(¢')e. Therefore both
may be written simoply ¢.'.

Notice also that the invariance of ¢'s tensor, T¢'=Tg, which follows
immediately from (L.} (since ) is a unit quaternion), may be written :

9'q = g¢qe.
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The reciprocal of a physical quaternion is also a physieal
quaternion. For we have

a'=a,(Ta)?,

while the tensor Ta of a physical quaternion is aiready
known to be an invariant. Notice that @ and a~' are
mutually antivariant,

Now for the product of physical quaternions. Take any
pair a, b of such quaternions, ~Leave aside a b which trans-
forms in the unmanageable way a’d'=QaQ%Q (a, b being
torn asunder), and pass at once to the product of antivariant
factors, which might perhaps be called the alternating product,
say

L=ab.. . . . . . . (13)

Then L'=Q.2.Q. . QbQ, whence by the associative property,
and remembering that Q.Q=1,

L'=QLQ.. . . . . . (13)

Thus, L is certainly not a physical quaternion of the kind
already considered; but since;it is transformed in such a
simple way and since it has, as will be seen in the sequel, an
almost immediate bearing upon relativistic Electromagnetism,
it deserves to be considered a little more fully. Consider,
then, the conjugate of L. Remember the elementary rule,
by which the conjugate of the product of any number of
quaternions is the product of their conjugates in the reversed
order, ¢. ¢. in our case

Le=ba. . . . « . . . (14)

Now, transforming this, we get in quite the same way as

above
L'=QLQ. . . . . . . (14)
Hence we see that Ql1Q . . . . . . . (L)

is the relativistic transformer of both Li=acb and its conjugate

L.. Similarly,
Q1Qe - . . . . . (ILa

will be the transformer of both R=ab, and its conjugate
R.=ba,. Thus the behaviour of L and R is characteristically
distinet from that of ¢ or of g¢..

Without trying as yet to invent for these kinds of quater-
nions any particular names, let us provisionally call any
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quaternion which is transformed by (IL.) or by (IL.a) an

L-quaternion and an R-quaternion, respectively *.

Now, Q.[ ]Q, being the transformer of bot2 L and L, is
also the transformer of their sum and of their difference,
i. e. also of the scalar and of the vector parts of the quaternion
L separately, say s=SL and A=VL. Now, s being a

scalar, we have
¢ =QusQ=sQ.Q=>5,
i. e. s i3 an invariant. Then
A'=Q.AQ,

and since Q, Q. are unit quaternions, the tensor of A is
another invariant.

Thus, the scalar of any L-quaternion and the tensor of ils
vector arve invariants, while the vector itself is transformed

1nto
VL' =Q[VLIQ. . . . . . (IIL)

Or use the form: L=o{cose+asine), where a is the unit
of A. Then ocose and asine are invariants and con-

sequently also ¢ and ¢, so that another form of the last
theorem will be :—

The tensor and the angle (or argument) of any L-quaternion
are invariants, while its axis is transformed by Q.[ 1Q.
In quite the same way it will be seen that SR is invariant

and VR'=Q[VR]Q, . . . . (IlLa)

or in other words :—

The tensor and the angle of any IR-quaternion are in-
variants, while its axis is transformed by Q[ 1Q..

If we wish to return to the generating factors a. &e., we
can write the above properties :

Sa/b'=8adb. . . . . . . (I3
Va/l'=Q.[VallQ, . . . . . (16)
Sa't, =8ab,. . . . . . (15 @)
Va't!=Q[Val. |Q.. . . . . (16a)

But as a rule it is better to avoid any splitting of quater-
nions, if we are to expect simplicity and other advantages
from the use of quaternionic language.

and similarly

# 7, R, being initials of left, right, may remind us of the position of
that of the two generating factors which (as a; or &) has the subscript ,
1. e. which is cov. ge.
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Now take the product of any number of L-quaternions,
say Ly, Ls, Lj &c.; then we see by (II.) that all the internal
Q’s and Q,’s as it were neutralize one another, and what is
left is only the Q, at the beginning and the Q at the end of
the whole chain. That is to say the product of any number
of L-quaternions is again an L-quaternion. In quite the
same way we see, by (IL. «), that the product of any number of
R-quaternions is again an R-quaternion.

Notice also that, a being any physical quaternion cov. ¢
(not necessarily that implied in L or in R), aL and Ra are
again physical quaternions*®, and so are also La,and a.R,
namely

al, and Racov.q. . . . - (IV)

La, and aRcov.g. . - . (IV.a)
Thus, the alternating product of any number of physical
quaternions (ab.de....... ) furnishes us either an L. or R-

quaternion or dgain (biquaternions covariant with) the primary
physical quaternions, and never anything more .

Oune remark more before leaving this suhject. Suppose
we are given the equation

bX =a,

in which a, b are cov. ¢. What is the relativistic trans-
former of X ? To get it, write the given equation X=0""a
and remember that 5-!is cov. g. Thus the transformer of
X will be the same as for b,a, i. . Q.[ ]Q. In other words,
X will be an L-quaternion,

X=bYcov.L. . . . . . (A7)

This will, of course, be still the case if we have instead of
b the above differential operator D, i. e. :

if DX=a, then Xiscov. L, . . . (V.

or the transformer of X is Q.[ ]JQ. For D has the structure
of ¢, and the entire manipulation with the Q’s is done
precisely as before, since Q, Q,, being constant in space and
time, are not exposed to D’s differentiating action. Similarly
it is seen that

if D,Y=a., then Yiscov. R, . . (V.a)

* Or more exactly biguaternions (in Hamilton's sense of the word)
transtorming like the primary physical quaternions, Cf. p. 808, infra.

+ So much as to the alternating products, And as regards the
products of covariant factors, like ab, I have not, np to the present, been
able to make out any of their possible applications to physical subjects,
and shall therefore not consider them here at all.
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or the transformer of Y is Q[ ]Q.. Here the meaning of
D. is of course. according to (11),

9
=-V.. . . . . . (1
Notice that Xa nd Y may be but are not necessarily full
quaternions ¥ ; they can be, for example, pure vectors, either
real (or ordinary vectors) or complex, i. e. bivectors, it we are
to retain Hamilton’s terminology.

Let us now pass to consider the fundamental electro-
magnetic equations ¢ for the vacuum,” as they ave receutly
called, i. e. the system of differential equations

aalf +pp=c.curl M, divE=p
" . .. (18)
%t—z—c.curlE, div M =0

where E, M are the electric and magnetic vectors of the field,
respectively, p the volume-density of electricity and p the
vectorial velocity of its motion, both p and p being given
functions of space and time.

First, to condense these equations, put together the electric
and the magnetic vectors to make up the electromagnetic
bivector (or the bivector of the field)

F=M—E . ., . . . . (19
and write again I=tct, Both curl and div being distributive,
this will give us instead of the four vector equations (18) the
two bivectorial equations ¥ '

oF 1 .
ra—l‘-l-curlF-"—- ‘("PP 3 divF= —p,
or, using Hamilton’s symbols,
oF

1
5t FVVE=_pp;  SVE=p.

* This has no influence on their transformational peculiarities as
expressed in the above quaternionic form.

¥ The reader will find these equations together with the corresponding
bivectorial form of the density of energy and the Poynting flux in my
paper published in 1907 in the Annalen der Physik, vol. xxii., and (supple-
ment) vol, xxiv. I was then unaware of their possible application to the
present purpose. (The 5 of that paper is the above (F'.)

Phil. Mag. S. 6. Vol. 23. No. 137. May 1912, 3 G
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Now, remembering that VVF+8YF=VF and using the
quaternionic differentiator D, explained by (11), the last two
coalesce at once into the single equation

DF=C, . . . . . . (VL)

in which C is the current-quaternion, as defined by (10).

Thus, the whole system of four equations (18), the funda-
mental equations of the electron theory, are represented by
one quaternionic equation, (VI.).

This condensation is even more complete than in Min-
kowski’s matrix-form, which consists of two equations,
lor f=—s, lor f*=0 (loc. cit., § 12), one for the first pair of
(18) and the other for the second pair, or in Sommerfeld’s
equivalent four-dimensional veector form : ®iv /=P and
Div f*=0 (loc. cit., § 5). Here P is the “ Vierervektor”
corresponding to the current-quaternion C, and f the  Sechs-
ervektor ”’ corresponding to the bivector F, while /* is the
“supplement ”’ (Ergénzung) of f, which is another ““Sechs-
ervektor,” though very nearly related to /. Minkowski’s
f is an alternating matrix of 4x 4 elements. But let us
return to our quaternionic differential equation (VL.).

(s a (given) physical quaternion cov. q. The operator
D has also the structure of g. What is the relativistic
transformer of F? By (V.) we see at once that it is

Q.[1Q

or that F is transformed like a (scalarless) L-quaternion.
Thus, the answer is already contained in (V.). jq.’)ut to see
clearly the true meaning of the process implied in the
relativistic transformation, let us repeat again the whole
reasoning somewhat more explicitly. We have, in the
system 8, as an expression of the laws of electromaguetic
phenomena, the equation

DF=C. . . . . . . . (8

Now, what the Principle of Relativity requires is the same
form of the law in the system &', i. e.

DF=C. . . . ... (%

Suppose also that both of these equations have been fully
confirmed by experience. How are ¥/ and F correlated ?
To adopt language adapted to the general case, use in the
accented law or equation (8') the transformer already
known, i. e. in our present case Q[ ]Q for both D and C;
then it becomes

QDQF =QCQ, or DQF =CQ,
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or, by the non-accented equation (8),
DQF' =DFQ.

Henes, rejecting an additive function of obvious properties,
i. e. requiring that F' shall vanish together with F,

QF'=FQ,
or finally, Q being a unit-quaternion,

F=QFQ, . . . . . (VIL)
which is the required correlation, identical with the above *.
Henceforth we shall have to admnit, in the name of Relativity,
bivectors transforming like this calling them, say, plhysical
bivectors (or in Minkowski’s way, “ world ”’-bivectors). Or
we can make the L-quaternion (of which F is the vector part)
the master, calling it, say, a (left) physical quaternion of the
II. kind, and writing F as its special case

F=VL=Vab. . . . , . (20)

(The supplementary scalar, Sa,b, necessary to convert F into
a full quaternion, would present no difficulties, since it has
been proved to be an invariant.) The short name physical
quaternion might then continue to stand for physical quaternion
of the first kind, of which ¢ is the standard.

But leave aside questions of nomenclature and return to
(VIL). To verify thisshort formula remember that, by (L.),

Q= V{I+y)2+a V(=92 Q= V{1+7)2=uv(1=7)2
and expand the right side of (VIL.). Then
F'=(1—g)(Fuju+yF+B8yVFn, . . (21)
or splitting into the real and imaginary parts and remem-
bering (19),
E=(1~v}{En)u+yE+ByVaM
M=(1-y)Mu)u+yM—LByVuE S " ~ °
* Our quaternionic formula (VII.) resembles entirely Minkowski's

S =A”1fAi

in which A is a matrix of 4X 4 elements, and A1 itsreciprocal ; loc. cit.
§ 11. The reason of this analogy will easily be seen to depend on
the cireumstance that both the product of quaternions and the produet
of matrices have the associative property. DBut at any rate the multipli-
cation by a quaternion, like Q or Q, is actually done in a much rore
simple way than the application of a matrix of 4 x 4 elements.

Observe also that the above analogy does not extend to the trans-
formation of Minkowski’s vectors of the I, kind and our physical quater-
pions ; in faet, here the matrix-form is

s=sA, with s= | 8, 85, 85 5, |,
whereas the quaternionic form is

7=QqQ.

(21a)

<X
@
ro
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Now, these equations give immediately for the components
taken along u (the direction of motion)

E1/=E1 H M1,=M],

and for the two other pairs of rectangular components (the
right-handed system being used)

E)=q(B;— BMa) ; My =o(M,+BE;)
Ey'=y(E+BM,) ; My’ =y(M;—BE,),
which are precisely the well-known transformational formule,.
ohtained for the first time by Rinstein. Thus (VIL.) is
verified.

Again, Q, Q. being unit-quaternions, we see from (VIL)
that, as already has been remarked, the tensor of F is an
nvariant,

TF=TF, . . . . . (VIIL)
which may also be written, more conveniently ¥, FZ=F
Now, by (19), —F!=M?—FE?—2((EM) ; thus we see that
(VIII.) contains both of the well-known invariants of
Minkowski :

M?—E?and (EM). . . . . . (22

Notice that what is called a pure electromagnetic wave is
defined by M?=E#, (EM)=0. Using the above form we can
characterize a pure wave wore simply by {

TF=0, or F=FF=0.

Thus, by (VIIL), a wave which is pure to the S-inhabitants,
is also pure to the 8'-inhabitants. But this example only by
the way.

Instead of the above F, as defined by (19), we may as well
take the complementary bivector

G=M+E} . . . . . (194)

Then we shall get as the quaternionic equivalent of the
electromagnetic equations (18), instead of and in quite the
same way as (VL.),

De=C, . . . . . (VLo

* Remember that, F being a scalarless quaternion, its conjugate is
simply —F.

+ This remark will be found also in my paper of 1907, cited above.

1 G is a complex vector “ conjugate” to F', in the sense of the word
wsed in the Theory of Functions. But to avoid confusion with the
quaternionic notion of conjugate, I do not call it by this name and do
not denote it by Fe.
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where (, is the conjugate current-quaternion p(¢—p/c) and
D, the conjugate differential operator 9/0l—V, as already

explained. . )
We now see, by (V.a), that @ is transformed like an

R-quaternion, 1. e. _
F=QaQ,. . . . . . (VILo)

Again we may write, similarly to (20),
G=VR=Vde.,, . . . . . (20q)

d, ec being a pair of physical quaternions covariant with ¢
and g, respectively. And since G is a physical bivector,
just as much as F, we may again call R=de. a (right)
physical quaternion of the second kind.

Notice that, at least for the time being, we have no need
of both F and G, since we require either F only or G oonly.
(Possibly for the further development of Quaternionic
Relativity the simultaneous use of F, @ may turn out to be
convenient or even necessary.)

As regards the relation of (20a) to (20), observe that
generally we cannot write d=a, e=0 ; in fact, the reader
will easily prove for himself that this would require (EM) =0,
i. e. ELM, and would not, consequently, be sufficiently
general. The only essential thing here is that in (20)
it is the first and in (20 @) the second factor which has the
subseript ¢. This is shown also by the symbols L (left),
R (right).

Let us return to the quaternionic differential equation for
the vacuum, in its first form, i. e.

DF=C. . . . . . . (VL)

o . P L d?
Remember that DD,=(TD)*= 35+ 5 +35t3p
is the four-dimensional Laplacian, or Cauchy’s (1,
PD.=g . . . . . . (IX)

Hence, if ® be an auxiliary quaternion and if we put
F=—VD.® (since F is scalarless), or more simply if we
write

=-D® . . . . . . (X)

demanding at the same time that

SDb=0, . . . . . . (XL)
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then we get at once from (VI.)
Oo®=-¢ . . . . . (XIL)

which is the well-known equation, obtained by Sommerfeld
for his « Viererpotential.” ~ But here, I daresay, it follows
from (VL) more immediately, than by the use of four-
dimensional divergences and curls or ** Rotations.” )

The above P, which may be called the potential-quaternion,
is easily proved to be a physical quaternion, namely, cov. ¢.
For by its definition, (X.), and remembering that F'is cov. L,
we have immediately

& cov. D, Feov. DF cov. DL,
i. e, by (IV.), ®cov.¢,—q.e.d.*
‘Writing the potential-quaternion
D=ip+A, . . . . - . (23)
where ¢ is a real scalar and A a real vector, it is seen at once

that ¢ is the ordinary ““scalar potential ” and A the ordinary
“vyector potential.” ~ In fact, developing (X.) we have

F=V7A— aa_? +iVp=M—E,

whence the usual formule
M=VA=curl A,
104
E=—Vé- 5t
Also the condition (X1.) is expanded immediately into the
usuval equation

104 giva=
E gi‘-*'dlvA-—-O.

Finally, notice that the “ equation of continuity,” as it is
commonly éalled, i. e.
op , 3 -
3¢ +div (pp) =0,
assumes the quaternionic form

SDcC Z:O; . . . . . (XIII.)

The scalar of D, is, in fact, the same thing as Sommerfeld’s
four-dimensional divergence Div.
Or we may write, equivalently,

SDC=0. . . . . . (XIIIa)

* This is seen even more immediately from (XIL). Fot, since
O =(TD)? is an invariant, ¢ is transformed like C and, consequently,
like ¢.
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We know already that the electromagnetic bivector F is a
(scalarless) L-quaternion. Hence, by (IV.), if we multiply
it, on the left side, by any physical quaternion cov. ¢, the
resulting product will again be transformed like ¢. Now,
the current-quaternion C being precisely such a quaternion,
consider the prodact

P=Cr,. . . . . . . (29

which, by the above, will again be transformed by Q[ ]Q.
Develop it, by (10) and (19) ; then

P=,,{.M+E+ 01 pM— %pE}

or, remembering that the full product AB is VAB— (AB),
P=P.+LPM, « e & s e e (25)

where P,, P, are the quaternions

P,=p{g(pE)+E+01me}. . . (250)

Pm=p{£(pM)+M—%VpE}.. . (25m)

The vector of P, is the well-known ponderomotive force, per
unit volume, and the scalar of P, is /¢ times the activity of
this force, while P,, is the magnetic analogue of P,. Notice
that the whole P, (25), though having with ¢ the transformer
Q[ ]Q in common, has not the structure of the standard ¢,
inasmuch as it is a full biquaternion *. (And how each of
its constituents, P., P,,, which kave the structure of g, are
transformed, we do not as yet know,—though we shall know
in a moment.)

Similarly, the complementary electromagnetic bivector G
being a (scalarless) R-quaternion, multiply it on the right
side by C. Then the product GC will, by (IV.), again be
transformed by Q[ ]Q, 7. e. again like . Develop it ; then,
by (10) and (19a),

GC=p{tM+01Mp—E+léEp },

and this is precisely, with the same meanings of P, and P,
as above, equal to

GC=—P,+Pu. . . . . . (26)

This again is a full biquaternion.

# In Hamiltow's, of course, and not in Clifford’s meaning of the word.
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Now, both biquaternions, P = (F and GC being transformed
by the same Q[ ]Q, this will also be the transformer of their
sum, and of their ditference, i. e., by (25) and (26), of P,
and of P,.

Thus we see that not only P but also its constituents P,
and Py, taken separately, are cov. ¢ ; and since each of them
has also the structure of ¢ *, both P, and P, are physical
quaternions, cov. g.

They are given explicitly by (25¢), (25m), and may, by the
above, be written also

_1f
P,_,_ﬂon'-eo} C e (2T

an=--:;{CF+GC}. L .. @Tm)

Tt is true that (at least on the ground of the fundamental
electronic equations) only P, has an immediate physical
meaning, and not P,. But this does not seem to me a dis-
advantage. On the contrary ; since our stock of physical
quaternions, as the reader will certainly have observed, is as
yet not very big, it may be better to have one more.

P, corresponds to the “ Viererkraft”” ¥ and might conse-
quently be called here the force-quaternion. Ithasa dynamic
vector and an energetic scalar, as observed above. As to
P,, it is of no importance to give it (at least for the
“vacuum”) any special name. On the other hand, the
whole P, which may possibly turn out to be more convenient
for the quaternionic treatment of Relativity, might be called
the dynamical § biquaternion, and be looked on as the standard
of physical biquaternions, in the same manner as ¢, F have
been the standards of physical quaternions and of physical
bivectors, respectively §.

Now, using the quaternionic differential equation (VL.),or
C=DF, the formula (27 ¢) for P, may be written

2P.=DF.F-G.DF, . . . . (28)
and similarly (27 m) for P,, the dot being a separator, as

* Namely an imaginary scalar and a real vector.

1 See Laue, loc, cit., § 15.

I Notwithstanding that it is partially energetie.

§ It is worth*noticirrg again that ¥ ( plus an invariant and consequently
unessential scalar) and P may be regarded as alternating products of 2
and of 3 physical quaternions, respectively. From this standpoint ¢, F,
P and their respective companions might be considered as quaternionic
entities of the 1st, 2nd, and 3rd degree, respectively,
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regards the differentiating action of D. In (28) the force-
quaternion P, is immediately expressed by the electro-
magnetic bivector F and its complementary G. Thus, the
formula (28) is adapted for showing the properties of the
Maxwellian stress and of the electromagnetic momentum
along with the flux and the density of energy, in corre-
spondence to the equivalent formula of Minkowski’s four-
dimensional system.

But, since we already know everything about the be-
haviour of each constituent of P, i. e. of P,, P,, we may
dismiss them altogether and use more conveniently the full
dynamical biquaternion P, as defined by (24). Thus, using
again the equation (VI.), we shall have, more simply,

P=D[F.F], . . . . (XIV)

where the purpose of the brackets is only to emphasize the
circumstance that F . F plays the part of a dyad. This will
lead us to the quaternionic treatment of questions regarding
stress, and localization and flux of energy:

But these fundamental dynamical questions will best be
postponed and reserved for a future publication, in which
also the quaternionic trealment of the electrodynamics of
ponderable bodies and of some other relativistic subjects will
be given.

November, 1911.

LXXVII. On the Propagation of Periodic Fther
- Disturbance. By ANDREW STEPHENSON *.

1. SINCE the Rontgen rays do not exhibit refraction, the

velocity of transmission of swther disturbance through
a medium depends only upon forced oscillations set up within
the molecule, the @ther being otherwise unaffected by the
presence of the material particles .

2. If the wethber is treated as an elastic solid the presence
of resonators in the case of periodic disturbance is equi-
valent to a change in the density, so that a material non-
crystalline medium and the sther differ optically only in
density.

* Communicated by the Author,

+ As a deduetion it may be noted that any deviation from the
(p*—1)/D formula for the refraction of a compound or mixture, derived
from the atomic refraction equivalents, is the result of deformation of

the atoms, or of interatomic vibration, and caunot be subject to any
general ‘law.’



