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The firs~ value a = 0  evidently represents the case of a 
uniform flow in which the stream-surface has the same level 
throughout,  and it is natural to conjecture that the con- 
ditional value a = 0  given above applies t,o the case of a 
" s t and ing  w a v e "  in the canal. 

When o - - 0  ~(~, a ) =  4X(~') = 4 .  u:j2jh. 

(/z) becomes g dz[u'= l .  . . (0) 

Thus, if  a standing wave is to be maintained in such a 
canal the stream velocity at a great  distance from the 
elevation (compared with the wave dimensions), above and 
below it must be such a function of the depth as to satisfy 
(0) identically. 

When the motion is irrotational (0) gives Ue=gh, which 
is the ordinary expression for long waves in such a canal. 
The method is, however, inadequate for determining whether  
the wave is to be produced in an unimpeded canal or by 
obstacles placed perpendicularly across the stream. 

I t  may be noted that  the type of motion given by u = U z / h  
cannot satisfy (/9), while, on the other hand, the motion 
represented by u-~V(z/h)�88 can satisfy (8), provided the 
surface velocity have the value UU=2gh. 

L X X V I .  Quaternlonlc f o r m  of Relativity. By  L. SILBga- 
STETS, P h . D ,  U,  iverslty Lecturer in _~'atural _Philoso2h?/, 
Re m e % 

I T has been remarked by Cayley t ,  as early as in 1854, 
that  the rotations in a four-dimensional space may be 

effected by means of a pair of quaternions applied, one as 
a prefaetor and the other as a post[actor,  to the quaternion 

* Communicated by Dr. G. F. (3. Searle, F.R.S. 
t A. Cayley, Phil. Mug. vol. vii., (1854), and ,[ourn.f. rei~e u. a~ffew. 

Mathem. vol. 50 (1855) ; or ' Papers, vol. it. Caylev limited himself to the 
elliptic, L e. real, rotations, but the extension to the hyperbolic and para- 
bolic cases was an obvious matter. For the whole subsequent literature 
of the subject, see the article of E. Study in the l~ncyclopddie d. Sc. 
~la~h., tome i. vol. i. fascicule 3, p. 452 ; Paris and Leipzig, 1908. see 
also F. Klein and A. Sommerfeld's work Ueber d. T]~eorie des .hS"eisels, 
iv. pp. 9~-943;  Leipzig, 1910. I t  was in fact a general hint at 
Relativity made by tt~ese authors on p. 942 that, after I had a whole 
year tried in vain a great variety of quaternionic operations fi~r 
relativistic purposes, suggested to me the choice of tile particular 
form (1). 
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q whose components are the four coordinates of a space- 
poiat, say 

q'=a b, . . . . . . .  (1) 
where in the case of pure rotation a and b must of course be 
either unit-quaternions or at least such that T~a. ' ]~%=l ; 
T denoting the tensor. 

On the other hand, it  is widely known that the so-called 
Lorentz-transformation of the union of ordinary space 
(x, y ,z )  and time (t), which is the basis of the modern 
theory of Relativity, corresponds precisely to a (hyperbolic) 
rotation of the four-dimensional maniibldness (x, y, z, t), or 
of what Minkowski called the "world ."  

Hence the obvious idea of representing explicitly the 
Lorentz-transformation in the quaternionie shape ( 1 ) , -  
which, together with some allied questions, will be the 
subject of the present paper. 

To solve this simple problem we have only to write down 
the welt-known relativistic transformation, i. e., the formulae 
of Einstein, then to develop the triple product in ( i )  and 
to compare the two. 

For  our purpose i t  will be most convenient to put 
Einstein's formulae at once in vector form, eliminating thus 
the quite unessential choice of the axes of coordinates. Let 
the vector v---vu denote the uniform velocity of the system 
S' (x ~, y~, z t, t') relatively to the system S (x, y, z, t) ~. Let 
O, O r be a pair of points in S and S t, respectively, which 
coincide with one another for t -~t ' --O. Call r ( - -x i+.yj  +zk) 
the vector drawn in S from 0 as origin, and r t the corre- 
sponding vector in S', drawn from 0 ~ as origin. Then the 
transformation in question may be stated as follows :--The 
component of r r normal to the velocity v is equal to that 
of r, i. e. 

. .  

whilst the component of r t taken along the direction of 
motion is altered according to the formula 

r ' u = ~ [ ( r a ) - - v t ] ,  . , . . (/~) 
where ~/----- ( 1 - - ~ )  -~/~, ~ = v / c <  1, c = velocity of light t .  

* 11 being a unit-vector in the direction of motion of S' relatively to S 
and v the absoldte fiaag'nitude of its velocity. 

t In these and in all following formulm (ru), generally (AB), means 
the modern scalar product of the vectors ~., B~ that is to say AB cos 
(A, ]3); hence (A3~) is the negative scalar part of the complete 
Hamiltonlan product~ AB : 

(A~) = --SAB. 
On the other hand, the modern vector product VAB is identical with 
ttamilton's VAB. 
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Finally, the time is transformed according to 

To get the resultant r I take the sum of (~) and of (13) • u. 
Then write, for the sake of subsequent convenience, 

l=tct ,  t = v / L - T ,  

and similarly l'=tct'. 

Thus, the relativistic formulse will become 

r ' - -  " l u  , - - r + ( ~ - - l )  ( ~ ) ~ , + , ~  ~ (2) 
z =~[z-, t~(r~,)] ,  J . . . .  

quite independent of any system of coordinate-axes. 
~ow, to obtain the required quaternionic representation 

(1) of the whole transformation (2), let us introduce the 
quaternion 

q = r + l = r + t c t ,  . . . . . .  (3) 

and similarly q ' = r ' + l ' = r ' + t c t '  . . . . .  (3') 

Then the problem will consist in finding a pair of quaternions 
a, b such that 

r '  4- l' = a(r + l) b, 

and will be solved by developing the right side of this 
equation. 

Having done this, explicitly, and compared with (2), I 
found immediately that the quaternions a, b can differ from 
one another only by an ordinary scalar factor, and since this 
may be distributed equally among a, b (their tensors entering 
only by tile product), we may as well take simply equal a, b, 
say, bo th= Q. In fact, then, the form (1) is much too general 
for our purpose. Thus, to spare the reader any superfluous 
complication, let us at once seek for 

q'--  QqQ . . . .  (1 a) 

as the quaternionie equivalent of (2). 
Denote the unknown vector and scalar parts of Q by w 

and s respectively, i. e. write 

Q = w + s  . . . . . . . .  (4) 
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Then, developing the complete product of q, Q, by (3) and 
(4), and by the thndamental rules of ttamilton's Calculus, 

qQ= Vrw + lw + s r -  (rw) + sl, 

and similarly 

q' = QqQ = Y w V r w -  w (rw) + 2slw § s~r-  2s (wr) + (s ~ - w ~) l 

= (w ~ + s~)r - 2 (rw)w + 2slw + (s 2 -  w : ) l -  2s (rw), 

whence, splitting into the vector and scalar parts, 

r r :  (w 2 + s~)r-- 2 (rw)w + 2slw ~ (5) 
z ' = ( ~ - w b l - 2 s ( r w )  j . . . .  

Comparing this with (2), we get at once, as the conditions 
to be fulfilled by w, s, 

w=~vu. S" (~) 

Hr w= +v/-(i-~,)/2, ~= +C(1+q,)/2, where, to ~a~i~fy 
the third o~the conditions (6), we nmst take both square 
roots with the upper or both with the lower sign ; therefore 

Q= ~(v/(1 § ~)/~+ ~ C ~ ) ,  
and since in (1 a) the qualernion Q appears twice, the choice 
of the • sign becomes indiflbrent. 

Thus, we obtain finally the required quaternionic exTression 
of the relativistic transformation 

q ' = q q q  } 
1 _ _  �9 0 . )  with Q = ~ (vq +~ + ~,/V-- ~), 

u being a unit vector in the direction of motion of S' relatively 
to S. 

Observe that 7--(1--v~/c~) -1;2>1, so that the vector of Q 
is imaginarl/, whilst its scalar is real. 

The tensor of Q is 1 ; thus denoting its angle by a, i.e., 
writing 

Q = c o s a + u s i n a = e  au, . . . . .  (7) 

we have, by (I.), 

co~,=V(~ +~,)~ sin ,,= C( r :~ /2 .  
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sin 2~=~/i-~ ~=,~= ~/i-#i 

2~ ,=arc tg ( t~ )  ~ar~tg 

Now this is precisely the ( imaginary)  angle  of rotation in the 
plane t, x *  of Minkowsk i ' s  tour -d imens iona l  world, corre-  
sponding to the  t ransformat ion  (2).  Her~ce, by ( I . )  and (7),  
we may  say tha t  one halt" of  this ro ta t ion  is effected by  Q 
as a prethc~or and the other  halt '  b r  the same quaternion as 
a post thetor  t .  This c i r c u m s t a n c e ' t h r o w s  a pecul iar  l igh t  
on each of our  Q's. 

But  wha t  we are  main ly  concerned with is their  union,  
which considered as an o p e r a b r  m a y  be wr i t ten  

~ = Q [  ]Q, . . . . . .  0.  a) 

the vacant  place be ing destined for  the operand.  
W e  have  just  seen tha t  this s impIe opera tor  converts  the 

quaternion q = r + t c t  into its re la t ivis t ic  cor respondent  q'. 
Our  q is equiva len t  to Minkowsk i ' s  " space- t ime-vector  of 
the first k i n d "  or to Sommerfe ld ' s  " V ie re rvek to r  " x , / 6  z, ~. 
These authors  call by  this same name  a n y  such and on~y such 
t e t rad  of scalars ( three  real and the four th  imaginary)  which 
t rans forms  in the same way  as x, y, z , / , - - a d d i n g  where  
i~ is necessary  the emphas iz ing  epi thet  " W e l t v e c t o r "  :~. 

The axis o fx  co~nciding with u, and x itself being oar (ru). 
~" At the first sight it might seem that, the axis of Q being u, this 

quaternion ttwns r round u, i.e. in the plane y, z normal to u, while 
in Minkowski's representation the rotatio'n is ]n the plane x, t. But 
this is only an apparent contradiction. In fact, 

Qr =cos a .  r+s in  a .  V~r+sealar,  
that is to say, Q as a prefactor turns t~e transversal component of r 
round u by the angle + a  and stretches its longituclinal component; 
similarly Q .as a postfactor, besides stretching the longitudinal component 
of r, turns ~ts transversal component round u by the angle --a,  thus 
undoing the rotatory effect of tl~s prefsetor. Hence, what remains in the 
final result is but a stretching of r's longitudinal component and a 
change of 1 or t, and this amounts precisely to the Minkowskian rotation 
in the plane x, t. 

:~ H. Minkowski, Die Grundgleiel~unyeu fi ir d. elektromagn. }~orgdt*qe in 
hewegten KSrpern, GStting. Naehriehten, 1908; Raum und Zeit, Pl~ysik. 
Zeitschrift, voI. x. (19091, also separatim. A. Sommerfeld, Zur 
Relativitiitstheor~e," i. and ii., Annalen d. Ptwsik, vol. xxxii., xxxiii. (19.]0). 

See also the admirably clear and beautiful book 1)as 2elat~vitiitsprz~zlp 
by M. Laue (Braunsehweig, 1911), where the whole work of ]Einstein, 
5Iinkowski, and Sommerfeld, togetherwith the author's own contribtitions, 
will be found fitlly developed. 
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Similarly we could call our q and any covariant quaternion 
a " world-quaternion" ; but possibly the less pretentious 
name phgsical quaternlon will do as well. Also, at least in 
tile beginning, no further specification of the " kind " is 
needed. 

Thus , o = q [  ]q ,  dem~ed by (I.), or by (7) and (8), is 
what I should like to call the relativistic tra~zqbrmer of any 
physical quaternion. 

To get the inverse trans[ormer co -I, vlz. thqt which turns 
q~ into q, apply .t~ both sides of the equation q '=QqQ the 
inverse quatermon Q-t  as a pre- and a post[actor ; then, 
remembering that Q-1Q = Q Q - , =  1, the result will be 

q = q - ' r  

o,-'=Q-,[ 

and since Q is a unit quaternlon, its inverse is also its 
conjugate, i.e. Hamilton's KQ, which may be more eon- 
x-eniently written Q~ ; hence 

where Q ~ = e o s = - u s i n a .  Thus, we see that the inverse 
transformer is got from the direet simply by ch'mgi~lg the 
sign of the angle ~ or by inverting the direction of u , ~ a s  it 
mnst be. 

Observe that, since the product of quaternions is dis- 
tributive, the transi:ormer (o has also the di~tribtttive property, 
i. e., A, B being any qnaternions ~, 

QEA + B J Q = Q A Q +  QBQ . . . . .  (9) 

and consequently, if B be any scalar differentiator, also 

Q [ B A ] Q = B Q A Q ,  

since Q, being constant, is not exposed to B's aetion, i~ gain, 
by the associative property of quaternionic products, the dot 
signifying a separator, 

A .  Q B Q = A Q .  BQ, 

and so on. For our present purpose we scarcely need a full 
enumeration of w's properties. 

L e. generally complete quaternions but also, more especially, pure 
sca]ars or pure vectors, either' simple- or bi-veetors, that is to say real 
or complex. The hea-~y tylae (and this.merel)~ to suit the general 
custom) shall be hencetbrth used only for 1ante rcctors~ both real and 
complex. 
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In the above we have been concerned with q as an 
example, or in fact the very prototype, of a physical 
quaternion. Another example, which will be needed in 
the seque]~ is the quaternionic equivalent of Sommerfeld's 
'" Viererdichte, ~' or Laue's " Viererstrom," s;~y 

}4 
which we may accordingly call the eurrenf-quaternion. 
Hero 0 means the volume-density of eleetricit, v and p tho 
velocity of its motion relativel.y to the system S. To provo 
that C is a pl~jsical quater~aon, write p=dr/dt, and con- 
sequently 

' @ 0o, , )  (,=~P (~, . . . . .  

and notice that, the charges of corresponding volumes in S 
�9 rod S' being equal (by a fundamental postulate), dl/p is 
itself' an invariant of the Lorentz-transformation. 

The transformer (~l. a) may, of course, be applied not only 
to quafernimffc magnitudes, hut also to operators, as, for 
example, to differentiators, wlfich have the structure of a 
quaternion. ]f  ~ be an operator of this kind, in the s).stem 
S, and s its relativistic correspondent in S I, and if/Z'-- Q~Q, 
we shall say that the operator i2 has the cl, aracter of a 
physical quaternion. 

As a chief example of such an operator, ~'hich also will 
be needed for what follows, we shall consider hero our 
quaternionlc equivalent of Minkowski's matrix called by him 
" l o t "  to the honour of Lorentz. This will simply be the 
I-Iamiltonian V plus the scalar differentiator })/~l. Let us 
denote it By D, 

1 ) = ~ + v  . . . . . .  (11) 

=~/bz + i~]~* + j~/by + kb/bz. 

Comparing this with 

q=l  + r-=l + ix + jy + kz, 

we see at once that the operator D will transform precisely 
as q did, i, e. 

I) ' .~ QDQ . . . . . . .  ~.12) 

Thus D has the character of a pl,ysical qnaternion. 
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To obtain the above representation of the relativistic 
formulse (2) we have introduced the quaternion q = l + r .  
Now, for this purpose we might as well have used its con- 
jugate,  i. e., 

q~=l- -r  . . . . . . . .  (3a) 

and the corresponding q J = l ' - - r '  * I t  may often be con- 
venient to recur to q: and it is therefore of some interest 
to know how it transforms. Now, a glance at (2) suffices 
to see that both of these formulae remain unchanged if, 
having changed the signs of r, r '  (and leaving l, l' as before), 
we change also the sign of u. Thus it is seen that 

qJ=Q~q,Q,, say=~%q, . . . . ( [ .c)  

where Qc =-cos a -  u sin or= e -~u. 

Now qc has precisely the same office as q, that  is to say, 
(I.)  and (I. c) are b u ( t w o  expressions of one and the same 
thing, namely, of the Lorentz-transformation. Hence q~ and 
any quatern]on covariant with q~ is certainly a physical 
quaternion as well as q and its covariants. 

Thus, the conjugate qf a physical quaternion will ayain 
be a physical quaternlon. I f  the original transformed as 
y, its conjugate will transform as q~. If  A is covariant 
with q, then A~ is covariant with q~, and vice versa. 
Speaking of a physical quaternion we shall, when neces- 
sary, add the explanation coy. q or coy. qr But  generally, 
for the sake of shortness, this will be omitted, and any 
letters, as A, B, a, b, &c., without the subscript ~ will be 
used to denote quaternions eovariant with q. Observe that, 
with the above (formal) extension of our original definition, 
two physical quaternions may be either covariant witll 
one another or not ; in the fast case we may call them 
antivariant, one being eov. q, and the other coy. q~. Thus, 
by the above convention, A, B~ or a, b~ will denote pairs of 
antivariant quaternions, the fi,'st in each pair transforming 
as q, and the second as q~. 

The above transformer to~ =- Q~[ ] Qr which by (I. b) becomes 
simply identical with to -~, is, of course, distributive, quite in 
the same way as r Q[ ] Q. 's the sum, or difference, of 
two ,mutually covariant (but not of antivariant) physic'fl 
quaternions will again be a physical quaternion. 

�9 It can be proved immediately that (qr162 Tl~erefore both 
may be written simply q~'. 

Notice also that the invariance of q's tensor, Tq'=Tq, which follows 
immediately from (I.) (since Q is a unit quaternion), may be written : 

q'q,,' = qq~. 
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The reciprocal of a physical quaternion is also a physical 
quaternion. For we have 

a-'-~a~(Ta) -~, 

while the tensor Ta of a physical quaternion is already 
known to be an invariant: -Notice that a and a- '  are 
nmtually antivariant. 

Now for the product of physical quatcrnions. Take any 
pair a, b of such quaternions. Leave aside a b which trans- 
forms in the unmanageable way a'b'=QaQ2bQ (a, b being 
torn asunder), and pass at once to the product of antivariant 
factors, which might perhaps be called the alternating product, 
say 

L=ac b . . . . . .  (13) 

Then L ' =  QcacQ~. QbQ, whence by the associative property, 
and remembering that QcQ = 1, 

L '=Q~LQ . . . .  (13') 

Thus, L is certainly not a physical quaternion of the kind 
already considered; but since~it is transformed in such a 
simple way and since it has, as will be seen in the sequel, an 
almost immediate bearing upon relativistic Electromagnetism, 
it deserves to be considered a little more fully. Consider, 
then, the conjugate of L. Remember the elementary rule, 
by which the conjugate of the product of any number of 
quaternions is the product of their conjugates in the reversed 
order, i. e. in our case 

L~=boa . . . . . . . .  (14) 

Now, transforming this, we get in quite the same way as 
above 

LJ=QoL,Q . . . . . . .  (14') 

Hence we see that Q~[ ]Q . . . . . . .  (II.) 

is the relativistic transformer of befit L =  a~b and its conjugate 
L;. Similarly, 

Q[ ]Q . . . . . . . .  ( I I . a )  

will be the transformer of both It=ab~ and its co@tgat~ 
tlr162 Thus the behaviour of L and R is characteristically 
distinct from that of q or of q~. 

Without trying as yet to inven~ for these kinds of quater- 
nions any particular names, let us provisionally call any 
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quaternion which is t ransformed by ( I I . )  or by ( I I . a )  an 
L-quaternlon and an R-quaternion, respectively *. 

Now, Qc[ ]Q, being the transformer of botl~ L and L,,, is 
also the transformer of their stun and of their  difference, 
L e. also of the scalar and of the vector parts of the quaternion 
2L separately, say s = S L  and A = V L .  Now, s being a 
scalar, we have 

s,=Q sQ=sQ Q=s, 
i. e. s is an invariant.  Then 

A'=QoAQ, 
and sinee Q, Q~ are unig quaternions, the tensor of A is 
another invariant. 

T]~s, tl~e scalar of  anj/ L-quaternion a~d tlw te~sor of ils 
vector are invariants, while the vector itself is tran~'ormed 
irtto 

V L ' = Q c V V L J Q  . . . . . .  ( I I I . )  

Or use the fern, L =  ~r(eos e + a sin e), where a is the unit  
of A. Then q cose and a s i n  e are invariants and con- 
sequently also o- and e, so that  another form of the last 
theorem will be : -  

Tire tensor amt the angle (or argument) of any L-q~aternion 
are invarlants, wldle its axis is trans/brmed by Q,[ ] Q. 

In  quite the same way it will be seen that SR is invariant 

and V R ' =  Q[VR]  Q~, . . . .  ( I I I .  a) 

or in other words : ~  
The te~sor arm tlle angle of any R-quaternion are i~- 

variants, wldle its axis is transformed l,g Q[ ]Q~. 
I f  we wish to retm'n to the generating factors a~ &c., we 

can write the above properties : 

Sa~tb r = Sa~b . . . . . . .  (15 

gadb'=Q~[Va,bjQ . . . . . .  (1(;) 
and similarly 

Sa 'bJ=Sab . . . . . . .  (15a)  

Ya'b~'=Q[Vab~jQ . . . . . .  (16a)  

But  as a rule it is bet ter  to avoid any splitting of quater- 
nions, if we are to expect simplicity and other advantages 
from the use of quaternionic language. 

Z. R, being initials of left, r,'gat, may remind us of the position of 
tl, at of the two generating factors which (*as a~ or be) has the subscript c~ 
i. e. which is coy. go. 
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Now take the product of any nmnber of L-quaternions, 
say LI, L~, L.~ &c. ; then we see by (II .)  that all the internal 

, , ' . . �9 

Q s and Qc s as it were neutrahze one another, and what is 
left is only the Qc at the beginning and the Q at the end of 
the whole chain. That is to say the product of any number 
o.f L-quaternions is again an L-quate~mion. In quite the 
same way we see, by (II .  a), that the product of an,] number of  
]r is again an R-quaternion. 

Notice also that, a being any physical quaternion coy. q 
(not necessarily that implied in L or in R),  aL and Ra are 
again ph~jsical q~late~'nions *, and so are also La~ and a~R, 
mtmely 

aL and Raeov .  q . . . . .  (IV.) 

Lar and a ~  coy. qc. ( IV.a )  

Thus, the alternatinq product of any number of physical 
quaternions (ab, de .. . . . . .  ) furnishes us either an L-  or R-  
quaternion or dgaln (biquaternions covariant with) the primary 
pltyslcal quaternions, and never anything more t-  

One remark more before leaving this subject. Suppose 
we are given the equation 

bX----a, 

in which a, b are coy. q. Wha t  is the relativistic trans- 
former of X ? To ge~ it, write the given equation X=b-aa  
and remember that b -1 is coy. q.  Thus the transformer of 
X will be the same as for b~a, i. e. Q~[ JQ. In other words, 
X will be an L-quaternion, 

X = b - l a c o v .  L . . . . . .  (17) 

This will, of course, be still the ease if we have instead of 
b the above differential operator D, i. e. : 

if D X = a ,  then X is coy. L, (V.) 

or the transibrmer of X is Qo/ ]Q.  For D has the structure 
of q, and the entire manipulation with the Q's is done 
precisely as before, since Q, Qr being constant in space and 
thne, are not exposed to D's differentiating action. Similarly 
it is seen that 

if D,Y=a~, then Y is coy. R,  (V.a) 

�9 Or more exactly blquaternlons (in Hamilton's sense of the word) 
transforming like the primary physical quaternions. C~f. p. 808, infra. 

"~ So much as to the alternating products. And as regards the 
products of covarlant factors, like a5~ I have not, up to the present, been 
able to make out any of their possible applications to physical subjects, 
and shall therefore not consider them here at all. 
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or the transi'ormor of Y is Q[ ]Q~. Here tho meanin~ o~ 
D, is of course, according to (11), 

- v  . . . . . . .  D =  (Ii') 

Notice that Xa nd Y may be but are not necessarily full 
quaternions* ; they can be, for example, pure vectors, either 
real (or ordinary vectors) or complex, i. e. bicectors, it' we are 
to retain f:[amihon's terminology. 

Let us now pass to consider the fundamental electro- 
magnetic equations " for the vacuum," as they are receutly 
called, i. e. the system of differential equations 

- ~  +pp =e .  curl X, div E = p  

~ = - - c .  curlE, d i v l ~ = 0 / '  ' (18) 
~t j 

where E, X are the electric and magnetic vectors of the field, 
respectively, p the volume-density of electricity and p the 
vectorial velocity of its motion, both p and p being given 
functions of space and time. 

First ,  to condense these equations, put together the electric 
and the magnetic vectors to make up ~ho electromagnetic 
blvector (or the bivector of t/~e fieht) 

F = I ~ - - t E  . . . . . .  (19) 

and write again l=tet ,  Both curl and div being distribut,[ve, 
this will give us instead of the tour vector equations (15) the 
two bivectorial equations ? 

5 F  1 
~ / + o u r l F =  cp p ; div F =  ~tp, 

or, using Hamilton's symbols, 

~+VVF=~op; SVr=~r ~l c 

This has no influence on their transformational peculiarities as 
expressed in the above quaternionic form. 

"~ "['he reader will find these equations together with the eorrespondin~ 
bivectorial form of the density of energy and the 1)oyuting flax in my 
paper published in 1907 in the Annalen der P~ysik, vol. xxii., and (supple- 
ment) vol. ,xxiv. I ~was then unaware of. their ossible application to the 
present purpose. (]?he ,/of that paper is the ~ove tF.) 

t~hil. Meg. S. 6. Vol. 23. No. 137. May 1912. 3 G 
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Now, remembering that V ~ P + S V F = V F  and using the 
quaternionic differentiator D, explained by (11), the last two 
coalesce at once into the single equation 

DF=C,  . . . . . .  (VI.) 

in which C is the current-quaternion, as defined by (10). 
Thus, the whole system of four equations (18), the funda- 

mental equations of the electron theory, are represented by 
o~e quaternionic equation, (VI.). 

This condensation is even more complete than in Min- 
kowski's matrix-form, which consists of two equations, 
lorf= --s, lorf*=O (loc. cir., w 12), one for the first pair of 
(18) and the other for the second pair, or in Sommerfeld's 
equivalent four-dimensional vector form : c~il~f= P and 
~ i v f ~ = 0  (Ice. cir., w 5). Here P is the "Vierervektor" 
corresponding to the current-quaternion C, and f the "Sechs- 
ervektor" corresponding to the bivector F, while f~  is the 
"supplement"  (Ergiinzung) of f, which is another "Sechs- 
ervektor," though very nearly related to f .  Minkowski's 
f is an alternating matrix of 4• 4 elements. But let us 
return to our quaternionie differential equation (VI.). 

C is a (given) physical quaternion coy. q. The operator 
D has also the structure of q. What is the relativistic 
transformer of F ? By (V.) we see at once that it is 

Qo[ JQ, 
or that F is transformed like a (scalarless) L-~uateraion. 
Thus, the answer is already contained in (u But to see 
clearly the true meaning of the process implied in the 
relativistic transformation, let us repeat again the -whole 
reasoning somewhat more explicitly. We have, in the 
system S, as an expression of the laws of eleetrom.~gnetie 
phenomena, the equation 

D v = c  . . . . . . . .  ( s )  

Now, what the Principle of Relativity requires is the same 
form of the law in the system S', i. e. 

D'F '= C' . . . . . . .  (S') 

Suppose also that both of these equations have been fully 
confirmed by experience. I-l_ow are F / and F correlated ? 
To adop~ language adapted to |he general case, use in the 
accented law or equation (S') the transformer already 
known, i. e. in our present case Q[ ]Q for both D and C ; 
then it becomes 

QDQF'=QCQ, or DQ~'=CQ, 
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or, by  the non-accented equation (S), 

D Q F ' = D F Q .  

I-[ence, rejecting an additive function of obvious properties, 
i. e. requiring that F' shall vanish together with F, 

Q F ' = F Q ,  

or finally, Q being a unit-quaternion, 
1~/= QoFQ . . . . . .  ( v i i . )  

which is the required correlation, identical with tile above ~ 
Hencefor th  we shall have to admit, in the name of Relativity,  
bivectors t ransforming like this calling them, say, physical 
bivectors (or in l~inkowski 's  way, " world"-bivec~ors) .  Or 
we can make the L.quate,nion (of which F is the vector part) 
the master, calling it, say, a (left) p@sical quaternion of tile 
I L  kind, and writ ing Y as its special case 

F= VL=Va~b. , (9.0) 

(The supplementary scalar, Sail, necessary to convert  F into 
a full quaternion, would present no difficuI~ies, since it has 
been proved to be all invariant.)  The short name physical 
quaternion migh~ then continue to stand for physical r 
qfthefirst kind, of which q is the standard. 

But  leave aside questions of nomenclature and return to 
( V I I . ) .  To verify this short formula remember  that, by (I . ) ,  

Q= r 
and expand the r ight  side of (VI I . ) .  Then 

F'----- (1 -- 7) (Fu)u + 7F + ~/~7VFu, ('21) 
or splitting into the real and imaginary  parts and remem- 
bering (19), 

(1-7)(Eu)u + 7 +  7Vu r 
O -  v)/ ru)u + v g -  5vV  }" " (21a) 

Our quaternionic formula (VII.) resembles entirely l~Iinkowski's 

in which A is a matrix of 4 • 4 dements, and A ~ 1 its reeiprocal; loc. cir. 
w 11. The reason of this analogy will easily be seen to depend on 
the circumstance that both the product of quaternions and the product 
of matrices have the associative prodosrty. But at any rate the multipli. 
cation by a quaternion, like Q or Qc, is actually done in a much more 
simple way than the application of a matrix of 4 X 4 elements. 

Observe also that the above analogy does not extend to the trans- 
formation of Minkowski's vectors of the I. kind and our physical quater- 
nions ; in fact, here the matrix-form is 

s'=sA, with s~. [ s,  s.., sa, s 4 l, 
whereas the quaternionie form is 

~'=Q~Q. 
3 0 2  
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Now, these equations give immediately for the components 
taken along 11 (the direction of motion) 

E l l=E1  ; Ml t=MI,  

and for the two other pairs of rectangular components (the 
right-handed system being used) 

E : '=7(E .~-  f~M~) ; M2'=7(M~+flE~) 

Ed = 7(Fa +/3Mz) ; Md = ~/(M~--/~E2), 

which are precisely the well-known transformational formulae,. 
obtained for the first time by Einstein. Thus (VII.) is 
verified. 

Again, Q, Qo being unit-quaternions, we see from (VII . )  
that, as already has been remarked, the tensor of F is an 
invariant, 

TF '=TF ,  . . . . .  (VIII . )  

which may also be written, more conveniently*, ~ = F  2. 
Now, by (19), - -F~=M~--E2--2t(EM) ; thus we see ihat~ 
(VIII .)  contains both of the well-known invariants of 
Minkowski : 

M: - -E  ~ and (Eli) . . . . . .  (2"2) 

Notice that what is called a pure electromagnetic wave is 
defined by M:-----E ~, (EK) = 0 .  Using the above form we can 
characterize a pure wave more simply by t 

T F = 0 ,  or F2"-:FF=O. 

Thus, by (VIII . ) ,  a wave which is pure to the S-inhabitants, 
is also pure to the SMnhabitants. But  this example only by 
the way. 

Instead of the above F, as defined by (19), we may as well 
take the complementary blvector 

O=~r  + , Z  ~ . . . . . .  ( 1 9 a )  

Then we shall get as the quaternionic equivalent of the 
electromagnetic equations (18), instead of and in quite the 
same way as (VI.),  

DoQ= C ....... (VI.~) 

* Remember thut~ F being a sealarless quaternion, its conjugate is 
simply - F. 

t This remark will be found also in my paper of 1907, cited above. 
:~ G is a complex vector "conjugate" to F, in the sense of the word 

used in the Theory of Function.~. But to a~'oid confusion with the 
quaternionic notion of conjugate, I do not call it by this name and do 
not denote it by Fr 
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where Cr is the conjugate current-quaternion p(t--p/c) and 
D~ the conjugate differential operator ~]~ l - -V ,  as already 
explained. 

We now see, by (V.a), that G is trans[ormed like an 
R-Tuaternion , i. e. 

c =QaQ . . . . . . .  (vH ) 

Again we may write, similarly to (20),1 

G = V R = V d e o ,  . . . . .  (20a) 

d, eo being a pair oE physical quaternions covariant with 9 
and qc respectively. And since G is a pltusical bivector, 
just as much as F, we may again call R=de~ a (rijht) 
physical q uaternion of  the second kind. 

Notice that, at leas~ for the time being, we have no need 
of both F and G, since we require either F only or 8 only. 
(Possibly for the fm'~her developmeni of Quaternionic 
Relativity the simultaneous use of F, G may turn out to be 
convenient or even necessary.) 

As regards the relation of (20a) to (20), observe thai 
generally we cannot write d=a,  e=b ; in fact, the reader 
will easily prove for himself that this would require (ElW) =0,  
i. e. E J-M, and would not, consequently, be sufficiently 
general. The only essentiM thing here is that in (20) 
it is the first and in (20 a) the second factor which has the 
subscript c. This is shown also by the symbols L (le[t), 
R (right). 

Let us return to the quaternionic differential equation for 
the vacuum, in its first form, i. e. 

Dr=C . . . . . . .  (Vl.) 

Remember that DDo= + + + 

is the four-dimensional Laplaeian, or Cauchy's O ,  

DDc= El . . . . . .  (IX.) 

Hence, if eP be an auxiliary quafernion and if we put 
~ = - - V D ~ p  (since F is scalarless), or more simply if we 
write 

F=--Dr . . . . . .  (X.) 

demanding at the same time that 

SDo~=0,  . . . . . .  (XI.) 
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then we get at once from ( u  
[]  �9 = - C, . . . . .  (X1I . )  

which is the well-known equation, obtained by Sommerfeld 
for his " Viererpotentia]." But here, I daresay, it follows 
from (YI.) more immediately, than by the use of four- 
dimensional divergences axad curls or "Rota t ions ."  

The above q), which may be called thepotential-quatern~on, 
is easily proved to be a phz/sical quaternion, namely, coy. q. 
For by its definition, (X.), and remembering that F is coy. L,  
we have immediately 

r cov. D71F cov. D:F coy. DL,  

i. e., by (IV.), (P coy. q,--q, e. d.* 
Writ ing the potential-quaternion 

r  . . . . . .  (~3) 
where ~ is a real scalar and A a real vector, it is seen at once 
that ~b is the ordinary "scalar potent ia l"  and A the ordinary 
"vector  potential." In fact, developing (X.) we have 

~A 
F - - V V A - -  ~ - / + , S 7 ~ = X - - d ~ ,  

~vhence the usual formulae 
1K = V V A =  curl A, 

~ , = - v ~ -  ~ .  

Also the condition (XI.)  is expanded immediately into the 
usual equat ion 

1 5 ~  
c ~-t + d i v A - - 0 .  

Finally, notice that the " equation of continuity," as it is 
commonly 6alled~ i. e. 

~P + div (ep) = 0 ,  

assumes the quaternionic form 
SD,C~=0 . . . . . .  (XIII . )  

The scalar of D~ is~ in fact, the same thing as Sommerfeld's 
four-dimensional divergence Div, 

Or we may write, equivalently, 
SDCo=0 . . . . . .  (XIIIa . )  

* This is seen even more immediately from (XII.). For, since 
[] =(TD) ~ is an invariant~ r is transformed like C and, consequently, 
like ~. 
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We know already that the electromagnetic bivee~or F is a 
(scalarless) L-quat,ernion. Hence, by (IV.), if we multiply 
it, on the left side, by any physical quaternion coy. q, the 
resulting product will again be transformed like q. Now, 
the cm'rent-quaternion C being precisely such a quaternion, 
consider the product 

P=CY . . . . . . . .  (24) 

which, by the above, will again be transformed by Q[ ] Q. 
Develop it, by (10) and (19) ; then 

or, remembering that the full product AB is V A B -  (AB), 
P = P , + t P ~ ,  . . . . . .  (25) 

where P ,  P,, are the quaternions 

p .f-t 1 VpM} .=oL  _ �9 . 
e) 

(px) + x -  . m) 

The vector of P, is the well-known ponderomotive force, per 
unit volume, and the scalar of Pe is tie times the acth'itj/of 
this force, while P,~ is the magnetic analogue o[ Pe. Notice 
that the whole P, (25), though having with q the transformer 
Q[ ] Q in common, has not the structure of the standard q, 
inasmuch as it is a full biquaternion * (And how each of 
its constituents, Pc, P,n, which have the structure of q, are 
transformed, we do not as ye~ know,--though we shall know 
in a moment.) 

Similarly, the complementary electromagnetic bivector G 
being a (scalarless) _R-quafernion, multiply it on the right 
side by C. Then the product GC will, by (IV.), again be 
transformed by Q[ ]Q, i. e. again like q. Develop it ; then, 
by (10) and (19a), 

and this is precisely, with the same meanings of P, and Pm 
as above, equal to 

G C = - - P e +  tPm. . . (26) 

This again is a full biquaternion. 

* In Hamilton's, of course, and not in Cli~'ord's meaniog of the word. 
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Now, both biquaternions, P ~ CF and GC being transformed 
by the same Q [ ](~, this will also be the transformer of their 
sum, and of their difference, i. e., by (25) and (26), of P~, 
and of P,. 

Thus we see that  not only P but also its constituents P ,  
and P,~, taken separately, are cov. q ; and since each of them 
has also the structure os q *, both P~ and P,, are physical 
quater~ions, coy. q. 

They are given explicitly by (25e), (25m), and may, by tile 
above, be written also 

. . . .  

I t  is true that (at least on the ground of the fundamental 
electronic equat ions)only  P~ has an immediate physical 
meaning, and not P,~. But this does not seem to me a dis- 
advantage. On the contrary;  since our stock o[ physical 
quaternions~ as the reader will certainly have observed, is as 
yet not very big, it  may be better to have one more. 

P, corresponds to the " Viererkraf t"  J" and might conse- 
quently be called here theforce.quaterMon. I t  tlas a dynamic 
vector and an energetic scalar, as observed above. As to 
P,~, it is of no importance to give it (at least for the 
"vacuum") any special name. On the other hand, the 
whole P, which may possibly turn out to be more convenient 
for the quaternionic treatment of Relativity, might be called 
the dynamical :~ biquaternion, and be looked on as the standard 
of physical biquaternions, in the same manner as q, F have 
been the standards of physical quaternions and of physical 
bivectors, respectively w 

Now, using the quaternionic differential equation (VI.), or 
C-=DF, the formula (27 e) for P,  may be written 

2 P , = D Y . F - 6 .  DY, . . . .  (28) 

and similarly (27 m) for P,~, the dot being a separator, as 

* Namely an imaginm T scalar and a real vector. 
"~ See Laue, lee. cir., w 15. 

Notwithstanding that it is partially energetic. 
w It is worth'notSclgg again that F (plus an invariant and consequently 

unessential scalar) and P may be regarded as alternat[nff products of 2 
and of 3 physical quaternions, respectively. From this standpoint q, F, 
P and their~respective companions might be considered as quaternionic 
entities of the 1st, 2nd, and 3rd degree, respectively. 
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regards the differentiating action of D. In (28) the force- 
quaternion P, is iminediately expressed by the electro- 
magnetic bivector le and i~s complementary G. Thus, the 
formula (28) is adapted for showing the properties of the 
Maxwellian stress and of the electromagnetic momentum 
along with the flux and the density of energy, in corre- 
spondence to the equivalent formula of Minkowski's four- 
dimensional system. 

But, since we already know everything about the be- 
haviour of each constituent of P, i. e. of P~, P,~, we may 
dismiss them altogether and use more conveniently the full 
d!/nami6al biquaternion P, as defined by (24). Thus, using 
again the equation (u we shall have, more simply, 

P = D E F . F ] ,  . . . . (XIV.) 

where the purpose of the brackets is only to emphasize the 
circmn.~tance that F .  F plays the part of a dyad. This will 
]e~d us to the quaternionic treatment of questions regarding 
stress, and localization and flux of energy-. 

But  these fundamental dynamical questions will best be 
postponed and reserved for a iuture publication, in which 
also the quaternionlc treatment of the electrodynamics of 
ponderable bodies and of some other relativistic subjects will 
be given. 

November, 1911. 

L X X V I I .  On the Propaqation of_Periodic/Ether 
. _Disturbance. J~7 ANDREW STEPHENSON•. 

1. ~ I N C E  the Rhntgen rays do not exhibit refraction, the 
k_~ velocity of transmission of rather disturbance through 

a medium depends only/upon forced oscillations set up within 
the molecule, the aether being otherwise unaffected by the 
presence of the material particles t .  

2. If  the aether is treated as an elastic solid the presence 
of resonators in the case of periodic disturbance is equi- 
valent to a change in the density, so that a material non- 
crystalline mediuln and the aether differ optically only in 
density. 

* Communicated by the Author. 
t As a deduction it may be noted that any deviation from the 

(t,2--1)/D formula for the refraction of a compound or mixture, derived 
from the atomic refraction equivalents, is the result of deformation of 
the atoms, or of iuteratomic vibration, and cannot be subject to any 
general ' law.' 


