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It appears that if we talke A = B so that half the electrons are
in erystals and hall distributed at random, the calculated values
of Ty/Iy agree fairly well with those found by Clrowther.

The excess of scattered radiation in the emergence direction
seems therefore to be easily explicable on the theory that
Rontgen rays are very short electromagnetic waves or pulses.
The only property of Rontgen rays which is not easily
explicable on this theory secems to be that of causing the
emission of high-velocity electrons. The most reasonable
way of explaining the emission of these electrons seems to
be that proposed by Planck*, according to which matter
absorbs radiant energy continuously but only emits it in
definite amounts inversely proportional to the wave-length
of the radiation. This view enables the ordinary electro-
magnetic wave theoryof light and Réntgen rays to be retained.

XLI. On Deep Water Waves. By J. R. Witon, M. A.,
B.Sc., Assistant Lecturer in Mathematics in the University

of Sheffield 1.

OME time ago, when studying Stokes’s papers on Oscil-
latory Waves (Collected Works, vol. i. and vol. v.),
I noticed that the work of determining the coefficients in
the expansions of the coordinates might be very considerably
reduced, and that the order of magnitude of any coefficient
was determinate. These expansions may, without great
labour, be carried to a high order of approximation, and the
form of the wave may be drawn for a value of the amplitude
not far short of that for the highest wave.

By a change in the notation we are enabled to treat the
progressive wave directly, and at the same time to retain all
the advantages of the customary method of reducing the
problem first to one of steady motion. The advantage of
the change will be more apparent to anyone who attempts to
discuss the stability of the wave.

We shall use throughout the abbreviations :

c=a+u, 2 =z—uy,
w=¢ +uy, w'=¢—u,
_277 o f___277 J
n=~ (ct—2), 7 —3:(01?—@),
2w 2w |,
f——x;+77, f—ix;'i"’l;

* Sitzungsberichte der Konwglich Preussischen Akademie der TWissen-
schaften, April 3, 1913.
t Communicated by the Author.
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where N, ¢, ¢, and  are’ the wave-length, wave velocity,
velocity potential, and current function, respectively.
We assume that 7 is a function of £, say,

=K. . . . . . . . (D
The conditions which have to be satisfied are w=0 when
y=w% ; and, on the free surface, y=f(ct ~ ),

¥ ()=,

¢+ 3q"=gy—1C),
where » and v are, respectively, the horizontal and vertiecal
velocities, and ¢ is the resultant velocity. The axis of y is
vertically downwards, that of @ horizontal. We shall also
take the origin at the trough of a wave when ¢=0.

The first of the two surface conditions is satisfied whatever
the form of the function F, provided that £ is real on the
surface, i. e. if

Y=cy
on the surface.
Let 7=FE) . . . ... ©®

be the equation cbtained from (1) by changing the sign of
¢ throughout. "We then have

=
u—w=_,
dn (dw _
or c—uttvr= /;%7:
!
and c—uU—Iv=¢ Zg"
Also c== 21:; B—;’ = Zz ((E_*%\P +c>
+ ) 7 .
2, e ¢ c“”:——c—l-c/dgz—(u-—w ,
¢_c£¢=-(u+w) ;
therefore ¢;= —uc,

so that the condition of constant pressure on the free surface
becomes

(c=w)? +v'=ct—C'+2¢y,
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i
dy oy
dE dF'
We must, further, have w=0, 7. e. n=E, when y=w, or

E=—t o, Thiscondition is satisfied if we assume the
expansion

A '
_—_29;0-_2@(77—1;)—20]. )

p=E4+iAje il M+ L L.

as the form of n *. Making the assumption, and substituting

in equation (3), we find, as the equation to determine the
coefficients A,

The terms of this equation must be re-arranged in cosines
of multiples of £ and then the coefficient of each cosine is to
be equated to zero. The general form of the equations so

* T find it difficult to persuade myself that this is the only form of K.
1t is possible, if we do not make this assumption, to satisfy equation (3),
together with the condition of rest at the bottom of the liquid, in an
infinite number of ways, and in certain cases the exact expression for
the function F may be obtained. In fact if we put y=n1+u,, where
71 and 7, are real when £ is real, equation (3) is satisfied provided that

m= \/-gm—vz‘d&

and the only remaining condition is that n =§, when £= —:0. A function
satisfying this condition is that given by the equation

gA

e M2

g
7. =A cos [y £

which presents some remarkable points of resemblance to Stokes's wave.
Such “waves ” are, however, not in general such that the crests of all
the stream-lines are vertically under the crests of the free surface.
Stokes’s solution is the only one which satisfies this condition.

The wave considered in the paper # On the Highest Wave in Deep
Water ” (Phil. Mag. Dec. 1913, pp. 1053-8) is of the type considered in
this note. Another example, perhaps even more curious, is that of the
steady motion represented by the equations

s
‘g—z = 6+£—£€‘9,

w .

%v‘ = @+ siné,
in which the complete cycloid obtained by making 6 a real quantity is a
free surface, for which =0. The fluid is, moreover, at rest at the
bottom, where y=—x, §=—wo. Inthis case there is no need, as in
the paper referred to, to « fit on” various distinct arcs of the complete
curve.
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obtained is as follows :—

0= +C(1+ S n2A 2>-|. 3 nA,2+ 2 A, Z m(m+n)AmAm+n,

=1

0= Cl:"rAr-{- 2 §) m(m+ 7")AmAm+,-] + A+ Z Cn+r)AAL,
m=1 n=1

r—1 © P
+4 2 rAA L+ S A S m(mtntr)AuAmtads

n=1 n=1 m=1

+ 2 A, 2 m(m+n—r)AnAnynr
= m=1
for all values of » from 1 to infinity. It is understood that
in the last summation m+n—7 is positive.

These equations must be solved by a process of successive
approximation. The equations, to any desired order, may
be written down from the above general expression, or by
means of a rule derived from it. The rule, which is some-
what complicated, is as follows :—

The equation obtained by equating the coefficient of cos p&
to zero is made up of terms:

(1) C multiplied by

2pAp+ 2(1) + 1)A1Ap+1 -+ 4( 14 + 2)A2Ap+2+ &C.

(2) A,.

(3) All terms made up of the product of two coefficients
the sum or difference of whose subscripts is p; and the
numerical multiplier of any term is the sum of the subscripts
unless the term is a square, in which case it must be halved.

(4) All terms made up of the product of three coefficients
whose subscripts are such that the sum of two of them minus
the third is +p ; and the numerical multiplier of any term
is the product of the two numbers whose difference is p and
whose sum is the sum of the subscripts of the coefficients
forming the term. If, however, one of the terms contains
the square of a coeﬂ“wlent, and is such that twice the sub-
seript of this term minus the subscript of the remaining
coeflicient is +p, the term is to be halved, but not otherwise.

As an example of the use of the rule, the equation for
which p=2 is here written down to the twelfth order. It is

0= CAA,+6AA;+16A,A,+30A;A; +48AA,+ TOAA)
+ A+ A2 +3AZA, +4A A+ 8A A A HAA A, +4A0
+O0AA, +15AAA, +15AA,A;-F15A,A2+8AA,
F 24 A A A+ 24A A A+ 24A0A 2+ 12A7A, 4+ 12A2%A,
+10A A +35AA,A,+35A,AA;+35A,A,;2
+35AAA, + 3544, + 12A,A, + 6A 2
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The leading term in each coefficient A, may be written
down. In fact,
nt—2gn

A= "———— + higher powers of «,
l) 1 g P

where A;= —q.

For, if we retain only the first approximation to each
coeflicient, we shall h.ue, in order to determine A, from the
values of Al, A, ... A,y supposed known, the equation

(n——l)An=n(A1An_1+A2An_2+A3An_3+ . .),
where the last term on the right-hand side is %A‘;’,, if nis

even, and A, _; A, if nisodd. We have also put C=—4,
nel St
its approximate value.
The solution of this system of equations is easily seen to
be, assuming A;= —aq,
A=

nr—2?
(=) (n—la)‘
The most direct proof is obtained by expanding z and 2° in
powers of x¢* by Burmann’s theorem, squaring the first
result, and comparing with the second.

I bave not been able to find a general formula for even
the second order approximation to the value of A,. It is,
Lhowever, easy to derive a sequence formula by means of
which the second order approximation to any given co-
efficient may be caleulated. In fact, if we retain terms of
order »+ 2 in the equation for A,, we obtain

CL2rA,+20r+ D)AA, 1] + A+ 3r(ArA, 1 +AgA,
+ Y A;-_1A1)+A1|:7’A1Ar+ (T—l)AgAr_l'i‘ e .ATA1] =O,

1. e.
(T—l)A,———é—?"(AlAr_l +A2Ar_2 + ... Ar—IA])
4 2ra?Ar—(r+ 1) AjA, 1 =0.
1f we put
r?’—’ r
( ) ‘A ( ) 1 +Brar+3,

we obtain the following sequence equation for B, :—

3 8 —Nr—4
(’I‘-—].)Br—/"[BT'—l +B, s+ EBT_:;"*‘ 3Br—4+ .. 7 zz) 1 B}

1
= /)7"' [(’)'+ 1)7*__27.1'].
In the same way, if we put

(=)A= <’ ‘;{;7 +B @t 4 Cart,



390 Mr. J. R. Wilton on

we shall find the following sequence equation for C, :—
(7—1)07'_7'[07«-1 +Ca+ gcr-—3+ g Crst .. ]

1
= (’r+ 1)B7‘+1 -+ (TT]_—)*—'- (7' + 2)1‘-{-—1 -+ T[BgBr_z“l‘ BSBT—?’ + ...

1.0 11 !
+¥Blr(or B, ,B, )]_err- 1
2% b as 2 (r—1)!
The corresponding sequence equations for the higher
approximations become exceedingly complicated in form.
I find to the eighth order the following values of the
coefficients :—
A1=—(1,
1 29 1123
— 4y 29 ey 1149 g
A, a+2a+lza+ 73 ad,
Ao (35, 19 ;o 1183
A== (et e+ )
8 313 103727
A= gatt gt Sy

9 ‘
A{):_(l_._é 5, 16603 ,

i

9 Y T 1340 )
B4 5 54473

A= "+ Tao0 <
75
A7—-—6—!a7,
86
Ag= 1y,
e (Y g Bhge 167 5 20893
(-_—(2+a+ R A s Tk
2me? g, 1y 223 6, 1427
W =1+4+a’+ 3¢ + 1z a'+_4b' a’,
and to the tenth order—
—A1=a,

Ay=a?+-5a* + 241708 + 15°597a% + 64°08a10,
—Ay=15a+ 1"583a® 4 821547 4 55:01a®,

A,=2667at+4'347a% + 24-01a® + 166240,
—A;=5208a°41153a" 4 67-40a°,

A =108¢° + 30:26a° 4 186541,
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—A;=2334a" + 79:20a° + 498" 3a',

Ag=52-01a%+ 20742+ 139042,
—A;=1186a4 543 44!,

Ay=275'6a'4 142642,
— A, =649-8q11,

Ap=1551a%,

—C="5+a®+275a*+13'92a’ + 103:8a®+ 823-8a??,

2
% =1+a?+ 35a4-1908a°+ 154 7a® + 1297410,
The series for n certainly becomes divergent in the neigh-

bourhood of the crest of the wave when a is greater than
1/e, where e is the base of natural logarithms, and the
differential coefticients which occur in equation (3) become
divergent when a=1/e. For the series formed by the
leading terms of the various coefficients is

® ’)71,'”_2(1"”’
m=1 (nl'— l) I’

and this is divergent when a is greater than 1/e, though it
converges when a=1/e. For when m-is large the mth term
of this series is

mm'2am€m_1/ {\/2—77{\'771—1)m—%}
o . —}- m
=a™(m—1)k /{‘/2'#@(1 m) M2}
=(ae)mm—'§/\/z'7,

which proves the desired result. Further, the corresponding

term of the series for (diz, is of order (ae)™m—t, so that this
series diverges when a=1Je. Both series are, however,
convergent when a <1/e.

Moreover, the terms of any one coefficient are all of the
same sign, so that the divergence of the series when a is
greater than 1/e¢ is increased by the presence of these terms,
and its convergence when a is less than 1fe is rendered
doubtful. It is impossible, with the numbers given above,
to say with any certainty whether the series for any given
coefficient is convergent or not, but the general impression
is that all become divergent when a=1/3 or thercabouts.
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For a=1/,/10, I find :—
—A,="316, —A;="026, — Ay=-006,

,A2='112, 6='0197 A]0='OO4,
—A3='060, —A7='01:)J, —A11=’003,

A4='037, Ag':'ol{), A12='OO2,
2rA | o 29re?
T— 86, )/A——’Z 3, ‘EX— -—1 2,

where A is the amplitude of the wave. Comparison of these
figures with those obtained by Michell * for the corresponding
quantities in the case of the highest wave show that the
wave for which a==1/,4/10 is not far short of the highest.
Michell’s figures are

2re?

AA=T04,

ar

From the ahove values of the coefficients I find the
following table of values of ¢ct—& and y on the free surface,
whose equation, given by putting «r=cy in the expression
for # as a function of £ and then equating real and imaginary
parts, is found to be that resulting from the elimination of £

(=T 1g+ct~a)})

=1-20.

betwesen
2w . .
~ (ct—a)=E+A;sin £+ A,sin 264 ...
and
27y
-——)&'—/= AjcosE+Azcos 284 ...
2 N 27
4 N (ct—2x). \ Y 3 .
|
0 0 24 se00 |
450 64 20 315°
Q0° 1-30 09 70°
135° 201 --13 2950
150° 228 — 26 210°
165° 260 —42 195°
170° 295 — 53 190°
175° 2-93 —59 185°
180° 314 —62 180°
i

* Phil. Mag. November 1898,
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The curve obtained from these numbers is shown in fig. 1.
Tt will be seen that the point of inflexion is very much

Fig. 1.
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nearer to the crest of the
wave than to the trough,
and that the greatest slope
of the wave is, as nearly as
can be measured, 30°. This
is just what it should be at
the crest of the highest
wave.

There can be no doubt
that Stokes’s series become,
as he supposed, divergent in
the neighbourhood of the
crest of the highest wave,
but they evidently hold
right up to this point.

I have also attempted to
determine whether the wave-
profile becomes unstable for
aratio of amplitude to wave-
length less than that for
the highest wave, but as the
work is laborious, and the
conclusion arrived af s
the merely negative one
that, so far as it is possible
to tell from the somewhat
imperfect analysis, it does
not become exponentially
nnstable until a exceeds the
value corresponding to the
highest wave for which
Stokes’s series converge, I
have not included it.

In attempting to deter-
mine the stability of the
wave, we are compelled to
consider only a small dis-
turbance of the progressive
wave profile, depending on a
time-factor of the form e~ %,
where & may be complex.
We are also compelled, in
order to prevent the analysis
from becoming unmanage-
able, to assume that a! is

Phil. Mag. 8. 6. Vol. 27. No. 158. Feb. 1914. 2D
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negligible, The first supposition is the one which is always
made, although it may on occasion lead to difficulty, as, for
example, in the case of the flow of viscous fluid between two
parallel planes which, as is well known, is mathematically
stable for small disturbances, but is experimentally unstable
if the velocity exceeds a certain value. If the real part of
£ had been negative, the wave would necessarily have been
unstable ; but, although it is actually zero, it is not therefore
absolutely certain that the wave is stable.

The second supposition, that a* is negligible, may be
justified by the considerations that ¢ does not exceed one-
tenth, and that in the final equation which is found for % the
coefficient of a2 (@ does not occur to any odd power in this
equation) is of the same order of magnitude as the term
independent of a.

XLII. On the Number of Ions produced by the Gamma Radia-~
tion from Radium. By A. S. Eve, D.Sc., Macdonald
Professor of Physics, McGill University, Montreal*.

lF ¢ lons are produced, directly or indirectly, in a cubic
centimetre of air, at standard temperature and pressure,
at a distance of » cm. from a source of Q gm. of radium,
then
g=KQ/r?ew,

where K is a constant, and g is the coeflicient of absorption
of the o rays in air.

Also the total number of ions produced in air by the
7 rays from Q gm. will be found by integration to be

N=47KQ/u.

The first determinationt of K was made in 1906 with an
aluminium vessel, 0-4 mm. thick, and for radium bromide,
assuming e=34x 10-1°, the value was 3'1x10° This
is equivalent to K=3'8x 10° for a gramme of radium with
e=4'Tx10710,

The second and third determinations i, made in 1911, with
very thin-walled testing vessels, gave values K =374 x 10°
and 3-81 x 107 respectively. Accepting Chadwick’s value
for p as *000060 the corresponding value of N is 7'8 x 10,

In Rutherford’s ¢ Radicactive Substances’ (1913), p. 295,
it is stated that Moseley and Robinson have found
N=13x10". This corresponds to K=62x10°% a value

# Communicated by the Author.
+ Phil. Mag, September 1906.
1 Phil. Mag. October 1911.



