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much greater than that of the jets from other orifices ; in
some cases the sensitiveness of a simple flame jet would
approximate to that of the ear itself.

The flaring appears to depend, for a certain range of
diameters of orifices, almost simply upon the linear rate
of flow at the orifice. For diametersabove this range, flaring
occurs at much lower pressures.

The high temperature in ignited jets leads to increased
viscosity, and this tends to explain the higher pressures then
admissible. For a given pressure and orifice, the rate of
flow is greater for an unignited than for an ignited jet.

In conclusion we wish to thank Professor Wilberforce for
the keen interest which he has shown in these experiments.

George Holt Physics Laboratory,
University of Liverpool,

XXXIII. Non-Newtonian Mechanics, The Mass of a Moving
Body. By Ricaarp C. ToLmaw, Ph.D., Assistant Pro-
Jessor of Physical Chemisiry at the University of Cincinnati *.

N acceptance of the Einstein theory of relativity neces-
sitates a revision of the Newtonian system of mechanics.
In making such a revision itis desirable to retain as many as
possible of the simpler principles of Newtonian mechanics.
Some of the consequences have already been presented T of
a system of mechanics which retains the conservation laws
of mass, energy, and momentum, and defines force as the
rate of inerease of momentum ; but to agree with the
theory of relativity introduces an idea foreign to Newtonian
mechanics by considering that both the mass and velocity
of a body are variable.

From the theory of relativity, Einstein has calculated both
the transverse and the longitudinal accelerations experienced
by a charged body moving in an electromagnetic field. On
the basis of these accelerations, it has been usual to place
the “ transverse mass ”’ of a body moving with the velocity u
as equal to my [ &/ 1—u?/c?, and its “longitudinal ” mass as
equal to m/(1—u?/c?)%, where my is the mass of the body at
rest and ¢ is the velocity of light. If, however, mass is a
quantity to which a conservation law applies, the mass of
a body cannot well be different in different directions; and

* Communicated by the Author. Contribution from the Chemical
Laboratory of the University of Cincinnati. .

t Lewis, Phil. Mag. xvi.p. 705(1808). Lewis & Tolman, Phil. Mag,
xvil. p. 510(1909). Tolman, Phil. Mag. xxi. p. 296 (1911) ; xxii. p. 468
(1911).



376 Prof. R. C. Tolman on

it has been believed by Professor Lewis and the writer, that
in general, without respect to direction, the expression
my [+ 1 —u?/¢* is best suited for THE mass of a moving body.
They have already shown (loe. eit.), from the theory of
relativity and the principles of non-Newtonian mechanics
outlined above, that the consideration of a * transverse
collision” between two moving bodies does lead to this
expression for the mass of a moving body: and the purpose
of the present article is to show that the cousideration of
any type of collision also leads to the same expression.

The immediate occasion of the present article is a recent
attempt made by Mr. Norman Campbell * to show that the

consideration of a “longitudinal collision” does not lead

to the expression mgy/y/1—u?/¢* for the mass of a moving
budy. There appears, however, to be an obvious error in
hisreasoning. Mr. Campbell wishes to find a relation between
the mass of a body and its velocity and yet assumes that
the mass of each of his bodies is the same after collision as
before, aithough the velocities of course have changed (see
equation {A) p. 627). Thus, although endeavouring to
determine how the mass of a body depends on the velocity,
he assumes in formulating his fundamental equation that it
does not depend on the velocity at all 1.

Longitudinal Collision.

Counsider a system of Cartesian coordinates and two bodies
moving in the X direction with the velocities +u and —u in
such a way that o “longitudinal collision” will take place.
Suppose the bodies are elastic and perfectly similar, each
having the mass m, when at rest. On collision the bodies
will evidently come gradually to rest, and then under the
action of the elastic forces developed start up and move
back on their original paths with the respective velocities
—u and + u of the same magnitude as before.

Let us now consider how the collision will appear to an
observer who is moving past the above system of coordinates
with the veloeity » in the X direction. Let «; and u, be the
velocities of the two bodies as they appear before collision
to this new chserver. From Finstein’s formule for the

* Phil, Mag. xxi, p. 626 (1911).

+ In the same article, My. Camphell bas also criticised the writer for
referring the acceleration of a body under consideration to moving axes
which bave at the moment in question the same velocity as the body
itself. As this is a procedure which has long been familiar to students of
theoretical mechanics, has not in the past led to erroneous results, and in

the cases under consideration leads to self-cousistent conclusions, the
writer cannot agree with Mr. Campbell’s criticism.
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composition of velocities we find for these velocities the
. u— —U—0

relations v;= .—— and wg=——-—,.

1—un/c? +urvfc?
cities are not of the same magnitude, the two bodies which
have the same mass when at rest do not now have the same
mass to this observer. Let us call these masses before collision
my and my.  During collision, the velocities of the hodies will
all the time be changing ; from the principle of the conser-
vation of mass, however, the sum of the two masses will
always equal m;+m,*. Whenin the course of the collision
the bodies have come to relative rest and are both moving
past our observer with the velocity —wv, their momentum will
be —(m;+my)v, and from the principle of the conservation
of momentum this must be equal to the original momentum

before collision, giving us the equation,—

Since these velo-

U—1v — -7
— (ml +mg)e=myuy + myng=m, o + g v (1)
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Simplifying, we have,—
uv
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which by direct algebraie transformations may be shown
to be identical with
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# In this connexion an interesting fact has been pointed out to the
writer by Professor Lewis. As stated above, the sum of the two masses
is throughout collision always equal to m,+m,, and hence also at the
time in the collision when the masses have come to relative rest their
suim is my+m, Since at this time both bodies are moving with the
velocity —z we might suppose that m, +m, equals 2m,/ +/1 —2%/c*. This
is not the case, however, since the bodies now possess additional elastic
energy beyond that which they possess when at rest and not in contact.
A relation between mass and energy has already been developed(foce, cidt.),
and the mass of this elastic energy must also be taken into account in
calculating m,+m,. In fact the consideration of a collision of this type
leads to a simple proof of the relation between mass and energy, a proof
presented by Professor Lewis in a series of lectures on the Theory of
Relativity given at Harvard University in the Spring of 1911,
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Remembering that these were bodies which had the same
mass when at rest, we see that the mass of a body is inversely

2
proportional to \/1-—- %‘2—, where u is its velocity, and have

thus derived the desired relation,—

m
m= 9

w?
=

Collision of Any Type.
A treatment of the general case of any type of collision
between any two bodies elastic or otherwise is also possible,
and leads to the same conclusion as to the desirability of

using the expression my /,\/1_ ﬁ? for the mass of a moving
body. / ¢

For the mass m of a body moving with the velocity u let
us write the equation m=myf(u?®) where f( )is the function
whose form we wish to determine. 'The mass is written as a
function of the square of the velocity, since from the homo-
geneity of space the mass will be independent of the direction
of the velocity, and the massis made prc portional to the mass
at rest since a moving body may evidently be divided into
parts without change in mass.

Let us now consider two bodies having the masses m, and
2y when at rest, moving with the velocities u and v before
collision and with the velocities U and V after a collision
has taken place.

From the principle of the conservation of mass we have,—

mof (u? + wy? + u) +nof (va® + v, + v.%)
=mf (U2 + U2+ U2 +a,f (VE+VEHVD, . (1)
and from the principle of the conservation of momentum,
wof (ug® + 1y +u)up + nof (v + v + v v
= 77?0f( U2+ Uyz + Uzz)U; + n()‘f(Vx? + V,yz +V AV, (2)
mig f (ug? +uy® +u uy +ngf(0.? + v + ety
=mef(U2+ U2+ UAHU, 402V 2I+V,/ + VAV, (3)
mof(ua? + 1, + w4 ngflv,? + o2 +v.0)e,
=mof(U2+ U+ U DU, + nAVE+ V2 2+ V V. (4)
These velocities uz, uy, Uz, ve, vy, vz, Us, &e., are measured
with respect to some definite system of * space time ™

coovdinates. An observer moving past this system of co-
ordinates with the velocity ¢ in the X direction would find
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for the corresponding component velocities the values
__¢ \/1 4)/@ uy V1= — %t u, =
, hd
T ugd U (2 Ty
1— —c—";ﬂ 1— ¢ 1— Vz‘(;b_ 1-- ¢

given by Rinstein’s tmnsfm mation equahonc

Since the laws of the conservation of mass and mementum
mnust also hold for the measurements of this new observer,
we may write the following new relations corresponding to
equations 1 to 4:—-
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It is evident that these equations (la—4a) must be true
no matter what the velocity between the original system of
coordinates and the new observer, that is they are true for
all values of ¢. The velocities wa, uy, ¥z, vay &, are, how-
ever, perfectly definite quantities, measured with reference
to a definite set of axes and entirely independent of ¢. 1f
these equations are to be true for perfectly definite values of
Uiy Uy, Uy Vo, &c., and for all values of ¢, it is evident that
the function f( ) must be of such a form that the equations
are identities in ¢. As a matter of fact ¢ can be cancelled
from all the equations if we make f( ) of the form

1
solution of the equations. Although this does not exclude
the possibility that there may be other solutions of these
functional equations, nevertheless from a consideration of the
complexity of the equations it appears doubtful if any other
simple function would satisfy the necessary requirements.

In conclusion it is to be noted that in these derivations no
reference has been made to any electrical charge which might
be carried by the body whose mass is to be determined.
Hence, if these considerations are correct, we may reject the
possibility of explaining the Kaufmann- Bucherer experiment
by assuming that the charge of a hody decreases with its
velocity*, since the increase in mass is alone sufficient to
account for the results of the measurements.

Cincinnati, Ohio.
October 31, 1911.

; and we see that the expected relation is a

XXXIV. Theory of the Behaviour of the Quadrant
Llectrometer. By Prof. A. ANDERsoN f.

r[‘HE following presentation of the theory of the quadrant

electrometer has, it seems to me, the merit of sim-
plicity, and consequently may be of use to those who are
engaged in working with the instrument. The theory given
by Mr. G. W. Walker (Phil. Mag. Aug. 1903) is perhaps
not elementary enough for the general reader, and the inci-
dental reference to the subject by Prof. Sir J. J. Thomson
in a paper on the Charge of Electricity carried by the Tons

% The possibility of explaining the Kaufmann-Bucherer experiment
by assuming that the electrons have less charge at higher velozity was
silgig%;ted by Professor More of this University : Phil. Mag. xxi. p. 196
¢ 1 Communicated by the Author.



