VIII. A New Series for the Rectification of the Ellipsis; togetber with fome Observations on the Evolution of the Formula ($\left.a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n}$. By fames Ivorr, A. M. Communicated by \mathfrak{J} Ohn Platfair, Profelfor of Matbematics in the Univerfity of Edinburgb.

```
[Read Nov. 7. 1796.]
```


Dear Sir,

HAVING, as you know, beftowed a good deal of time and attention on the ftudy of that part of phyfical aftronomy which relates to the mutual difturbances of the planets, I have, naturally, been led to confider the various methods of refolving the formula ($a^{2}+b^{2}-2 a b \operatorname{cof} \varphi$) ${ }^{2}$ into infinite feries of the form $A+B \operatorname{cof} \phi+C \operatorname{cof} 2 \phi+\& c$. In the courfe of thefe inveftigations, a feries for the reetification of the ellipfis occurred to me, remarkable for its fimplicity, as well as its rapid convergency. As I believe it to be new, I fend it you, inclofed, to gether with fome remarks on the evolution of the formula juft mentioned, which, if you think proper, you may fubmit to the confideration of the Royal Society.

> I am, Dear Sir, Your's, \&c.

James Ivory.
To Mr Gobn Playfair, Pro-
felfor of Matbematics, छc.
VoL. IV.

${ }_{17} 8$ RECTIFIGATION of the ELLIPSIS, \&c.

Let \& denote the excentricity of an ellipfe, of which the femitranfverfe axis is unity, and w the length of the femicircle, radius being unity: Then,

$$
\text { if we put } e=\frac{1-\sqrt{1-\varepsilon^{2}}}{1+\sqrt{1-t^{2}}},
$$

half the periphery of the ellipfis will be
$=\frac{w}{1+e}\left(1+\frac{\mathbf{x}^{2}}{2^{2}} \cdot e+\frac{\mathbf{x}^{2} \cdot \mathbf{x}^{2}}{2^{2} \cdot 4^{2}} e^{4}+\frac{\mathbf{x}^{2} \cdot \mathbf{x}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} e^{6}+\frac{\mathbf{x}^{2} \cdot \mathbf{x}^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot 8^{2}} e^{8}+\& \mathrm{c}.\right)$,
the coefficients being the fquares of the coefficients of the radical $\sqrt{1-\boldsymbol{\varepsilon}^{2}}$.

The common feries is,

$$
\approx \times\left(1-\frac{1}{2} \cdot \frac{1}{2} 8^{2}-\frac{1.1}{2.4} \cdot \frac{1.3}{2.4} \varepsilon^{4}-\frac{1.1 .3}{2.4 .6} \cdot \frac{1.3 .5}{2.4 .6} \varepsilon^{6}-\& c .\right) .
$$

The fird of thefe feries converges. fafter than the other on two accounts: firft, becaufe the coefficients decreafe more rapidly; and, next, becaufe c is very fimall in comparifon of ε, even When E is great: Thus, if $\frac{\mathrm{be}}{5} \frac{4}{5}$, e will be $\frac{1}{4}$, and $e^{3}=\frac{x}{16}$.

In order to point out the way in which the preceding feries was difcovered, let us fuppofe ($\left.a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n}$ $=\mathrm{A}+\mathrm{B} \cos \varphi+\mathrm{C} \operatorname{cof} 2 \varphi+\& \mathrm{c}$; and to determine the coefficients, A, B, C, \&c. let us, with M. de la Grange, confider the quantity ($a^{2}+b^{2}-2 a b \operatorname{cof} \varphi$) as the product of the two imagmary expreffions $\left(a-b c^{\oplus V-1}\right)$, and $\left(a-b c-p \checkmark^{-1}\right)$, where c denotes the number whofe hyperbolic logarithm is unity. Then, by expanding the powers $(a-b c 甲 \sqrt{ }-1)^{n}$, and $(a-b c-\varnothing V-1)^{n}$ into the feries $a^{\prime \prime}\left(1-\alpha \cdot \frac{b}{a} c^{\varphi} V^{-1}+\beta c^{2 \rho V-1}-\gamma^{3 \varphi} V^{-1}+\& c\right.$. $)$
and $a^{n}\left(1-\alpha \cdot \frac{b}{a} c^{-\phi} \sqrt{-1}+\beta c^{-2 \varphi} \sqrt{-1}-\gamma^{-3 \varphi \sqrt{-1}}+8 \mathrm{c}\right.$. we have $\alpha=n, \dot{\beta}=\frac{\pi \cdot \overline{n-1}}{\frac{1.3}{2}}, \gamma=\frac{n \cdot \overline{n-\frac{1}{1}} \overline{n-2}}{\overline{1} \cdot 2 \cdot 3} \& c$.

Then multiplying thefe two feries together, and putting. $2 \operatorname{cof} m \varphi$ for its imaginary value $e^{+m \varphi \sqrt{-1}}+c^{-m \varphi \sqrt{ }-^{1} \text {, we }}$ fhall find, on equating the terms,

$$
\begin{aligned}
& \mathrm{A}=a^{2 n} \times\left(\mathrm{r}+a^{2} \cdot \frac{b^{2}}{a^{2}}+\beta^{3} \cdot \frac{b^{4}}{a^{4}}+\gamma^{2} \cdot \frac{b^{6}}{a^{6}}+\& \mathrm{c} .\right), \\
& \mathrm{B}=-2 a^{2 n} \times\left(a \cdot \frac{b}{a}+a \beta \cdot \frac{b^{3}}{a^{3}}+\beta \gamma \cdot \frac{b^{5}}{a^{5}}+\& \mathrm{c} .\right),
\end{aligned}
$$

and fo on.
Or the feveral feries for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. the firft deferves particular attention, on account of the fimplicity of the law of its terms. It deferves the more attention, too, that the whole fluent $\int \dot{\phi}\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n}$, generated while φ from \circ becomes $=*$, half the circumaference of the circle, is $=\mathbf{A}+w$: all the other terms of the fitent then vanifhing.

Suppose now, in an ellipfis, the femi-tranfverfe $=1$, the excentricity $=t$, and Φ an arch of the circumfcribing circle, reckoned from the extremity of the traifverfe: then the fluxion of the correfpondent arch of the ellipfis, cut off by the fame ordinate, will be $=\dot{\phi} \sqrt{1-t^{2} \operatorname{col}^{2} \phi}$.

In this expreffion, I write $\frac{1}{2}+\frac{1}{2} \operatorname{cof} 2 \phi$, for $\operatorname{cof}^{2} \varphi$: and put the refult, $\dot{\phi} \sqrt{1-\frac{\varepsilon^{2}}{2}-\frac{i^{2}}{2} \operatorname{cof} 2 \varphi}=\varphi \sqrt{a^{2}+b^{2}-2 a b \operatorname{cof} 2 \varphi}$, a and b being indeterminate quantities.
To determine a and b_{5} we have $a^{2}+b^{2} \pm 1-\frac{\frac{s}{2}_{2}^{2}}{2}$, and $2 a b=\frac{z^{2}}{2}$: whence $a+b=1$, and $a-b=\sqrt{1-\varepsilon^{2} \text { fot that } a=\frac{x+\sqrt{r-a^{2}}}{2}}$ and $b=\frac{1-\sqrt{1-b^{2}}}{2}$.

180 RECTIFICATION of the ELLIPSIS, \&rc.
I ThUS obtain $\varphi \sqrt{1-\varepsilon^{2} \operatorname{cof}^{2} \varphi}=\dot{\varphi} \sqrt{a^{2}+b^{2}-2 a b \operatorname{cof} 2 \varphi:}$ and, taking the whole fluent, while φ from \circ becomes $=\pi$, it is manifeft, from what has been premifed, that the femiperiphery of the ellipfis is $=$

$$
w \times a \times\left(1+\frac{1}{2^{2}} \cdot \frac{b^{2}}{a^{2}}+\frac{\frac{1}{}^{2} \cdot 1^{2}}{2^{2} \cdot 4^{2}} \cdot \frac{b^{4}}{a^{4}}+\frac{1^{2} \cdot 1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} \cdot \frac{b^{6}}{a^{6}}+\& c \cdot\right)_{0} .
$$

or putting $\frac{b}{a}=e=\frac{\frac{1}{1+\sqrt{1-\varepsilon^{2}}}}{1+\sqrt{1-\varepsilon^{2}}}$ and $a=\frac{a}{a+b}=\frac{1}{1+\frac{b}{a}}=\frac{1}{1+e}$.
the femiperiphery of the ellipfis $=\frac{w}{1+c} \times$

$$
\left(x+\frac{1^{2}}{2^{2}} e^{2}+\frac{\frac{1}{}^{2} \cdot 1^{2}}{2^{2} \cdot 4^{2}} e^{4}+\frac{x^{2} \cdot x^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} e^{6}+8 c,\right)
$$

In this feries, as was before obferved, e is. a fmall fraction even when is very confiderable, and the coefficients are more fimple in the law of progreflion, and converge fafter, (efpecially in the firft terms), than in the common feries.

If we fuppofe the ellipfis to be infinitely flattened, in which cafe $s=1$, and $c=1$, and the femiperiphery $=2$, this feries gives $2=\frac{\pi}{2} \times\left(1+\frac{x^{2}}{2^{2}}+\frac{x^{2} \cdot x^{2}}{2^{2} \cdot 4_{1}^{2}}+\frac{x^{2} \cdot x^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+8 c\right.$. $)$, and fo

$$
\frac{4}{2}=1+\frac{\mathbf{r}^{2}}{2^{2}}+\frac{\frac{1}{}^{2} \cdot 1^{2}}{2^{2} \cdot 4^{2}}+\frac{1^{2} \cdot 1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 0^{2}}+\frac{1^{2} \cdot 1^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 0^{2} \cdot 8^{2}}+\& c .
$$

But, we may remark, that as we have here obtained the fum of the fquares of the coefficients of the binomial when the exponent is $\frac{1}{z}$; fo, from the fame fource, we may determine the fum of the fquares of the coefficients correfponding to any other. exponent, at leaft by a fluent.

For taking the whole fluent when $\varphi=m$, we have

$$
\int\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n} \dot{\varphi}=a^{a x} \cdot\left(\frac{1}{1}+\alpha^{2} \cdot \frac{b^{2}}{a^{2}}+\beta^{2} \cdot \frac{b^{4}}{a^{4}}+\gamma^{2} \cdot \frac{b^{6}}{a^{6}}+\& c_{n}\right) .
$$

and fo when $a=\mathrm{I}_{2}$ and $b=1$,

$$
\int\left(\frac{a^{2}+b^{2}-2 a b \operatorname{cof} \varphi}{n} \dot{\varphi}=1+\alpha^{2}+\beta^{2}+\gamma^{2}+\& c\right.
$$

RECTIFIGATION of the ELLIPSIS, \& c. 18-
Now, when $a=1$, and $b=1, \int \dot{\phi}\left(a^{2}+b^{2}-2 a b \operatorname{cof} \phi\right)^{n}=2^{2 n} \times$ $\int \dot{\varphi}\left(\operatorname{fin} \frac{\varphi}{2}\right)^{2 \pi},^{\text {becaufe } 2}\left(\operatorname{fin} \frac{\varphi}{2}\right)^{2}=1-\operatorname{cof} \varphi$: we thus obtain

$$
\frac{2^{2 n} \times \int \dot{\phi}\left(\operatorname{fin} \frac{\phi}{2}\right)^{2 n}}{x}=1+\alpha^{2}+\beta^{2}+\gamma^{2}+\& c .
$$

the whole fluent to be taken when $\varphi=\pi$, or $\frac{\varphi}{2}=\frac{\pi}{2}$.
If we put $x=\mathrm{fin} \frac{\Phi}{2}$, we thall have

$$
\frac{2^{i n} \times \int \frac{x^{2 n} \dot{x}}{\sqrt{1-x^{2}}}}{\frac{1}{2} \pi}=1+\alpha^{2}+\beta^{2}+\gamma^{2}+\& c_{3}
$$

the whole fluent to be,taken when $x=1$; and in this formula n is any number fractional or integral, pofitive or negative; and $\alpha, \beta, \gamma, \& c$. the coefficients of the binomiad raifed to a power of which the exponent is n.

When n is a whole pofitive number,
$\int \frac{x^{2 n} \dot{x}}{\sqrt{1-x^{2}}}=\frac{1.3 .5 \ldots(2 n-1)}{2 \cdot 4.6, \ldots(2 n} \cdot \frac{\pi}{2}$, in the cafe when $x=1$:
And fo, $2^{2 n} \times \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2.4 \cdot 6 \ldots \ldots 2 n}=1+\alpha^{2}+\beta^{2}+\gamma^{2}+\& \mathrm{c}$.
Now, $2^{2 n} \times \frac{1 \cdot 3.5 \ldots(2 n-1)}{2.4 \cdot 6 \ldots . n^{2 n}}$ is no other than the coefficient of the middle term of a binomial, raifed to the power expreffed by $2 n$: Hence we have a very curious property of thofe numbers: viz. that the fum of the Squares of the coefficients of a binomial, the exponent being n, is equal to the coefficient of the middle term of a binomial, of which the exponent is $2 n$.

Another remark, which I have to offer on this fubject, 'may be confidered not only as curious, in an analytical point of view, but as, in fome meafure, accomplifhing an object that has much engaged the attention of mathematicians.

In the computation of the planetary difturbances, it becomes neceflary to evolve the fraction $\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{-\frac{1}{2}}$ into a feries

182 RECTIFIGATION of the ELLIPSIS, \&E.
feries of this form, $\mathrm{A}+\mathrm{B} \operatorname{cof} \varphi+\mathrm{C} \cos 2 \varphi+\& \mathrm{c}$. The quantities a and b reprefent the diftances of the difturbing planets from the fun; and when thefe bear fo great a proportion to one another, (as in the cafe of Jupiter and Saturn, or Venus and the Earth), that the fraction $\frac{b}{a}$ is large, it becomes extremely difficult to compute the coefficients A, B, \&c. by feries, on account of the great number of terms that muft be taken in. This matter not a little perplexed the firf geometers who confidered this fubject, and they were obliged to approximate to the quantities fought by the method of quadratures, and by other artifices.

Two things are to be attended to with regard to the quantities A, B, C, \& c. The firft is, That it is not neceffary to compure alf of them feparately by feries, of by other methods: They form a recurring feries; and the two firft Being fo compated, all the reit may be derived from therm. The fecond thing is, That the quantities A and B having been computed for any exponent n, the correfpondent quantities are thence derived, by eafy formulx, for the exponents $n+1, n+2 ; n-1, n-2 ;$ and in general for the exponent $n+m, m$ being any integer number, pofitive or negative.

From thefe remarks, it follows, that the whole difficulty lies in the computation of the two firft quantities, A and B; and that we are not confined to a given exponent n, but may choofe any one in the feries, $n+1, n+2, \& \mathrm{c} \cdot \mathrm{m}_{\mathrm{n}} n-1, n-2, \& \mathrm{c}$. ; that will render the computation moft ealy and expeditious.

Thus, in order to compute the quantities A and B, for the exponent - $\frac{3}{2}$, M. DE LA GEANGE makes choice of the expon nent $+\frac{\mathrm{T}}{2}$, which, in the whole feries of exponents $+\frac{3}{2}+\frac{1}{2}$, $-\frac{1}{2},-\frac{3}{2}, \& c$. is the moft favourable for compatation, of acs count of the convergency of the coefficients of the feries for A and B.

In confidering thefe fubiects, bowever, I, have fallen upan a method of computing the quantities A and B for the exponent $-\frac{1}{2}$ by feries that converge fo fatt, that, even taking the moft unfavourable cafe that accurs in the theory of the planets, two or three terms give the values required with a fufficient degree of exactnefs. This is what am now to communicate.
W ε are then to confider the expreffion $\left(a^{2}+b^{2}-2 a b \operatorname{cof} p\right)^{-\frac{1}{3}}$ $=\frac{1}{\sqrt{a^{2}+b^{2}-2 a b \operatorname{cof} \varphi}}$: for the fake of fimplicity in calculation, I write $\frac{b}{a}=c$, throwing out a altogether; and I fuppofe

$$
\frac{1}{\sqrt{\left(1+c^{2}-c \cot \varphi\right)}}=\mathrm{A}+\mathrm{B} \operatorname{cof} \varphi+\mathrm{C} \cos 2 \phi+\& c
$$

Let ψ be an angle, fo related to φ, that fin $(\psi-\varphi)=c$ fin ψ : It is obvious, from this formula, that $\psi=\varphi$ when $\mathfrak{G u} \psi=0_{\uparrow}$ that is, when ψ is equal to 0 , or to $\pi, 2 \pi, \& c$.

We have then, $\operatorname{cof}(\psi-\varphi)=\sqrt{1-c^{2} \operatorname{lin}^{2} \psi}$: and taking the fluxione, $\dot{\psi} \rightarrow \varphi=\frac{c \operatorname{cof} \psi \times \dot{\psi}}{\operatorname{cof}(\psi-\psi)}=\frac{c \operatorname{cor} \psi x \dot{\psi}}{\forall\left(i-c^{2} \sin ^{2} \phi\right)}:$ whence $\dot{\varphi}=\dot{\psi} \times \frac{\sqrt{x-c^{2} \operatorname{cin}^{2} \eta-e c o r} \psi}{\sqrt{1-c^{2} \operatorname{lin}^{2} \psi}}$
$\operatorname{But}\left(\sqrt{1-c^{2} \operatorname{fin}^{2} \psi}-c \cos \psi\right)^{2}=x-c^{2} \operatorname{fin}^{2} \psi+c^{2} \cos ^{2} \psi$ $-2 c \operatorname{cof} \psi \sqrt{1-c^{2} \operatorname{fin}^{2} \psi}=1+c^{2}-a c^{2} \sin ^{2} \psi-2 c \operatorname{cof} \psi$ $\sqrt{1-c^{2} \operatorname{fin} 2 \psi},\left(\right.$ becaufe $\left.c^{2} \operatorname{cof}^{2} \psi=c^{2}-c^{2} \operatorname{fin}^{2} \psi\right)=1+c^{2}$ $-2 c \times\left(c \operatorname{fin} \psi \times \operatorname{fin} \psi+\cos \psi \sqrt{1-c^{1 / 2} \operatorname{fin}^{2} \psi}\right)$. Now, if wre write for $c \operatorname{lin} \psi$ its equal, $\sin (\psi-\varphi)$, and for $\sqrt{1-c^{2}} \operatorname{fin}{ }^{2} \psi$ its equal, $\operatorname{cof}(\psi-\varphi)$, we thall have c 出h $\psi \times \operatorname{tm} \psi+\operatorname{cof} \psi \times$ $\boldsymbol{x - c ^ { 2 } \operatorname { s i n } { } ^ { 2 } \psi}=\operatorname{fin}(\psi \psi) \times \operatorname{lin} \psi+\operatorname{cof} \psi \times \operatorname{cof}(\psi-, \phi)$ $=\operatorname{cof} \varphi:$ which being fublituted, there comes out $\left(\sqrt{i-\bar{c}^{2} \operatorname{fin}^{2} \psi}-c \operatorname{cof} \psi\right)^{2}=1+c^{2}-2 \varepsilon \operatorname{cof} \varphi$.

Our.

184 RECTIFICATION of the ELLIPSIS, \&c.

Oor fluxional formula thus becomes $\dot{\varphi}=$
$\psi \frac{\sqrt{1+c^{2}-2 c \cos \varphi}}{\sqrt{1-c^{2} \sin ^{2} \psi}}$: whence $\frac{\dot{\phi}}{\sqrt{1+c^{2}-2 c \cos \varphi}}=\frac{\dot{\psi}}{\sqrt{1-c^{2} \operatorname{tin}^{2} \phi}}$.
Inext transform the quantity $\sqrt{1-c^{2} \text { fin }^{2} \psi}$ as in the inveftigation for the elliptic feries, and putting $c^{\prime}=\frac{1-\sqrt{1-c^{2}}}{1+\sqrt{1}-c^{2}}, I$ find $\sqrt{1-c^{2} \operatorname{fin}^{2} \psi}=\frac{\sqrt{1+c^{2}+2 c^{\prime} \operatorname{cof} 2 \psi}}{1+c^{\prime}}$, and fo $\frac{\dot{\varphi}}{\sqrt{x+c^{2}-2 c \cot \varphi}}=$ $\frac{\left(1+c^{\prime}\right) \dot{q}}{\sqrt{x+c^{2}+\partial c^{c} \operatorname{cof} 2 \psi}}$.

Now, taking the fluents when $\varphi=\pi$, and $\psi=\pi$, we fhall have $\int \frac{,}{\sqrt{1+c^{2}-2 c \operatorname{col} p}}=\mathrm{A} \times \pi$: And according, to the method of M. dela Grange, $\int \frac{\dot{\dot{q}}}{\sqrt{1+c^{2}+2 c^{\prime} \operatorname{cof} 2 \psi}}=\approx \times$ $\left(1+\frac{1^{2}}{2^{2}} c^{\prime 2}+\frac{x^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\& c.\right): \quad$ Hence $A=\left(1+c^{\prime}\right) x^{\prime}$ $\left(1+\frac{\frac{1}{2}^{2}}{2^{2}} c^{\prime 2}+\frac{\frac{1}{}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\& c\right.$. $)$. And in this value of A, c^{\prime} will be a fmall fraction, even though c be large; and the feries will therefore converge very faft.

But, taking the value of A directly in a feries, we have $\mathrm{A}=\mathrm{I}+\frac{\mathrm{I}^{2}}{2^{2}} c^{2}+\frac{\mathrm{r}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{4}+\& \mathrm{c}$. And for $\mathrm{I}+\frac{\mathrm{I}^{2}}{2^{2}} c^{2}+\frac{\mathrm{x}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{4}$ $+\& \mathrm{c} .=\left(\mathrm{I}+c^{\prime}\right) \times\left(\mathrm{I}+\frac{\mathrm{I}^{2}}{2^{1}} c^{\prime 2}+\frac{\mathrm{I}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\& \mathrm{c}\right.$. $)$. Now, the two feries being exactly alike, it is evident that we may transform the one, as we have transformed the other, and that, if we put $c^{\prime \prime}=\frac{1-\sqrt{1-c^{2}}}{1+\sqrt{1}-c^{2}}$ we fhall have $1+\frac{1^{2}}{2^{2}} c^{2}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}=$ $\left(1+c^{\prime \prime}\right) \times\left(1+\frac{x^{2}}{2^{2}} c^{\prime \prime 2}+\frac{x^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime \prime 4}+\& c\right.$. $)$: whence $A=\left(1+c^{\prime}\right)$ $\left(1+c^{0}\right)\left(1+\frac{x^{2}}{2^{2}} c^{y^{2}}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{04}+\& c\right.$. $)$.

RECTIFICATION of the ELL.XPSIS, \&c. 185
Ir is manifeft we may proceed in this manner as far as we pleafe, and that, if we put $c^{\prime \prime \prime}=\frac{1-\sqrt{1-c^{\prime \prime 2}}}{1+\sqrt{1-c^{\prime 2}}} ; c^{\prime \prime \prime \prime}=\frac{1-\sqrt{1-c^{\prime \prime \prime 2}}}{1+\sqrt{1-c^{\prime \prime 2}}}$ and fo on, we fhall have the value of A in an infinite product, $\mathrm{A}=\left(1+c^{\prime}\right) \times\left(1+c^{\prime \prime}\right) \times\left(1+c^{\prime \prime \prime}\right)\left(1+c^{\circ \prime \prime}\right) \times \& \mathrm{c}$, the quantities $c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}, c^{\prime \prime \prime}, \& c$. converging very rapidly.

Nothing more feems to be wifhed for, with regard to the computation of the quantity A : fince we can, by methods fufficiently fimple, exhibit the value of it in feries that fhall converge as faft as we pleafe. By a fimilar mode of reafoning, I find the feries $:-\frac{1}{2^{2}} \gamma^{2}+\frac{x^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} \gamma^{4}-\frac{1^{3} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{4^{2}} \cdot 0^{2}} \gamma^{6}+\& c$. (which occurs in detemining the time of a body's defcent in the atch of a circle $),=(1-c) \times\left(1+\frac{1^{2}}{2^{2}} c^{2}+\frac{1^{2} \cdot 9^{2}}{2^{2} \cdot 4^{2}} c^{4}+\right.$ $\frac{x^{2} \cdot 3^{2} \cdot 5^{4}}{2^{2} \cdot 4^{2} \cdot 6^{2}} c^{6}+\& c$.) where $c=\frac{\sqrt{1+y^{2}}-1}{\sqrt{1+y^{2}}+1}:$ fo that the fummation of this feries alfo is accomplifhed by the method above.

I have now, only to explain the method of computing B. For this purpofe I refume,

$$
\frac{1}{\sqrt{1+c^{2}-2 c \operatorname{cor} \varphi}}=A+B \cos \varphi+C \cos 2 \varphi+\& c .
$$

Multiply by $2 \operatorname{cof} \varphi$, and there refults

$$
\frac{2 \operatorname{cof} \varphi}{\sqrt{1+c^{2}-2 c \cos \varphi}}=\mathrm{B}+(2 \mathrm{~A}+\mathrm{C}) \operatorname{cof} \varphi+\& \mathrm{c} .
$$

whence it is manifeft that the whole fluent

$$
\int \frac{2 \cos \varphi \times \dot{\phi}}{\sqrt{12+c^{2}-2 c 001}} \text {, when } \varphi=\pi \text {, is equal to } B \times \pi .
$$

From the preceding inveftigation we have $\frac{\vdots}{\sqrt{I+c^{2}-2 c \operatorname{cof} \varphi}}=$ $\frac{\dot{\psi}}{\sqrt{x-c^{2} \operatorname{fin}^{2} \psi}}$, and $\cos \varphi=c \operatorname{fin}^{2} \psi+\cos \psi \sqrt{1-c^{2} \operatorname{fin}^{2} \psi}$,

Vol. IV.

186 REGTIFICATION of the ELLIP.SIS, \&C.
whence $\frac{2 \dot{\phi} \operatorname{cof} \varphi}{\sqrt{1+c^{2}-2 c \operatorname{cof} \varphi}}=\frac{2 c \dot{\psi} \operatorname{sn}^{2} \psi}{\sqrt{1-c^{2} \operatorname{in}^{2} \psi}}+2 \dot{\psi} \operatorname{cof} \psi$. Again, $2 \operatorname{fin}^{2} \psi=1-\cos 2 \psi$, and $\frac{1}{\sqrt{1-c^{2} \cdot \operatorname{lin}^{2} \psi}}=\frac{\left(x+c^{\prime}\right)}{\sqrt{1+c^{2}+2 c^{2} \operatorname{seg}(, 3 \psi}}, c^{\prime}$ being $=\frac{1-\sqrt{1-c^{2}}}{1+\sqrt{r-c^{2}}}$: thefe fubftitutions being made, we get $\frac{2 \dot{\phi} \operatorname{cof} \varphi}{\sqrt{1+c^{2}-3 c \cot \varphi}}=c \times \frac{\left(1+c^{\prime}\right) \dot{q}}{\sqrt{1+c^{2}+2 c^{\prime} \cos 2 \phi}}-c \times \frac{\left(1+c^{\prime}\right) \dot{\psi} \operatorname{cof} 2 \psi}{\sqrt{1+c^{\prime 2}+2 c^{\prime} \operatorname{col} 2 \psi}}$ $+2 \dot{\psi} \operatorname{cor} \psi$.
SUPPOSE NOW, $\frac{1}{\sqrt{1+c^{2}+2 c^{\prime} \cot 2 \phi}}=A^{\prime}-B^{\prime} \cos 2 \psi+c^{\prime} \cos 4 \psi-\& C$. it is evident, from what goes before, that, taking the fluents of the above fluxions; when φ and $\psi=w$, we fhall have $B \times=$ $=c \times\left(\mathrm{I}+c^{\prime}\right) \times\left(\mathrm{A}^{\prime}+\frac{\mathrm{B}^{\prime}}{2}\right) \times \mathrm{r}$, and fo. $\mathrm{B}=c \times\left(\mathrm{I}+c^{\prime}\right) \times$ $\left(\mathrm{A}^{\prime}+\frac{\mathrm{B}^{\prime}}{2}\right)$.

THE values of A^{\prime} and B^{\prime}, in feries according to the method of M. de la Grange, are

$$
\begin{aligned}
& \mathrm{A}^{\prime}=\mathrm{I}+\frac{\mathrm{x}^{4}}{2^{2}} c^{\prime 2}+\frac{\mathbf{1}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\frac{\mathbf{1}^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} c^{6}+\& c \text {. } \\
& \frac{\mathrm{I}}{2} \mathrm{~B}^{\prime}=\left(\frac{\mathrm{x}}{2} c^{\prime}+\frac{1}{2} \cdot \frac{1 \cdot 3}{2 \cdot 4} c^{\prime 3}+\frac{\left.\mathrm{x} \cdot 3 \cdot \frac{1 \cdot 3 \cdot 5}{2 \cdot 4} \cdot \frac{3}{2 \cdot 4 \cdot 6} c^{\prime 5}+\& \mathrm{c} .\right)}{}\right. \text {) }
\end{aligned}
$$

which feries converge very faft, on account of the fmallnefs of c^{\prime} in refpect of c.
I_{F}, however ${ }_{2}$ it be required to find the watue of B by feries ftill more converging, we may eatily do fo: For it is manifeft that B and B^{\prime} are fimilar functions of c and c^{\prime} : and that if we make $c^{\prime}=\frac{x^{\prime}-\sqrt{1-c^{\prime \prime}}}{1+\sqrt{1-c^{\prime 2}}}, c^{\prime \prime \prime}=\frac{x-\sqrt{1-c^{\prime 2}}}{1+\sqrt{1-c^{\prime 2}}}$, and fo on, and put - A^{*},
$A^{\prime \prime}, A^{\prime \prime \prime}, 8 c_{1} ; B^{\prime \prime}, B^{\prime \prime \prime}, \& c_{i}$ to denote the correfponding valucs of A^{\prime} and B^{\prime}., we flhall have

$$
\begin{aligned}
& \mathrm{B}=c \cdot\left(\mathrm{I}+c^{\prime}\right)\left(\mathrm{A}+\frac{\mathrm{B}^{\prime}}{2}\right) \\
& \mathrm{B}^{\prime}=c^{\prime} \cdot\left(\mathfrak{1}+c^{\prime}\right)\left(\mathrm{A}^{\prime \prime}+\frac{\mathrm{B}^{\prime \prime}}{2}\right) \\
& \mathrm{B}^{\prime \prime}=c^{\prime \prime} \cdot\left(\mathrm{I}+c^{\prime \prime \prime}\right)\left(\mathrm{A}^{\prime \prime \prime}+\frac{\mathrm{B}^{\prime \prime \prime}}{i}\right) \& c^{2}:
\end{aligned}
$$

Now, remarking that $A^{\prime}=\left(1+c^{\prime \prime}\right) A^{\prime \prime} ; A^{\prime \prime}=\left(1+c^{\prime \prime \prime}\right) A^{\prime \prime \prime}$, \&c. we have the following values of B :
$\mathrm{B}=c \times\left(\mathrm{I}+\frac{c^{\prime}}{2}\right) \cdot\left(\mathrm{I}+c^{\prime}\right) \cdot\left(\mathrm{I}+c^{\prime \prime}\right) \mathrm{A}^{\prime \prime}+\frac{c}{2} \frac{r^{\prime}}{2}\left(1+c^{\prime}\right)\left(\mathrm{I}+c^{\prime \prime}\right) \mathrm{B}^{\prime \prime}$.
$\mathrm{B}=c \times\left(\mathrm{I}+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}\right)\left(\mathrm{I}+c^{\prime}\right)\left(\mathrm{I}+c^{\prime \prime}\right)\left(\mathrm{I}+c^{\prime \prime \prime}\right) \mathrm{A}^{\prime \prime \prime}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}\left(\mathrm{I}+\epsilon^{\prime}\right)$
$\left(1+c^{\prime \prime}\right)\left(1+c^{\prime \prime \prime}\right) \mathrm{B}^{\prime \prime \prime}$ 。
And we may proceed in this manner to find the value of B in feries thatt fhall contrerge as faft as we pleafe.

As the quantities $c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}, \& c$. diminifh very faft, the feries $A^{\prime \prime}, A^{\prime \prime}, A$ will approach rapidly to unity, and $B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}$ will decteafe tapidly to nothing: Hence we have ultiprately,

$$
B \mp c \times\left(1+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2} \cdot \frac{c^{\prime \prime \prime}}{2}+\& c_{c}\right) \times\left(1+c^{\prime}\right)\left(1+c^{\prime \prime}\right)\left(1+c^{\prime \prime \prime}\right)
$$

\& c .

$$
\begin{aligned}
& \text { or, fince } A=\left(1+c^{\prime}\right)\left(\mathrm{r}+c^{\prime \prime}\right)\left(\mathrm{I}+c^{\prime \prime \prime}\right) \& \mathrm{c} . \\
& \qquad B=c \times\left(\mathrm{I}+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \frac{t^{\prime \prime}}{2}+\frac{r^{\prime}}{2} \cdot \frac{j^{\prime \prime}}{2} \cdot \frac{c^{\prime \prime}}{2}+\& \mathrm{c} .\right) \times \mathrm{A} .
\end{aligned}
$$

We fhall beft fee the degree of convergency of the quantities $c, c^{\prime}, c^{\prime \prime}, \& c$. if we take the infinite feries by which they are derived one from another. Now, if $y=\frac{1-\sqrt{1-x^{2}}}{1+\sqrt{1-x^{2}}}$, then alfo $y=$ $\frac{x^{2}}{4}+\frac{x^{4}}{8}+\frac{5 x^{6}}{64}+\frac{7 x^{2}}{128}+\& c .:$ whence it is obvious, that in the feries of quantities $c, c^{\prime}, c^{\prime}, \& c$. the fourth part of the fquare of Z. 2 any
any term is nearly equal to the following term, and the rapidity with which the feries decreafes is therefore very great.

The method, then, that refults from the preceding inveftigations for computing A and B , is fhortly this:

$$
\begin{aligned}
& \text { Put } c^{\prime}=\frac{1-\sqrt{1-c^{2}}}{1+\sqrt{1-c^{2}}} \text { : and compute } \\
& \mathrm{I}+\frac{\mathbf{1}^{2}}{2^{2}} c^{\prime 2}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\frac{\mathbf{n}^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 5^{2} \cdot 6^{2}} c^{\prime 6}+\& \mathrm{c} .=\mathrm{M}, \\
& \text { and } \frac{1}{2} c^{\prime}+\frac{1}{2} \cdot \frac{1.3}{2.4} c^{\prime 3}+\frac{1.3}{2.4} \cdot \frac{1.3 .5}{2.4 .6} c^{\prime 5}+\& \mathrm{c} .=\mathrm{N} \text {. } \\
& \text { Then } A=\left(I+c^{\prime}\right) \times M \text {, and } \\
& \mathbf{B}=c \times\left(\mathrm{I}+c^{\prime}\right) \times(\mathrm{M}+\mathrm{N}) .
\end{aligned}
$$

The feries \mathbf{M} and \mathbf{N} will converge fo faft, even in the moft unfavourable cafe that occurs in the theory of the planets, that the firft three terms will give the fums fufficiently exact; and it will therefore not be neceffary to have recourfe to the more converging feries $\mathrm{A}^{\prime \prime}$ and $\mathrm{B}^{\prime \prime}$.

Such is the method that I had firft imagined, for facilitating thefe fort of computations. I have fince found, however, that by means of the common tables of fines and tangents, the quantities A and B may be computed in a ftill eafier way from the expreffions,

$$
\begin{aligned}
& \mathrm{A}=\left(1+c^{\prime}\right)\left(1+c^{\prime \prime}\right)\left(1+c^{\prime \prime \prime}\right) \& \varepsilon . \\
& \mathrm{B}=c \times\left(\mathrm{I}+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}+\& \mathrm{c} \cdot\right) \times \mathrm{A} .
\end{aligned}
$$

FOR if $c=$ fin m, then $\sqrt{\sqrt{1-c^{2}}}=\operatorname{cof} m$ and $c^{\prime}=\frac{1-\operatorname{cof} m}{1+\operatorname{cof} m}$ $=\tan ^{2} \frac{m}{2}$: confequently $\mathrm{I}+c^{\prime}=\mathrm{fec}^{2} \frac{m}{2}$. In like manner, if $x^{\prime}=\operatorname{fin} m^{\prime}, c^{\rho}=\operatorname{fin} m^{\prime \prime}, \& c$. we fhall have $\operatorname{fin} m^{\prime}=\tan ^{2} \frac{m}{2} ;$

RECTIFICATION of the ELLIPSIS, \&c. 189
fin $m^{\prime \prime}=\tan ^{2} \frac{n^{\prime}}{2}$, and fo on: And $\mathrm{I}+c^{0}=\mathrm{fec}^{2} \frac{m^{\prime}}{2} ; 1+\dot{c}^{\prime \prime \prime}=$ $\mathrm{fec}^{2} \frac{m^{\prime \prime}}{2}$, and fo on. Thus:

$$
\mathrm{A}=\operatorname{fec}^{2} \frac{m}{2} \times \operatorname{fec}^{2} \frac{m^{\prime}}{2} \times \operatorname{fec}^{2} \frac{n^{\prime \prime}}{2} \times \& c
$$

To find the logarithm of A, we have then only to add together the logarithm fecants of the angles $\frac{m}{2}, \frac{m^{\prime}}{2}, \frac{m^{\prime \prime}}{2}, \& c$. to diminifh the fum by as many times the radius as there are fecants, and to take twice the remainder. As the angles $m, m^{\prime}, m^{\prime \prime}, \& c$. decreafe very faft, it will feldom be neceffary to compute more than two or three of them.
The feries ($1+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2} \frac{c^{\prime \prime \prime}}{2}+\& \mathrm{c}$.) is alfo readily computed from the tables; becaufe the logarithms of $c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}, \& c$. being the fines of the angles $m^{\prime}, m^{\prime}, \& c$. are all found in the tables.

As an example, let $c=0.72333$: which is the fraction that arifes from dividing the mean diftance of Venus from the fun, by the mean diftance of the Earth; and this is the moft unfavourable cafe that occurs in the theory of the planets: Then to compute A, I find, in the table of natural fines, that 0.72333 correfponds to $46^{\circ} 19^{\prime} 48 \frac{1}{3}^{\prime \prime}$: we have therefore

L. $\tan \frac{{ }^{\prime \prime}}{2}=1 . \tan 23^{\circ} 9^{\prime} 54^{\frac{1}{6}}=9.63^{1} 3^{206}$ $\text { L. fin } m^{\prime}=\frac{2}{9.2626412}$ L. $m^{\prime}=10^{\circ} 32^{\prime} 57^{\circ}$	L. $\operatorname{fec} \frac{m}{2}=10.0365070$
L. $\tan \frac{m^{\prime}}{2}=1 . \tan 5^{\circ} 16^{\prime} 28 \frac{1}{2}{ }^{\circ}=8.9652949$ $\xrightarrow[7 \cdot 9305898]{ }$ L. $m^{\prime}=0^{\circ} 29^{\prime}{ }^{18^{\prime \prime}}$	L. fec $\frac{r^{\prime \prime}}{2}=10.0018429$

L. \tan

190 RECTIFICATION of the ELLIPSIS, \&c.
 be neglected.

Hence $A=1.19318$

To compute B, let $\mathrm{S}=\mathrm{I}+\frac{\sigma^{\prime}}{2}+\frac{c^{\prime}}{2} \frac{c^{\prime \prime}}{2}+\& \mathrm{c}$.

$$
\begin{aligned}
& 1=1.000000 \\
& \text { L. } c^{\prime}=1 \text {. fin } m^{\prime}=9.26264 \mathrm{I} 2 \text {; } \\
& \frac{c}{2}=0.091540 \\
& \text { L. } c^{\prime}=\mathrm{L} \text { fin } m^{A}=7.9305898 \\
& \frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}=0.00039^{\circ} \\
& \text { 1. } c^{\prime} \cdot c^{\prime \prime}=7.1932310 \\
& S=1.09183^{\circ} \\
& \mathrm{B}=c \times \mathrm{S} \times \mathrm{A} \text {. } \\
& \text { L. } c=\overline{\mathrm{I}} .8593365 \\
& \text { L. } S=0.038 \mathrm{~F} 94^{4} \\
& \text { L. } A=0.0767076 \\
& \text { L. } B=\overline{\mathrm{I}} .9743^{8} 8 \text {, and } B=0.942408
\end{aligned}
$$

