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[ 537 l 

L1. Tlte Dynamical Motions of Charged Particles. By C. G. 
DARWIn, 3[.A., _Fellow and Lecturer of Christ's College, 
Cambridge *. 

1: T H E  work of Bohr t and of Sommerfeld :~ and others 
I has given a new importance to problems connected 

with the orbits of an electron--in particular, to the effect on 
the orbits of the increase o~ mass with velocity. The first 
object of the present paper is to reduce the problem o~ the 
motion of any number el charged particles, moving at high 
velocities in any electric and magnetic field, to a Lagrangian 
form, so that all the well-known theorems of general dyna- 
mics may be made applicable. These principles are then 
applied to an example, the problem of two bodies; and, 
f i ,al ly,  as a matter of some theoretical interest (though it 
was never to be expected that the effect would be per- 
ceptible in practice), these results are applied, according to 
Sommerfeld's quantmn principle, to calculate the small in- 
fluence on the doublets of the hydrogen spectrmn, due to 
the finiteness of mass of the nucleus of the atom. 

The application of the methods of general dynamics to 
stlch problems is by no means new. Thus Sommerfeld 
makes much use el the canonical form in the solution of 
the orbits of a single electron, and much el Bohr's w later 

w o r k  is carried out with the Hamilton-Jacobi partial dif- 
ferential equation. :Now the direct application to sucl~ 
problems of the canonical equations of motion implies a 
knowledge of the momenta corresponding to the various 
generalized coordinates, whereas in the formulation of an~ 
problem it is the velocities which are known and not the 
momenta. An exception occurs in the case of a single 
particle in a fixed electric field. Here the linear momentum 
Is known to be m~,/q' (1-v~/C ~) 11, and the momentum cor- 
responding to any other coordinate can be deduced by 
elementary methods. But even for a single electron a 
magnetic field upsets this rule, and in the case of several 
free electrons it is quite impossible to obtain the momenta 
h priori. In other words, [or a general method of formula- 
tion, the Lagrangian must be found first, before it is possible 
to proceed to the Hamiltonian, and the Lagrangian, of course, 

* Communicated by the Author. 
? N. Bohr, Phil. Mag. ~:ol. xxvi. pp. 1,476, 857 (1913), vol. xx~ii. 

p, 506 (1914), vol. xxix. p. 332 (1915), vol. xxx. I). 394 (1915). 
A. Sommerfeld, Aun. d. I hys. vol. li. p. 1 (1916). 

w N. Bohr, Kgl. Dan. Vtd. Selsk. 1918. 
II v the velocity, C the velocity'of light, m the mass at low velocities, 

Phil. Mag. S. 6. Vol. 39. bTo. 233. Ma~j 1920. 2 N 
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538 Mr. C. G. Darwin on the 

will not have the simple connexion with the kinetic and 
potential energy that it has in ordinary dynamics. 

I+~ appears to me most probable that a great part of the 
theorems of ge,len,l dynamics here given are already known% 
for the work of Sommerfe ld  and the later work of Bohr 
would be naturally based on them. But in the cases dis- 
cussed by these writers the Hamiltonian form can be very 
quickly derived from first principles, and they make no 
mention of any general method of formulation, so that it 
see,ned to me .*.hat it might be worth while to exhibit such a 
method. In developing this we can start either from Least 
Acti(>n or from modified Newtouian equations of motion. 
Least Action was shown by M~lxwell to be applicable to the 
rather, an<t we should therefore only require to prove that 
the electric aud magnetic forces in free space could be made 
ignorable by the addition of' suitable terms fbr the particles. 
But  this method involves distinctly more advanced dyn'tmical 
principles, and so, in spite of its superior elegance, I have 
preferred to proceed by starting from the equations of 
motion, "rod have followed methods similar to those by 
which Lagrange's  equations are introduced in dynamical 
text-books. In this way the problem is kept throughout  as 
a problem of particles, and I hope it will be thereby made 
more accessible to those unfamiliar with the later developments 
of dynamics. 

2. The problem is really one of relativistic dynamics, but 
no direct use will he made of the relativity transfbrmations. 
I f  the mass of each particle is made the proper function of 
its velocity and if the electromagaetic equations are used in 
Lorentz 's  form *, then the ulotions described will be invariant 
for such transformations, and there is no need to go be:yond 
a set of axes fixed in space and a fixed time-scale. This 
saves us from rather complicated considerations about rela- 
tive velocity and acceleration. 

When several particles are free to move, the difficulty of 
the problem lies in the fact that the force exerted by one 
of them on anothe," depends on its position and motion at a 
certain previous tilne. In other words, we have to work 
with retarded potentials, and it will be seen that the effect of 
the retardation is of an orddr that is not negligible. I t  can 
only be calculated by approximation, and so it will be neces- 
sary to limit ourselves to motions where the velocities of the 

* For the general principles of electromagnetic theory here used 
reference may be made to H. A. Lm~entz,' The Theory of Electrons,' 
but I use ordinary electrostatic units and not the tteaviside type. 
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Dynamical Motions of  Charged Particles. 539 

particles are small, though not negligible, fractions of C, 
the velocity of l ight - - tha t  is, we shall expand in inverse 
t)owers of C. That it should be necessary to approximate is 
not surprising, as it is well known that according to the 
classical electromagnetic theory an qccelerating electron 
will radiate, and the consequent dissipation of euergy cannot 
possibly be represented by a Lagrangian form. The radia- 
tion of tt single electron gives a reactive force on it of 

2 e 2 d2v 
amount 3 C ~ dt '2' where v is the velocity vector. Hence 

We must not expect to be able to find a Lagrangian accurate 
beyond the terms in C -~. Though Sommerfeld's orbits are 
worked out without approximation, the neglect of the radiation 
terms ilnplies that they are really only valid to this degree--  
that  is, i[' they are regarded as based on the classical electro- 
magnetic theory. 

Now this raises quite unanswered questions of funda- 
mental physics, for there can be no doubt that radiation does 
l:ot really work in that way at "all. But we have no right to 
claim that the equations with these radiation terms omitted 
will truly describe the motion simply because the radiation 
does not in fact occur; for quite apart from radiation there 
is something wrong with them. This is shown 1)y the spiral 
orbits* which an electron should describe about a heavy 
nucYeus, wl.len its angular momentum is below a certain 
value. These orbits involve an ultimate coalescence of the 
sdectron with the nucleus, and if the theory were rigl~t they 
should be of fairly frequent occurrence, because, whatever 
the initial line of motion of the electron, a low angular 
momentum can always be attained by a sufficiently low 
initial velocity. This result follows whedler the "tccurate or 
the approximate formula is used for the variation of' mass. 
As there can be little doubt that coalescence does not in fact 
~)ccur, it is necessary to invoke some modification of the laws 
of motion to prevent it, and the quantum naturally suggesls 
itself. The question of these orbits in relation with the 
quantum has been discussed by Sommerfeld t to a certain 
(~xtent, though the difficulties are not altogether removed 
:and as in most other applications of the quantum the actual 
physical motion is quite incomprehensible. But, however 
that may be, and whatever assumption is made, the type of 
~)rbit must be quite altered and the validity of our present 
methods destroyed. So it is safer to claim validity for our 

* C. G. Darwbb Phil. Mag. vol. xxv. p. 201 (1913). 
"~ Zoc. cir. 

2 N 2  
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540 Mr. C. G. Darwin on the 

work only in cases where the velocities are and remain fairly 
small fractions of the velocity of' light. In this way the spiral 
orbits will be excluded and the approximation to terms in 
C -~ will represent the facts as closely as is required. This 
limits our method to the problems el spectroscopy, and cuts 
out such interesting questions as the collisions of' high-speed 
/3 particles. 

3. The variability of mass of an electron is usually deduced 
from considerations of' electromagnetic momentum. It  is 

found that the linear momentum is ~-,  where m is tlle mass 

for low velocities, v is the constant velocity, and 
V2 ~ .  

By well-kno_wn argmnents (which, however, cannot quite 
escape critieisln) there follow the equations o[ motion of tho 
type 

d f r o . ]  
,it ~ - , c f  = F, ,  . . . . . .  (2) 

where F~ is the total force on the particls in the x direction. 
The three equations of the type (2) form our starting-point. 

The variability of mass is often expressed by considering 
the quantities m/fl and m/fi 3 as transverse and longitndina! 
mass respectively, but these expressions are in fact deduced 
from (2), and it is useless to put down the more complicated 
equations in terms of them and then retrace the steps of the 
argmnent back to (2). As long as the equations of motion 
are expressed in terms of rate of change of' momentum, 
instead of mass acceleration, there is no need for the con- 
ception of longitndinal mass. 

First consider the problem of ,t single particle of charge et 
and mass ml in any field of electric and magnetic force, 
variable in time and place. Making use el the vector 
notation, let r l ( = x ,  y, z) be the position of the particle, 
Let E and 1~ be the electric and magnetic forces, ~b and h 
the scalar and vector potentials from which they are derived. 
Then 

E =  ~ A ~ - -  C 5t and ~ = c u r l  h, (3) 

and (2) becomes 

d ( m t . ") . , e 1 ~ A  e ~t~(r,j=-e,~,O-e~+~[il, cur lA] , .  (4]) 

where /~i= ~/(1--il:]C:) in tlm same notation. 
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D~/namical Motions of Charged Particles. 541 

Let ql, q.,, q3 be three generalized coordinates defining th~ 
position of the particle. The components of rl are then 

bi'i ~rl for any corn- known functions of the q's and ~ - - ~ q  

ponent of r I and any of the q's. 
brt Take the scalar product of (4) by ~ .  

Then 

and putting in the value of/31, this reduces to ~q  (--mC2B1), 

d ~ ~ the Lagrangian operator. The ex- where ~q = dt ~:t ~q 
pression --mC2r has an obvious connexion with the " worhl 
l ine" of a particle in relativity theory. 

The next term in the equation is 

,'~r~ ~ ~4' 
- - e ,  ~ e l  ~ -  

For the remainder we simplify by writing out one com- 
ponent of the vector product, 

Ira, curl A]~ = (~3A~ . . 3A u ~ -  + y ~ - +  2 ~ )  

_ (~]~ Ax ?)?Ax \ " ~ -  + ~ + ~=~) ,  

dA.~. ~ A~ d A 
and the second factor is d ~  ~t ' where ~ denobs the 

total rate of change of A at the moving particle. Thus 

e, ( b r l  ~A e, . el 

el 

So the equations of nmtion can he derived [rom a Lagrangian 

e 1 . L---- --,,~tC'Z/~l--el~) Jr ~ ( r l ,  A). (5) 
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542 Mr. C. G. Darwin on the 
This expa'esslon is valid for any fields, including explicit 
dependence of ~ and h on the time. In  the case of a con- 
stant magnetic fiehl it is a matter  o~ indifference what 
particular iutegral is taken in finding h from H. For  the 
general value of A is given by the addition of a term AI2 to 
any particular value, where 12 is a function of x, y, z. This 

d/2 
adds on to L a term (ri, A12) = -~/-, and if 12 is any function 

oE x, y, z and t whatever 

d~2 d b12 ]3 d12 = 0, , (6) 
~ q ~ - - d t  ~q ~,1 dt 

so that the extra terms will be without effect on the equations 
o~ motion. 

4. We next find tile Lagrangian for a number of freely 
moving interacting particles. Suppose there is a second one 
of charge e~ and mass m. 2 at r2. This particle is in motion, 
but at first we imagine it outside the dynamic;d system, that 
is we suppose r2 to be known in terms of the time. Then the 
motion of el is governed by (5), where %b and h are to be 
calculated from the position and motion of e2. The potentials 
are given by 

e2 ] t'2 [ 
= ro~.' A=Ur+(i:~,, r.2--rl)/C ret." (7) 

�9 o 9 �9 �9 In the,.o expressmns r - = ( r 2 - r l ) -  and (r~, r ~ - r l ) / r  is the 
component of.velocity o f  e.z away fi'om el. The quantities 
are all to have retarded values. 1~ the effect reaching et at 
time t, loft ez at time t---r, we have 

C~r ~ = ( -  rl + r~ - i~.~r + ~ i~r ~ - . . . ) ~  

= r~'--2~'(r2, r2 - - r , )  + T "~ {r~-" + (r2, r,,-- rl)} - - . . . .  

Solving by approximation we fiml 

r ( ~ , r 2 - r t )  r �9 2 
T--  C (!~ + ~ { r ~  + (r,2, re--r t)+(E. , ,  re-r,)~/):-~}. 

Subst i tu t ing in (7) (8) 

%b=e~+ e~ i2~+(~L,r~--rt) (i'.~, r 2 - r , )~ '~ ,  A =  : 
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Dynamical Motions of Cfiarged Particles. 543 

The solution of A is only carried to this degree, becauso of 
tim further facto," C -~ in L which multiplies it. Substi- 
tuting in (5) we have 

L = - -  7111C2~1 e l  e2 
,p 

ele~ }" i~,3 + (i~, r : - - r l )  - 2 ( i ' 1 ,  i '~') 

2C~ "~ r 
(i% r~--rQ '2 

9 .3 } " 

d ele~ (r2, r2 -  rl) 
Add to this the expression -m~C'~t92+ dt 2C ~ r 

The first t~rm is without effect because it is a pure function 
of tho ~ime, file second by (6). The result is 

ete~ [ (r l ,  i:~) 
r 2C 2 "I ~' 

q (il, r ~ -  rl) (t~, 

Froln its complete symmetry (10) will also give the motion 
of e~ when rl is regarded as known in terms of the time. 
Thus the equations of motion of el are ' ~ r ~ L = 0  and of 
e~ are ~ r ~ L = 0 .  If  q be any generalized eoordinato 
involving both rl and r2 we h'tve 

L) + 

as may be seen by writing out the values of ~r~ and ~r~ 
or directly from tim covariance of the operator ~ for point 
transloVlnations. Thus (10) is the Lagranglan for the 
simultaneous motion of the two particles, which can now 
be regarded as both belonging to the dynamical system. 

The last term in (10) is only accurate to the terms in C -~, 
so for the sake of consistency the first two should only be 
expanded to this degree. They are then of the form 

1 

Thus we have the coml)lete Lagrangian for any number of 
charged particles in :my t~eld in the form : 

1 (i,, 

.~ t_ .~ele2  . ( i ' l ,  ro - - r l )  (1"~, r:--rt) } ) (§ § . + 
t 9"12 7"12 3 " 

(H) 

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 0

9:
51

 0
3 

Ju
ly

 2
01

2 



544: Mr. C. G. Darwin on the 

The double sumlnations are for each pair of particles co ,nted 
oncd only. 

Finally, re-writing (11) without the vector notation 

1 ~ 2 ~ 1 el ele2 
L = ~.~]nlt  i -t- ~-'~ ~-~j2 ?//iv14 - - Z e l q b l  "~" Z ~ viA1 COS Xi - -  Z Z  - -  

'YI2 

~ el(? 2 ~i?~2 + zz ~ ~ (cos ,,~-cos e?cos e;), (1_9) 

where el, ml, vl are tile charge, ma~s, and velocity of thq 
first particle ; 

I]31 and Ai are the scalar and vector potentials at q 
due to external fields ; 

XI is the angle between the liue of motion of el t, nd 
the vector potential ; 

ra~ is tim distance between el at:d e~ ; 
~a~ is the angle between their lines of motion ; 
012 is the aug]e between the line of motion of el and 

the line joining it to e~. 

There is a certain interest in knowing how far wrong the 
approximation (11) will 1)e according to the classical theory. 
This is done by calculating the next terln for T in (8) al~d 
evaluating the corresponding terms in (9). These are then 
substituted in (5). The force on el from e.z is found to bc 
2 ele2... 2 el ... 
3 C=~ r~. Thus the total force on e I is ~ Z e ~ r ~ .  The 

summation will include el, as well as the rest, as this term 
is the reactive force of an electron's radiation on itself. 
From the point of view of generalized coordinates we have 
5"~" 5r  
,~--~ = ~ ,  so that the equations of motion can be put in the 

~ F  1 ~ ... 2 
form ~ v L  -- ~ ,  where F -= ~ ( . , e ~  r~). I f  F is neglected 

altogether, it is easy to see th~lt the ratio of terms omitted to 
those included is of the order v/C. 

5. When the Lagrangian for any problem has been found, 
the transition to the Hamiltoniaff follows in the usual way. 

5 L  
We find the momenta p = ~ and solve for t h e / / s  in terms 

of them. The Halniltonian is then H = Z p ~ / - - L  expressed in 
q's and p's, and the equations of motion have the canonical 

5H ~H 
form p = -  ~q,  ~ =  ~)p. Thus i~ ~,~ b~ the mo,nen~un~ 
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I)ynamical Motions of C]~arged ~Particles. 545 

corresponding to each component of rl, it is easy ~o see thaL 
extending the use of tlle vector notation, we have 

H = X pl2 Pl~" e el EE ele= 

' ~  ele2 ~ (1:1i~ 1}2) '4- <Pl, r2--rl)(P2, r2--rl) } 
-- -- 2(]~m~ ( ri~ r12 3 ' 

All the developments of general dynamics (such as the 
Hamilton-Jacobi partial differential equation etc.) follow at 
once, with the exception of such theorems as depend on the 
kinetic energy having a quadratic form. 

For many problems it will be quicker to work in the 
Lagrangian form direct. When q, does not occur explicitly 

3L 
in L, we have an integral ~ =  p, a constant, and when 

this coordinate is " ignored"  the modified Lagranglan is 
L'=L--p,~/, .  The energy integral will exist when the ex- 
ternal fields ~b and A do not contain the time explicitly and 

is then of the usual form E~ ~L -- L = coast. Applying 

this to (11) we have the integral 

X �89  = + X ~ mx/'r + Xelr + XX e~ e~ 

2~e,e.  ~ (~, i',) (ih"r2--r')(r2" r~--rL) l 
+ - _  2C~ ( ~" + r~ J 

= const. (13) 

The first two terms can be obtained either direct in the 
expanded form, or else from the fact that 

agreeing with the known fact that the kinetic energy of an 
electron is mC~//3. 

6. We now apply these results to the "Problem of Two 
Bodies." Take e l=- -e ,  ml=m and e~=E, m~=M. The 
motion is supposed to take place in a plane and the particles 
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516 Mr. C. G, Darwin on the 

are at (,vl, Yl)(~c2, y2) at any time, Then from (11) we 
]lave 

1 
L = -~,n(,~ ~ + ~3~) + �89 + ~32) + 8Gzm(~ h + ~212)~ 

1 Ee Ee 
+ ~ M(~s +:~?)~+ +. 2C~. ~ 

The first transtbrmation is 

,et= X + M[ / (M+m) ,  .v~= X--m[/ (M.+ m), 

with similar expressions for Yl, Y2. Then X, Y may con- 
ve.iently be called the centroid, though except for low 
velocities it has none of the properties ordinarily associated 
~ith the name. Then 

i Mm . :~+ .~, 
L = ~ (~[ + ,,0 (X~ + Y~) + ~ l~--4S.,l~ (~ ~ / 

+ ~ (M +.~) (X~ +~7~) ~ + _9C~ M +.~ 

1 Mm "";2 
+ 4(:~ ~-i-T,~/x +ir~) l ~ + ~ )  

+ ~ C  ~ (M+m)  ~ 

1 Mm(M ~-Mm+m ~) �9 Ee 
+ ~c ~ (M~-.,)~ (~+~F)~+  ~-v 

Ee ( ~ - ~  
,7C~,~ ~ '  (X +~7~) +($:{ +~Y)~ 

M - -  ~)~ 2 " " " " 

Mm 
(M + ,,~)~ [~(~ + ~) + ($~ + ~)] } . . . . .  (~5) 

As ~ , ~ = $ 2  , -1-~/', X and Y do not occur explicitly in (15), and 
so we have integrals 

bL bL 
b X  = P ~  b ?  - -  Pg . . . . .  (16) 
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Dynamical Motions (f Charged Particles. 547 

For considering quasi-elliptic orbits we natm'ally take 
~x=pv=0 for the integration constants. I f  this is not 

d/one it will found that the modified Lagrangian be 
deduced fi'onl (15), if expressed in polar coordinates, con- 
rains 0 explicitly. Under these conditions the ordinary 
integrtd of angular momentum does not exist. But any 
such case could be wm:ked out easily by taking l)~=:py=O 
and when the complete solution has been found, applying 
a linear relativity transformation to give the system the 
proper motion of translation. Such a transformation would 
be expected to introduce the time explicitly into the formulae. 
So it apt)ears that the angular momentum integral would be 
replaced by a complicated integral involving both 8 and t. 
The study of such an integral mig!~t have an analytical 
interest, but it would appear that in any specified case where 
px does not vanish (and the same applies to motions of the 
particles which are not in a plane) the required results could 
be quickest attained by relativity transfbrmations. 'thus, in 
studying the collision of a moving electron with a stationary, 
we should work out the orbit wittl both moving in such a 
way that p , = p y = 0 ,  and afterwards apply the transformation 
which would reduce one of them initially to rest. 

Taking p~=pv=0 in (16) we have equations of which the 
solution is 

X =  1 ~ , , ~ ( ~ t - , 0  2c~ ~T~,~)  ~ ~ ( & + r  

Ee M - m  
+ ~c~,,~ (~_;#),  E~,'~+ ~(~+~,,~)~. (17) 

Next form L ~ = L - p ~ X - t g Y .  This is given by simply 
omitting X, ~r from (15), since X, itseff of the order C-:, 
occurs everywhere either squared or else multiplied by 
(2, -:. In polar coordinates we then have 

1 Mm 2 1 Mm(M ~ - M m + m  ~)w4 
L ' -  2 ~i +- d~. + 8c ~ (M+,,O ~ 

Ee Ee Mm 24 "~ + ~~J= 
+ - -  + ,  ~ , (18) 

r 2(, ( M + , 0  ~ r 

where w"=i,24 ~,~0~. The integral of angular momentum is 

Mm o-.{ 1 M~--Mm+m 2 ' Ee 1} 
M+mr'O 1 +  2C ~ (M-+ m) ~ w~ + (Y(M+m) ~: = P  

0 9 )  
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5 ~8 Mr. C. G. Dar~'in on tl~e 

and of energy is 

I Mm w2 + 3 Mm(M~--Mm+m ~)w4 _ E e  
2 M + m  8C ~ (M+m) ~ 

Ee Mm 2~ 2+~ '~  
+ 2C 2 (M+m) ~ r = --W. (20) 

The integration constant is taken as --W, so that W may 
be positive for elliptic orbits. Following the usual pro- 
cedure we eliminate the time between (19) and (20), and 
express the orbit in terms o[ /9 and u, where u----1/r. The 
result is an equation o[ the form 

( 'lu~ 2 = a~t 3 -  (1 --fl)u: + 2gu-- k, (21) 
dO] 

Ee E 2 :  M ~ -  M m  + m ~ 
~here a = C2(M+m), /5= C2p~ (M+m)2 , 

Ee Mm [ ' I - - W M 2 - - M m + m ~  
g--  p~ M + ~ \  Mm(M+m) ] '  

k--  
1: M + m \  2C ~ Mm(M-t-m) ]" 

The solution of this equation to the same order of approxi- 
mation as before is 

u = q  §  . . . .  (22) 

where 9~ = 1-- ~ag-- ~ ,  

,j =g  + ~ (  3 : : -  ~.) + ~,/, 

: = : -  k + ~s(~:  - 3 k ) .  ~ ( 2 : : -  ~), 
z=-~.(:-z.). 

Tim last three expressions cannot be much simplified, but 

~E2d 2 
X = I  

2C~1:, 

which is independent of the inasses and depends only on the 
angular momentum. It  is the same as Sommerfeld's result 
and implies an advance of perigee by 7rE%2/C2p 2 each revo- 
lution. The term in l makes a slight increase in the radius 
at the apses, and a decrease at the ends of the latus rectum. 
The solution of the relative orbit is completed by finding the 
time from (19). The formula is complicated and of no special 
interest. 

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 0

9:
51

 0
3 

Ju
ly

 2
01

2 



D.qnamical Motions of Charged Particles. 549 

We next solve for the motion of the ecntroid. As X 
and Y are of the order C -~, it will be sufficient to use large 
order values for ~:, etc. Then changing the independent 
variable to 0 and making use of the known value of w", 
(17) gives 

dX 1 M--m I d~ d~ { dr~ ~, 
dO 2( ,2 ( M + ,02 t - -  2(E~"--W) d0 - -Ee"(}0  + ," dO] 

J 

and this is directly integrable in the form 

I M--'m 
X =  2C ~ (M+m)~(Eeu--2W)~. 

If  a is the half major axis a=q/(q~--s "J) and W=Ee/2a  
and we have 

1 M - m  Ee 
X =  2C~(M+,,)~ a ( r - a )  cos0. (23) 

If the motion of the eentroid is to be valid for many revolu- 
tions, we must replace cos 0 by cos X0. Both are the same 
to the degree of approximation considered, but eosX0 will 
enable the eentroid to keep pace with the motion of the apse. 

From (23) we see that both particles and their eentroid 
always remain collinear with the origin, which is lhe in- 
variable point of the system. Observe that this invariable 
point cannot be calculated by taking the centre of mass of 
the particles as though each had its mass increased separately 
by the effee~ of velocity. Such a process would give X 
prot;ortional to ,c~ or (r--2a)cos 0. 'lhere is in fact no 
simple definition for tim inv:triable point. 

Expressed in polar coordinates the centroid describes the 
c u r v e  

Ee M--m e+cos0 
R =  2C=' ( M + m ) ~ e ' l + e e o s 0  ' (24) 

where e----v/(1--P/q '~) is the eccentricity of the relative orbit 
of lhe particles. I f  M >m, R is negative at perigee, that is 
to ~,ay, the centroid is towards M. At apogee it is an eqtral 
distance towards m. If  the time average of R be taken it is 
found to be 

Ee M--m I 2 (25) 
+ 2( ;'2 (M + m) ~'zE . . . . . .  

that is, on the average it is towards m. As the velocity of 
the lighter particle is the higher, so its mass is the more 
increased by the motion, and so (25) is directly contrary to 
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550 1)Snumlcal ,Tiotions of Charged Particles. 

what would be expected at first sight. Observe thai (24) 
shows that the centrold is at rest at the invariable point in 
the case o~ any circular orbit, as well as for the obvious 
cases M----m and M infinite. 

7. Finally we apply these results to Bohr's theory oE 
spectra. To do so we use SommerFeld's +~ quantum relations, 
so as to determine the integration constants p and W. These 
relations are 

where the integrations are carried round a complete, period 
of the variable in each case. Then 

P 2Tr 

~1~ = | pdO = 2 W) . . . . .  ( 2 6 )  
J 0  

and ~t'h--,)0 (3~" ~ d t ~ .  

IF the values be taken from (18) and (2"2), the last gives 
at'ter some partial integration 

~ 2~ s cos ~b + 41 cos 2~ s ~" sin 2 ~b 
~'h=pX~, o q-+s~Os~-I co~s2~ + a=q +. s cos ~b d~b. 

The evaluation oF the integral is rather long, but 1)y taking 
advantage of the smallness o[' l and ~z it can be reduced to 

q _l+41_q 

~. (q~_  ~):~ ~(~q~-  Gq~.~: ~ 3.~ ') + ~ [ ( / - ( ~ - - . ~ - ) , - ]  _ .  

Putt ing in the values from (22) we have 

~.~- - l + ~ g + ~ B -  ~ v'/~ �9 n'h = 2~'p ~/X: 

This is to be solved For W by using tim values giw'n in (21) 
and (26). The result is 

W 2r ~ Mm 1 
= -  /i ~ (~1 +.,,~) (,, + , , ' )~  

l + ( n + n ' ) ~  + 4 ( M + m ) ~ + ,  i ' 

where p----2~Ee]Ch. The spectrum lines are given by 

�9 Loc. cit. 
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The Specie lteat of Carbo~ l)io.vide aml Steam. 551 

It  was not of course to be anticipated that our work should 
give any effee~ perceptible experimentally for the distribu- 
tion of lines in the hydrogen spectrum, but it is interesting 
to observe what extremely little difference the finite mass of 
the hydrogen nucleus does make. In the first place there 
is the factor M / ( M + m ) i n  the l,rge terms, corresponding 
to a slight alteration in BMmer's constant. This comes out 
of ordinary dynamics and was given by Sommerleld. ]n 
addition, we have a minute shift of the whole position of 

1 Mm 
the composite lines, represented by the term in 

4 (M + raft" 
But the tine structure of each line, which is given by the 
term in ~'[~, remains absolutely unaffected by the mass of 
the nucleus. 

LII. ~'/,e Spe,,!f,' lteat of" Curbo~ Dioxide aml Steam. 
By W. T. DAv~), MIA.* 

1. r|-~ltE specific heat of many gases, notably carbon dioxide 
1 and steam, increases very considerably with tem- 

perature. Ill this paper the suggestion is put forward that 
the specific heat of these gases depends to all appreciable 
extent upon volume aud density as well as temperature. 

2. Some of my experiments upon the emission of radiation 
in gaseous explosions indicate that the intrinsic radiance from 
thicknesses of gas containing the same nmnber and kind of 
radiating lnoleeules does not depend upon tile temperature 
alone, even after correcting tile radiation for absorption. 
This implies that the vibratory energy of the radiating mole- 
cules is not sohly- dependent upon the gas temperature. ] t  
depends upon the volmne and the density of the gas as well t- 
I have suggested~: an explanation of' this in terms of the 
kinetic theory of gases which it will be convenient to repeat 
here briefly. A radiating molecule as it describes its h'ee- 
path loses energy owing to the emission of radiation and 
gains energy owing to the absorption of energy frmn the 
wther. Its vibratory energy will thus increase or decrease 
according as tile absorption is greater or less than the emis- 
sion. During collision with another molecule there ~ill~; be 
a transference of energy between the vibratory and the 
rotational and translational energies, which, as Mr. Jeans 

Communicated by the Author. 
"~ Phil. Trans. A. vol. ccxi. (1.91]) pp. 402 & 406. 
~; Phil. M~tg. Feb. ]913, p. 267, 

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 0

9:
51

 0
3 

Ju
ly

 2
01

2 


