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XV.—The Correlation between Relatives on the Supposition of Mendelian Inherit-
ance. By R. A. Fisher, B.A. Communicated by Professor J. ARTHUR

THOMSON. (With Four Figures in Text.)

(MS. received June 15, 1918. Read July 8, 1918. Issued separately October 1, 1918.)
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Several attempts have already been made to interpret the well-established
results of biometry in accordance with the Mendelian scheme of inheritance. It
is here attempted to ascertain the biometrical properties of a population of a more
general type than has hitherto been examined, inheritance in which follows this
scheme. It is hoped that in this way it will be possible to make a more exact
analysis of the causes of human variability. The great body of available statistics
show us that the deviations of a human measurement from its mean follow very
closely the Normal Law of Errors, and, therefore, that the variability may be
uniformly measured by the standard deviation corresponding to the square root
of the mean square error. When there are two independent causes of variability
capable of producing in an otherwise uniform population distributions with standard
deviations <rx and o-2> it is found that the distribution, when both causes act together,
has a standard deviation J<r\ +ar^. It is therefore desirable in analysing the
causes of variability to deal with the square of the standard deviation as the
measure of variability. We shall term this quantity the Variance of the normal
population to which it refers, and we may now ascribe to the constituent causes
fractions or percentages of the total variance which they together produce. It
is desirable on the one hand that the elementary ideas at the basis of the calculus
of correlations should be clearly understood, and easily expressed in ordinary

language, and on the other that loose phrases about the " percentage of causation,"
TRANS. ROY SOC. ED1N., VOL. LII, PART II (NO. 15). 62



400 R. A. FISHER ON THE CORRELATION BETWEEN

which obscure the essential distinction between the individual and the population,
should be carefully avoided.

Speaking always of normal populations, when the coefficient of correlation
between father and son, in stature let us say, is r, it follows that for the group of
sons of fathers of any given height the variance is a fraction, 1 — r2, of the variance
of sons in general. Thus if the correlation is '5, we have accounted by reference
to the height of the father for one quarter of the variance of the sons. For the
remaining three quarters we must account by some other cause. If the two parents
are independent, a second quarter may be ascribed to the mother. If father and
mother, as usually happens, are positively correlated, a less amount must be added
to obtain the joint contribution of the two parents, since some of the mother's
contribution will in this case have been already included with the father's. In a
similar way each of the ancestors makes an independent contribution, but the total
amount of variance to be ascribed to the measurements of ancestors, including
parents, cannot greatly exceed one half of the total. We may know this by
considering the difference between brothers of the same fraternity : of these the
whole ancestry is identical, so that we may expect them to resemble one another
rather more than persons whose ancestry, identical in respect of height, consists
of different persons. For stature the coefficient of correlation between brothers is
about '54, which we may interpret * by saying that 54 per cent, of their variance
is accounted for by ancestry alone, and that 46 per cent, must have some other
explanation.

It is not sufficient to ascribe this last residue to the effects of environment.
Numerous investigations by GALTON and PEARSON have shown that all measurable
environment has much less effect on such measurements as stature. Further, the
facts collected by GALTON respecting identical twins show that in this case, where
the essential nature is the same, the variance is far less. The simplest hypothesis,
and the one which we shall examine, is that such features as stature are determined
by a large number of Mendelian factors, and that the large variance among children
of the same parents is due to the segregation of those factors in respect to which
the parents are heterozygous. Upon this hypothesis we will attempt to determine
how much more of the variance, in different measurable features, beyond that which
is indicated by the fraternal correlation, is due to innate and heritable factors.

In 1903 KARL PEARSON devoted to a first examination of this hypothesis the
* The correlation is determined from the measurements of n individuals, xlt x2, . . . xm and of their brothers,

yv y2, . . ., yr ; let us suppose that each pair of brothers is a random sample of two from an infinite fraternity, that
is to say from all the sons which a pair of parents might conceivably have produced, and that the variance of each
such fraternity is V, while that of the sons in general is a. Then the mean value of (as — yf will be 2V, since each
brother contributes the variance V. But expanding the expression, we find the mean value of both x2 and y1 is <r2,

V
while that of xy is r<r2, where r is the fraternal correlation. Hence 2 V = 2IT2(1 — r), or -j = l ~r. Taking the values

•5066 and '2804 for the parental and marital correlations, we find that the heights of the parents alone account for
40'10 per cent, of the variance of the children, whereas the total effect of ancestry, deduced from the fraternal
correlation, is 54'33 per cent.
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twelfth of his Mathematical Contributions to the Theory of Evolution (" On a
Generalised Theory of Alternative Inheritance, with special reference to Mendel's
Laws," Phil. Trans., vol. cciii, A, pp. 53-87. The subject had been previously
opened by UDNY YULE, New Phytologist, vol. i). For a population of n equally
important Mendelian pairs, the dominant and recessive phases being present in equal
numbers, and the different factors combining their effects by simple addition, he
found that the correlation coefficients worked out uniformly too low. The parental
correlations were $ and the fraternal j ^ . *

These low values, as was pointed out by YTJLE at the Conference on Genetics in
1906 (Horticultural Society's Report), could be satisfactorily explained as due to the
assumption of complete dominance. It is true that dominance is a very general
Mendelian phenomenon, but it is purely somatic, and if better agreements can be
obtained without assuming it in an extreme and rigorous sense, we are justified in
testing a wider hypothesis. YULE, although dealing with by no means the most
general case, obtained results which are formally almost general. He shows the
similarity of the effects of dominance and of environment in reducing the correlations
between relatives, but states that they are identical, an assertion to which, as I shall
show, there is a remarkable exception, which enables us, as far as existing statistics
allow, to separate them and to estimate how much of the total variance is due to
dominance and how much to arbitrary outside causes.

In the following investigation we find it unnecessary to assume that the different
Mendelian factors are of equal importance, and we allow the different phases of each
to occur in any proportions consistent with the conditions of mating. The hetero-
zygote is from the first assumed to have any value between those of the dominant and
the recessive, or even outside this range, which terms therefore lose their polarity,
and become merely the means of distinguishing one pure phase from the other. In
order to proceed from the simple to the complex we assume at first random mating,
the independence of the different factors, and that the factors are sufficiently numerous
to allow us to neglect certain small quantities.

* The case of the fraternal correlations has been unfortunately complicated by the belief that the correlation on a
Mendelian hypothesis would depend on the number of the fraternity. In a family, for instance, in which four
Mendelian types are liable to occur in equal numbers, it was assumed that of a family of four, one would be of each
type ; in a family of eight, two of each type ; and so on. If this were the case, then in such families, one being of the
type A would make it less likely, in small families impossible, for a second to be of this type. If, as was Mendel's
hypothesis, the different qualities were carried by different gametes, each brother would have an independent and
equal chance of each of the four possibilities. Thus the formulae giving the fraternal correlations in terms of the
number of the fraternity give values too small. The right value on Mendel's theory is that for an infinite fraternity.
As PEARSON suggested in the same paper, " probably the most correct way of looking at any fraternal correlation
table would be to suppose it a random sample of all pairs of brothers which would be obtained by giving a large, or
even indefinitely large, fertility to each pair, for what we actually do is to take families of varying size and take as
many pairs of brothers as they provide." In spite of this, the same confusing supposition appears in a paper by
SNOW " On the Determination of the Chief Correlations between Collaterals in the Case of a Simple Mendelian
Population Mating at Random" (E. C. SNQW, B.A., Proc. Boy. Soc, June 1910); and in one by JOHN BROWNLBE,
" The Significance of the Correlation Coefficient when applied to Mendelian Distributions" (Proc Boy. Soc. Edin.,
Jan. 1910).
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1. Let us suppose that the difference caused by a single Mendelian factor is
represented in its three phases by the difference of the quantities a, d, - a, and
that these phases exist in any population with relative frequency P, 2Q, E, where
P+2Q + R = 1 .

Then a population in which this factor is the only cause of variability has its
mean at

m = Pa + 2QJ - Ra,
so that

P(a - m) + 2Q(d - m) - R(a + m) = 0.
Let now

P(a - vif + 2Q(d - mf + R(a + m)- = a2 (I)

a2 then is the variance due to this factor, for it is easily seen that when two such
factors are combined at random, the mean square deviation from the new mean is
equal to the sum of the values of a2 for the two factors separately. In general the
mean square deviation due to a number of such factors associated at random will be
written

<T2 = 2a 2 (II)

To justify our statement that a2 is the contribution which a single factor makes
to the total variance, it is only necessary to show that when the number of such
factors is large the distributions will take the normal form.

If now .we write
^ = P(a - mf + 2Q(d - mf - R(a + mf
Hi = P(a - my + 2Q(d- mf + E(a + mf,

and if M3 and M4 are the third and fourth moments of the population, the variance
of which is due solely to the random combination of such factors, it is easy
to see that

Now the departure from normality of the population may be measured by means of
the two ratios

/?T = Mf- and ft = ^ .

The first of these is

and is of the order —, where n is the number of factors concerned, while the second
n

differs from its Gaussian value 3 also by a quantity of the order —.
n

2. If there are a great number of different factors, so that <r is large compared to
every separate a, we may investigate the proportions in which the different phases
occur in a selected array of individuals. Since the deviation of an individual is
simply due to a random combination of the deviations of separate factors, we must
expect a given array of deviation, let us say x, to contain the phases of each factor
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in rather, different proportions to those in which they exist in the whole population.
The latter will be represented now by P, 2Q, R, while P, 2Q, E stand for the pro-
portions in some particular array under consideration.

Consider a population which is the same in every respect as the one we are
dealing with save that all its members have one particular factor in the heterozygous
phase, and let us modify it by choosing of each array a proportion P which are to
become dominants and to increase by a — d, and a proportion R which become recessive
and diminish by a -\- d : the mean is thereby moved to the extent m — d.

Of those which after this modification find themselves in the array with
deviation x, the dominants formerly had a deviation x — a + m, the heterozygates
x — d + m, and the recessives x + a + ni, and since the variance of the original popula-
tion was o-2 - a2, the frequencies of these three types are in the ratio

{x-a + inf (x-d + nr)2 (x + a + m)2

a2

or, when er is great compared to a, so that—g may be neglected,

Q-Q [i+£(*- (HI)

giving the proportions in which the phases occur in the array of deviation x.
3. Hence the members of this array mating at random will have offspring

distributed in the three phases in the proportion

PQ [2 + -2(a-m + d- m)l + 2Q2|~1 + ?L(d - m)~| + P R ^ - *(2m)~| + QR[~2 + \{d - m a - m)\

Q2[l +£<d - m)] +QE[2 +*2 (d - m-a- m)] +R2[l - J(o + m)],

and therefore the deviation of the mean of the offspring is

Omitting the terms in (PR— Q2), which for random mating is zero, the regression
due to a single factor is

4. To interpret this expression, consider what is involved in taking a, d, —a as
representing the three phases of a factor. Genetically the heterozygote is inter-
mediate between the dominant and the recessive, somatically it differs from their
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mean by d. The steps from recessive to heterozygote and from heterozygote to
dominant are genetically identical, and may change from one to the other in passing
from father to son. Somatically the steps are of different importance, and the
soma to some extent disguises the true genetic nature. There is in dominance a
certain latency. We may say that the somatic effects of identical genetic changes
are not additive, and for this reason the genetic similarity of relations is partly
obscured in the statistical aggregate. A similar deviation from the addition of
superimposed effects may occur between different Mendelian factors. We may use
the term Epistacy to describe such deviation, which although potentially more
complicated, has similar statistical effects to dominance. If the two sexes are
considered as Mendelian alternatives, the fact that other Mendelian factors affect
them to different extents may be regarded as an example of epistacy.

The contributions of imperfectly additive genetic factors divide themselves for
statistical purposes into two parts : an additive part which reflects the genetic nature
without distortion, and gives rise to the correlations which one obtains ; and a residue
which acts in much the same way as an arbitrary error introduced into the measure-
ments. Thus, if for a, d, —a we substitute the linear series

c + b, c, c-b,

and choose b and c in such a way that

is a minimum, we find for this minimum value §2,

g

PQ+.2PR + QR'

which is the contribution to the variance of the irregular behaviour of the soma ; and
for the contribution of the additive part, /32, where

£2 = P( c + b - mf + 2Q(c - TO)2 + R(c - b - w)2,
we obtain

and since

we have
P - 2«*(PQ + 2PR + QB) - 4Q(P -

5. These expressions may be much simplified by using the equation

Q2 = PR,
for then

/32 = 2a2Q2-4Q,(P-R)arf+2Q(P-R)2r/2 (VI)

which appears in the regression in Article 3 (IV),
and

. . . . (VII)
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In general

and if

and

then

• (VIII)

• (ix)

• (X)

The regression due to a single factor of the mean of the offspring of parents of a
given array is

o 1 2 " " 2 '

and adding up the effects of all factors we find

X_ T 2

o-2 2 '

so that the parental correlation for a static population mating at random is simply

I £ <xi>
We may regard this formula otherwise. The correlation between the actual
somatic measurements such as a, d, —a, and the representative linear quantities

c + b, c, c — b is -. Thus the correlation of parent and child is made up of three

factors, two of them representing the relations between the real and the repre-
sentative measurements, and the third the correlation between the representative
measurements of the two relatives. Thus the effect of dominance is simply to reduce

certain relationship correlations in the ratio —^.

The values of the correlations between the representative measurements for
random mating, which may be called the genetic correlations, are given in the
accompanying table :—

Generations.

Own . . . .

Father's .

Grandfather's

Great-grandfather's

Great-great-grandfather's

Half 2nd
Cousin.

7*4

11-2 8

7 * 5 0

7.1,
1 /

/ 1 0 2 4

Half 1st
Cousin.

V i e

7:3 2

7 6 4

7 1 2 8

7250

Half
Brother.

74
78

7i.
732

Ancestral
Line.

1

72
74

Brother.

74

7«
716
1/

/ 3 2

1st Cousin.

7e
7 i .
7 3 2

7 6 4

/ X 2 8

2nd Cousin.

132

I 64

7X2S
X /

/ 2 5 6

/ 5 X 2

6. The above reasoning as to the effects of dominance applies without modification
to the ancestral line, but in a special class of collaterals requires reconsideration.
The reason is that the deviations from linearity are now themselves correlated. In
other words, a father who is heterozygote instead of recessive may have offspring
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who show a similar variation ; but they may also be changed from heterozygote to
dominant. In the case of siblings, however, whichever change takes place in one is
more likely to occur in the other.

Thus, writing i,j, h for the deviations

a - m, d -m, - (a + m),
SO t h a t

*P + 2/Q + A-R = 0 (XII)

and p2, pq, q2 for P, Q, R, we can draw up association tables for different pairs of
relatives, and readily obtain the correlations between them by substituting the
fractions in the nine sections of the table as coefficients of a quadratic function
in i,j, Jc.

Thus the association table between parent and child is

from which we obtain the

P\

quadratic

pqip+q)

+ pq(p + q)l2 + 2pq

—

pq*

which is equal to

while for brother and brother we have the table

p*q(p + \q)

which gives us a quadratic expression exceeding that for the parental correlation by
the terms

^ ( « 2 - lij + 4/2 + 2ik - 2jJc + A-2),
4

which are equal to |^2, and therefore give for the fraternal correlation

The effect of dominance is to reduce the fraternal correlation to only half the
extent to which the parental correlation is reduced. This allows us to distinguish, as
far as the accuracy of the existing figures allows, between the random external effects
of environment and those of dominance. This halving of the effect of dominance, it
is important to notice, is independent of the relative importance of different factors,
of their different degrees of dominance, and of the different proportions in which
their phases occur. The correlation between the dominance deviations of siblings is,
in all cases, \.

7. To investigate the cases of uncles and cousins we must deal with all the possible
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types of mating down to the second generation. The three Mendelian phases will
yield six types of mating, and ordinary cousinships are therefore connected by one of
six types of sibship. The especially interesting case of double cousins, in which two
members of one sibship mate with two members of another, can occur in twenty-one
distinct ways, since any pair of the six types of sibship may be taken. The pro-
portionate numbers of the three Mendelian phases in the children produced by the
random matings of such pairs of sibships is given in the accompanying table :•—

Type of sibship.

Frequency .

P*
4p*q

2p*q*

ipY
ipqs

1 . 0 . 0

p*

1 . 0 . 0

3 . 1 .0

1 . 1 . 0

1 . 1 . 0

1 . 3 . 0

0 . 1 . 0

p.q.O

1

3

9

3

3

3

0

3P

4

. 1 .

ip3q

. 1.

. 6 .

. 4 .

. 4 .

. 1 0 .

. 3 .

p + l
4

0

0

1

1

1

1

1

q

0 . 1

I . l

j 3 . 4

q
4

1 .2

1 .2

1 .4

0 . 1

P l

?, • 9,

. 0

<72

. 0

. 1

. 1

. 1

. 3

. 1

q

1 . 2 . 1

4^y
1 . 1 . 0

3 . 4 . 1

1 . 2 . 1

1 . 2 . 1

1 . 4 . 3

0 . 1 . 1

p \ q
2 ' 2 ' 2

0

1

3

1

1

1

0

P
4 '

. 1 . 1

ipq3

. 3 . 0

. 1 0 . 3

. 4 . 3

. 4 . 3

. 6 . 9

. 1.3

3p + q 3q
4 " 4

0 . 0 . 1

qi

0 . 1 . 0

0 . 3 . 1

0 . 1 . 1

0 . 1 . 1

0 . 1 . 3

0 . 0 . 1

O.p.q

The lowest line gives the proportions of the phases in the whole cousinship whose
connecting sibship is of each of the six types.

If we pick out all possible pairs of uncle (or aunt) and nephew (or niece) we obtain
the table

\PY

the quadratic from which reduces exactly to ^/32, showing that when mating is at
random the avuncular correlation is exactly one half of the paternal.

From the twenty-one types of double cousinship pairs may be picked, the pro-
portions of which are shown in the table :—

APV

which agrees with the table given by SNOW for ordinary first cousins. I cannot
explain this divergence, unless it be that SNOW is in error, my values for ordinary
first cousins leading to less than half this value for the correlation. Simplifying the
quadratic in i,j, k, which is most easily done in this case by comparison with the
avuncular table, we find for the correlation of double cousins

showing that double cousins, like brothers, show some similarity in the distribution
TRANS. ROY. SOC. EDIN., VOL. LII, PART II (NO. 15). 63
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of deviations due to dominance, and that with these cousins the correlation will in
general be rather higher than it is for uncle and nephew.

For ordinary first cousins I find the following table of the distribution of random
pairs drawn from the six types of ordinary cousinship :— •

+ 14pq + q2)

1 T2

which yields the correlation - -5 .
J 8 <r2

In a similar way the more distant kin may be investigated, but since for them
reliable data have not yet been published, the table already given of genetic correla-
tions will be a sufficient guide.

8. Before extending the above results to the more difficult conditions of
assortative mating, it is desirable to show how our methods may be developed so as
to include the statistical feature to which we have applied the term Epistacy. The
combination of two Mendelian factors gives rise to nine distinct phases, and there is
no biological reason for supposing that nine such distinct measurements should be
exactly represented by the nine deviations formed by adding i,j, or k to i',j', or k'.
If we suppose that i, j , k, i', f, k' have been so chosen as to represent the nine actual
types with the least square error, we have now to deal with additional quantities,
which we may term

C21 C22 "23

connected by the six equations, five of which are independent.

p-en + -2pqen + q*esl = 0 p'2elx + 2p'q'eu + q'2el3 = 0

+ q2e3s = 0 p'2esl + 2p'q'ea2 + q'2e33 = 0.

This is a complete representation of any such deviations from linearity as may
exist between two factors. Such dual epistacy, as we may term it, is the only kind
of which we shall treat. More complex connections could doubtless exist, but the
number of unknowns introduced by dual epistacy alone, four, is more than can be
determined by existing data. In addition it is very improbable that any statistical
effect, of a nature other than that which we are considering, is actually produced by
more complex somatic connections.

The full association table between two relatives, when we are considering two
distinct Mendelian factors, consists of eighty-one cells, and the quadratic expression to
which it leads now involves the nine epistatic deviations. A remarkable simplification
is, however, possible, since each quantity, such as e2i> which refers to a partially or
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wliolly heterozygous individual, is related to two other quantities, such as en and e<n,
by just the same equation as that by which/ is related to % and k, and occurs in the
9 x 9 table with corresponding coefficients. The elimination of the five deviations
^aij 612, e^ e%%, &22 is therefore effected by rewriting the 9 x 9 table as a 4 x 4 table,
derived from the quadratic in i and k corresponding to the relationship considered.

Thus the variance, found by squaring the individual variations, is derived from
the 3 x 3 table

2pq

which yields the 2 x 2 table

and the quadratic in e\\, e13, e31; e33

— (p + 2q)(p' + 2q')p3p'3fiu
2 + 3 similar terms + 2J)2</2;;'3(JJ' + 2q')ene3. + 3 similar terms

4pqp q L

+ 2/A/yy2(eue3, + ene

which also takes the form
- PW2eu - -i'^zf + 1pqp'z(pen + 2%)2 + 3 similar terms j

The parental table

yields

and the fraternal table

leads us to the simple expression

For uncles and cousins we obtain respectively \ and T ,̂ of the parental contribution,
while for double cousins the table

16

and a quadratic similar to that for the variance.
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9. With assortative mating all these coefficients will be modified. There will be
association between similar phases of different factors, so that they cannot be
treated separately. There will also be an increase in the variance.

We must determine the nature of the association between different factors,
and ascertain how it is related to the degree of assortative mating necessary to
maintain it. Then we shall be able to investigate the statistical effects of this
association on the variance of the population and on the correlations.

If M be the marital correlation, then in a population with variance V the frequency
of individuals in the range dx is

and the frequency in the range dy is
i -Si

but the frequency of matings between these two groups is not simply MN, as would
be the case if there were no marital correlation, but

1 x'-i^xy+y'
2V

which is equal to
MN

In studying the effect of assortative mating we shall require to know the
frequency of matings between two groups, each with a variance nearly equal to
that of the whole population, but centred about means a and b. The frequencies
of such groups in any ranges dx, dy can be written down, and if the chance of any
mating depends only on x and y, the frequency of mating between these two groups
can be expressed as a double integral. If M and N are the frequencies in the two
groups, the frequency of mating between them is found to be

MNe v

10. We shall apply this expression first to determine the equilibrium value of
the frequencies of the three phases of a single factor. Of the six types of mating
which are possible, all save two yield offspring of the same genetic phase as their
parents. With the inbreeding of the pure forms D x D and R x R obviously no
change is made, and the same is true of the crosses D x H and R x H , for each of
these yields the pure form and the heterozygote in equal numbers. On the other
hand, in the cross D x R we have a dominant and a recessive replaced in the next
generation by two heterozygotes, while in the cross H x H half of the offspring
return to the homozygous condition. For equilibrium the second type of mating
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must be twice as frequent as the first, and if I, J, and K are the means of the
distributions of the three phases,

J2 JJ£

Since ^ and — are small quantities, we shall neglect their squares, and obtain

the equation T2 T1r
~PB r»2 A2.. x x /YTTT\
x n> — \£ ~ w IK . . . . . . ( A.XIJ.^

If, as before, the two types of gamete are in the ratio p : q, the frequencies of the
three phases are expressed by the equations

T2 TV\
= P + pWfJI, ==

V

=pq-p q p—T? . . . . . . (XIV)
V

2 J2 - IK

It is evident that

PI + 2QJ + RK = 0 . . . . . . (XV)

and this enables us, whenever necessary, to eliminate J, and to treat only I and K
as unknowns. These can only be found when the system of association between
different factors has been ascertained. It will be observed that the changes produced
in P, Q, and R are small quantities of the second order : in transforming the quantity

we may write — (p2l + <72K) for 2pqJ, leading to the form

which will be found more useful than the other.
11. The nine possible combinations of two factors will not now occur in the

simple proportions PP', 2PQ', etc., as is the case when there is no association ;
but whatever the nature of the association may be, we shall represent it by intro-
ducing new quantities, which by analogy we may expect to be small of the second
order, defined so that the frequency of the type

DD- is PF(1 +/u),
that of

DH' is 2PQ'(1 +/u),
and that of

DE' is PR'(1 +/„),
and so on.

Formally, we have introduced nine such new unknowns for each pair of factors,
but since, for instance, the sum of the above three quantities must be P, we have
the six equations

P'/ii + 2Q'/12 + R'/13 - 0 P/n + 2Qf21 + E/31 = 0 7
«0 P/12 + 2Q/22 + R/32 = 0[ . . . (XVI)
= 0 P/is + 2Q/23 + R/38 - 0 )
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five of which are independent. The unknowns are thus reduced to four, and we
shall use fu,fi3,f31,f33, since any involving a 2 in the suffix can easily be eliminated.

We have further
I =»+ 2 (P'i'fu + 2Q'//12 + Kk'fw)
J = i+2 (PV./21 + 2Q'//2 (XVII;
K = k + 2(PV/S1 + 2Q7/M + R'k'fs 3)

in which the summation is extended over all the factors except that one to which
i, j , Jc refer. -Since we are assuming the factors to be very numerous, after substitut-
ing their values for thef's we may without error extend the summation over all the
factors. The variance defined as the mean square deviation may be evaluated in
terms of the f's

V = 2(Pi2 + 2Q./2 + R&2) + 22{PP'(1 +/n)«" + 8 other terms},
which reduces to

2(P*2.+ 2Qj2 + R&2) + 22{PP'M"/U + 8 other terms},
so that

V = 2(P»T + 2QjJ + R/feK) (XVIII)
12. We can only advance beyond these purely formal relations to an actual

evaluation of our unknowns by considering the equilibrium of the different phase
combinations. There are forty-five possible matings of the nine types, but since we
need only consider the equilibrium of the four homozygous conditions, we need only
pick out the terms, ten in each case, which give rise to them. The method will be
exactly the same as we used for a single factor. Thus the matings D C x DD' have
the frequency

PP'.PF.(l+/n)(l+/n)e

which for our purpose is equal to

Collecting now all the matings which yield DD', we have for equilibrium

- f + H(l + I')(J + I')l + 2PQFQ'ri +/' + foo + -£(I + I')(J + J')l
V J L V J

• 2PQFQ'fl + f12 + f2l + -£(1 + J')( J + I')l + P2Q'2|"l + 2/\o + £ ( I + J')21

- Q2P'2[l + 2/21 + ^ ( J +1')2] + 2PQQ'»[l +/12 +/22 + ^(1 + J')(J + J')]

- 2Q2FQfl + f.2l + U + ^-(J + I')('J + J')l + Q2Q'2|"l + 2/,2 + ^ ( J + J')21
L ' -- \ | L " \ J

> (XIX)

Now since

(P •+• Q)2(F + Q')2 - PF(P + 2Q + R)(P' + 2Q' + R') = (Q2 - PR)F + (Q'2 - FR')P + (Q2 - PR)(Q'2 - P'R')

the terms involving only P and Q, reduce (XIII) to the second order of small
quantities,
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^ _ IK) + PQ'2(J'2 - I'K')] = - ^ [p ' 2 ( IP - KR)2 + 2;2(I'P' - K'R')2].

Also collecting the terms in I and J, we find

£ (P + Q)( I'P' + J'Q')]»,[

which yields on eliminating J,

^[p'(IP-KR)+^(rP'- K'R')P,

while the result of collecting and transforming the terms in f is

Hence, if the frequency of the type DD' is unchanged

^ . . . (XIX, a)

Now the corresponding equations for the types DR', RD', R'D' may be obtained
simply by substituting K for I, R for P, and vice versa, as required ; and each such
change merely reverses the sign of the left-hand side, substituting q or q' for j) or p'
as a factor.

Combining the four equations

A ( i p K R ) ( i F K ^ ) = |[ppyuiRy1 ; j Rpy81 + RRy33J . . (xx>

so that the set of four equations

•£(1P- KR)(I'F - K'R') =pp'fu = - Pq'fls ~ - qp'fn = gq'/33 . . . (XXI)

gives the whole of the conditions of equilibrium.
13. Substituting now in (XVII), which we may rewrite,

- -y ) /u
- -f)fsl - »'(/ - V)fsa]

we have
IP - KR - iV - kll + 2 ^(1P - KR)(I'F - K'R) [p\i -j) + q'(j' - k')] = i? - kR + A(IP - KR),

where
A(l - A) = ̂ 2(i'F - eK)[p'(i' - / ) + q'(f - *")]

or
A(l-A) = ̂ r • (XXII)

It would seem that there is an ambiguity in the value of A, so that the same
amount of assortative mating would suffice to maintain two different degrees of
association : we have, however, not yet ascertained the value of V. Since this also
depends upon A, the form of the quadratic is changed, and it will be seen that the
ambiguity disappears.
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Supposing A determinate, we may determine the association coefficients f for

PP /n-ri~A)» V ' . (XXIII)

Hence

r i p ^ ^ Zb'(*" "^ + (/0"" k'WF'" A'R/)

(1 - A
and so

i , + _
l - A

Similarly
K = k - A

1 - A
and

(XXIV)

So that the sense in which the mean value of the heterozygote is changed by
assortative mating depends only on whether j> or <J is greater. In spite of perfect
dominance, the mean value of the heterozygote will be different from that of the
dominant phase.

The value of the variance deduced from the expression

V = 2f P*T + 2Q/J + R£K)

reduces to a similar form. For evidently

V = 2>2 + . T • 2(*P - kW)[p(i -j) + q(j - k)].

Hence
V = < r 2 + l 4 l T 2 {XXV)

Therefore the equation for A finally takes the form
^ T 2 = VA( 1 - A) = A( 1 - A)o-2 + A2r2,

and may be otherwise written
A2€2 - A<T2 + /AT2 = 0 . . . . . ( X X V I )

Now, since the left-hand side is negative when A - 1, there can be only one root less
than unity. Since, moreover,

O.-AV = (A-A>2 (XXVI, a)
it is evident that this root is less than M, and approaches that value in the limiting
case when there is no dominance.

A third form of this equation is of importance, for
A

T- I
. (XXVI, b)- = —̂ - = T 1~A I

-A_r2

which is the ratio of the variance without and with the deviations due to dominance.



RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE. 415

14. Multiple Allelomorphism.—The possibility that each factor contains more
than two allelomorphs makes it necessary to extend our analysis to cover the
inheritance of features influenced by such polymorphic factors. In doing this we
abandon the strictly Mendelian mode of inheritance, and treat of GALTON'S " par-
ticulate inheritance" in almost its full generality. Since, however, well-authenticated
cases of multiple allelomorphism have been brought to light by the Mendelian method
of research, this generalised conception of inheritance may well be treated as an
extension of the classical Mendelism, which we have so far investigated.

If a factor have a large number, n, of allelomorphs, there will be n homozygous
phases, each of which is associated with a certain deviation of the measurement
under consideration from its mean value. These deviations will be written
ii, i2, • . . in, and the deviations of the heterozygous phases, of which there are
\n(n— l), will be written j 1 2 , ji3,j23, a n d so on. Let the n kinds of gametes exist
with frequencies proportional to p, q, r, s, and so on, then when the mating is
random the homozygous phases must occur with frequencies proportional to p2,
q2, r2, . . . , and the heterozygous phases to 2pq, 2pr, 2qr, . . .

Hence, our measurements being from the mean,

p\ + qHi + r\+ . . . + 2pqjn + 2prjl3 + . . . = 0 . . . . (XII*)

As before, we define a2 by the equation

P * i 1 * + g F i * + t \ * + . . . + 2 p q j l i * + 2 p r j 1 3 * + . . . =a? . . . . ( I * )

a n d c h o o s i n g I, i n , n , . . . , s o t h a t

is a minimum, we define fi2 by

the condition being fulfilled if

and so on.
Now •

and since
pl + qm + rn + . . . = 0,

which may now be written as a quadratic in i and j , represented by the typical
terms

Now we can construct an association table for parent and child as in Article 6,
though it is now more complicated, since thej's cannot be eliminated by equation (XII*),
and its true representation lies in four dimensions; the quadratic in i and / derived
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from it is, however, exactly one half of that obtained above, so that the contribution
of a single factor to the parental product moment is J/32. Hence the parental
correlation is

1 T2

where T and <r retain their previous meanings.
Moreover, from the fraternal table we may obtain a quadratic expression having

for its typical terms
ip*(l +P)H* + JpV»A + P V l + P) V12 +i?Vv'i3

\pq{\ +p + q + 2pq]}\2
!i+pqr(l + 2p)jj2jj3 + 2pqrsjnj3l,

which, when simplified by removing one quarter of the square of the expression in
(XII*) becomes

ip2(l + 2p)iJ
2+

or, simply,
U°-2 + P2)-

Here, again, the introduction of multiple allelomorphism does not affect the
simplicity of our results; the correlation between the dominance deviations of
siblings is still exactly \, and the fraternal correlation is diminished by dominance
to exactly one half the extent suffered by the parental correlation. The dominance
ratio plays the same part as it did before, although its interpretation is now more
complex. The fraternal correlation may be written, as in Article 6,

15. Homogamy and Multiple Allelomorphism.—The proportions of these different
phases which are in equilibrium when mating is assortative must now be determined.
As in Article 10, let Ii, I2, . . . be the mean deviations of the homozygous phases,
and J12, J13, . . . those of the heterozygous phases. Let the frequency of the first
homozygous phase be written as^»2(l +fn), and the others in the same way. Then,
since p is the frequency of the first kind of gamete,

P/ll+?/l2 + r/l3+ • • • =0>

and

and so on.
Let

2 28+ . . . =M,
and so on, then L, M, . . . represent the mean deviations of individuals giving rise
to gametes of the different kinds ; hence, by Article 9,

that is,
/12 = Al/V.LM (XIV*)

The association between the phases of two different factors requires for its repre-
sentation the introduction of association coefficients for each possible pair of phases.
Let the homozygous phases of one factor be numbered arbitrarily from 1 to m, and
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those of the other factor from 1 to n, then, as the phase (12) of the first factor occurs
with frequency 2pg(l+f12), and of the second factor, with frequency 2p'q'(l +/ '1 2) ,
we shall write the frequency with which these two phases coincide in one individual
as Apqp'q'(l + / 1 2 . 1 2 ) , or as 4pqp'q'{l +/12) (l +f12) (l + / i 2 . i2), so that

/ 12 . 12 =/l2 • 12 +/l2 + / 12 •

The proportional increase of frequency of the gametic combination ( l . l) is

PP'f 11 . 11 +P2'/'ll . 12 +Pr'f 11 . 13 + • • •

+ QP'f'ii, ii + 22/12 • 12 + 1r'fii.13 + . . .
and so on.

By virtue of the equations connecting the_/'s of a single factor, this expression,
which we shall term F n , has the same value, whether written with dashed or
undashed f's.

Individuals having the constitution (12. 12) may be formed by the union either
of gametes ( l . l) and (2 .2), or of gametes (l . 2) and (2 .1) ; hence the equations of
equilibrium are of the form

2/1 2 . 1 2 = F n + Fffl + ̂ (L + L')(M + M')

but
2/12 .12 = 2 / 12 . , 2 - 2 / 1 2 - 2 / 1

therefore

By analogy with Article 12, the solution

suggests itself, and on trial it leads to

and is thereby verified.
Hence we may evaluate L, L', . . . , for

L = plj + gj12 + ;-Jls + . . .

= ' + 2 f i ' ' W n . 11 + 'ifa. n+ • • j + ip'q'j'nipfu.iz + yfu 12+ • • •) +
but

therefore
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Let
L = Z + AL,

then

and

therefore
- A) = ^

therefore
A) = £T 2 (XXII*)

so that the association constant, A, appearing now in the constant ratio I: L, plays
exactly the same part in the generalised analysis as it did in the simpler case.

It may now be easily shown that the mean deviations, I and J, may be calculated
from the equations

T • , 2AZ i
I l = *' + r3A

and (XXIV*)

and that the variance reduces, as before, to
A T (XXV*)

J. — A.

16. Coupling.—In much modern Mendelian work coupling plays an important
part, although the results of different investigators do not seem as yet to converge
upon any one uniform scheme of coupling. The type found by MOBGAN in the
American Fruit Fly (Drosophila) is, however, of peculiar simplicity, and may be found
to be the general type of the phenomenon.

An individual heterozygous in two factors may owe its origin to the union of
either of two pairs of gametes, either (l . l) x (2 . 2) or (l . 2) x (2 . l ) ; when coupling
occurs, the gametes given off by such an individual, of all these four types, do not
appear in equal numbers, preference being given to the two types from which the
individual took its origin. Thus in a typical case these two types might each occur
in 28 per cent, of the gametes, and the other two types in 22 per cent. Coupling of
this type is reversible, and occurs with equal intensity whichever of the two pairs are
supplied by the grandparents. We may have any intensity from zero, when each
type of gamete contributes 25 per cent., to complete coupling, when only the two
original types of gamete are formed, and the segregation takes place as if only one
factor were in action.

The above analysis of polymorphic factors enables us to compare these two extreme
cases; for there are 9 phase combinations of a pair of dimorphic factors, or, if we
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separate the two kinds of double heterozygote, 10, which, apart from inheritance,
can be interpreted as the 4 homozygous and the 6 heterozygous phases of a
tetramorphic factor. The 4 gametic types of this factor are the 4 gametic com-
binations (1 . l), (1 . 2), (2 . 1), (2 . 2).

The mean deviations associated with these 4 gametic types are L + L', M + M', . . .,
and we therefore write

Further, if these gametic types occur with frequency,

S =

it is clear that the frequencies with which »the homozygous phases occur,
such as

1>W +/n . n) =P¥2 { 1 + f (L2 + I/* + 4LL')

are exactly those produced, if there really were a single tetramorphic factor.
In the same way the phases heterozygous in one factor also agree, for

W«' ( l +/n . 12) = 21> W { 1 + |L2 + L'M' + 2L( L' + M')) }

= 2pq {1 + |(L + L') (L + M')} = 2pq(i + pun").

Finally, taking half the double heterozygotes,

•2pqP'q'(l +/ ,„ . I2) = 2p2pV { 1 + ^(LM + L'M' + (L + M)(L' + M')) }

2PS { 1 + ̂ (L + L') (M + M') 1 = 2pg(l +

or, equally,

{
From this it appears that a pair of factors is analytically replaceable by a single

factor if the phase frequencies be chosen rightly; but the only difference in the
inheritance in these two systems is that in the one case there is no coupling, and in
the other coupling is complete. It would appear, therefore, that coupling is without
influence upon the statistical properties of the population.

17. The effects both of dominance and of environment may be taken into account
in calculating the coefficient of correlation ; if we call x the actual height of the
individual, y what his height would have been under some standard environment,
and z what his height would have been if in addition, without altering the extent to
which different factors are associated, each phase is given its representative value of
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Article 5. Then, since we are using the term environment formally for arbitrary
external causes independent of heredity, the mean x of a group so chosen that y = t
for each member will be simply t, but the mean y of a group so chosen that x = t for
each member will be cxt, where cx is a constant equal to the ratio of the variance
with environment absolutely uniform to that when difference of environment also
makes its contribution. Similarly for the group z = t, the mean value of y is t, but
for the group y = t the mean z is c^t, where

Now, we may find the parental and grandparental correlations from the fact that
the mean z of any sibship is the mean z of its parents; but we shall obtain very
different results in these as in other cases, according to the interpretation which we
put upon the observed correlation between parents. For, in the first place, this
correlation may be simply the result of conscious selection. If the correlation for
height stood alone this would be the most natural interpretation. But it is found
that there is an independent association of the length of the forearm * : if it is due
to selection it must be quite unconscious, and, as Professor PEARSON points out, the
facts may be explained if to some extent fertility is dependent upon genetic
similarity. Thus there are two possible interpretations of marital correlations.
One regards the association of the apparent characteristics as primary: there
must, then, be a less intense association of the genotype y, and still less of z.
The other regards the association as primarily in y or z, and as appearing somewhat
masked by environmental effects in the observed correlation. In the first place, let
us suppose the observed correlation in x to be primary.

Then if M is the correlation for x, c^ will be that for y, and this must be written
for fj- in the applications of the preceding paragraphs. Hence

A = e^/i,

and M, Cjy" and A are the marital correlations for x, y, and z.
Since the mean z of a sibship is equal to the mean z of its parents, we may

calculate the parental and grandparental correlations thus :—For group chosen so
that x = t: mean y, y = c\t; mean z,z = c^t; x of mate is Mt; z of mate is c\c?pt.
Therefore z of children is

Hence, since there is no association except of z between parents and child, the
parental correlation coefficient is

1

Now, since we know the mean z of the children to be
1 +M,

* PEARSON and LEE, " On the Laws of Inheritance in Man," Biometrika, ii, 374.



RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE. 421

the mean z of their mates is
1 2 i \

and the grandparental correlation coefficient will be

Similarly, that for the (n + l)th parent will be

giving the Law of Ancestral Heredity as a necessary consequence of the factorial
mode of inheritance.

18. If we suppose, on the other hand, that the association is essentially in y, the

coefficient of correlation between y of husband and y of wife must be — in order to

yield an apparent correlation M. Also
T 2

and

The parental correlation found as before is now

2 '

and the higher ancestors are given by the general form

although A is now differently related to c1; c%, and M.
In the third case, where the essential connection is between z of husband and z of

wife—and this is a possible case if the association is wholly due to selective fertility
or to the selection of other features affected by the same factors—the equation between
the correlations for y and z is changed, for now the marital correlation for y is equal
to Ac2 when we retain the definition

C2 = ^ A 7 2 -

Hence also
/i = Ac1c2,

and the correlation coefficients in the ancestral line take the general form

19. On the first of these theories a knowledge of the marital and the parental
correlations should be sufficient to determine cxc^, and thence to deduce the constant
ratio of the ancestral coefficients.
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Thus for three human measurements :—

Stature.
•2804
•5066

•7913

•2219
•6109

Span.
•1989

•4541

•7575

•1507

•5753

Forearm
•1977

•4180

•6980

•1377
•5689| ( 1 + A )

These figures are deduced from those given by PEARSON and LEE (loc. cit.), neglecting sex distinctions, which
are there found to be insignificant, and taking the weighted means.

These values for ^(1 +A) agree very satisfactorily with the two ratios of the
ancestral correlations which have been obtained, '6167 for eye colour in man, and
'6602 for coat colour in horses. It is evident that if we also knew the ratio of the
ancestral correlations for these features, we could make a direct determination of A
and ascertain to what extent it is the cause and to what extent an effect of the
observed marital correlation.

20. The correlations for sibs, double cousins, and more distant relations of the
same type, in which all the ancestors of a certain degree are common, may be found
by considering the variance of the group of collaterals descended from such ancestors.
The variance of a sibship, for example, depends, apart from environment, only upon
the number of factors in which the parents are heterozygous, and since the proportion
of heterozygotes is only diminished by a quantity of the second order, the mean
variance of the sibships must be taken for our purposes to have the value appropriate
to random mating,

|T2 + | £ 2 = V [ 2 c 2 ( 1 _ A ) + 3 ( 1 _ C 2 ) ]

plus the quantity — - V due to environment. But the variance of the population

is V/cx; and the ratio of the two variances must be 1 —f, where f is the fraternal
correlation. Hence

In the same way, the variance for a group of double cousins is unaffected by
selective mating, and we find the correlation coefficient for double cousins to be

(

showing how the effect of selective mating increases for the more distant kin.
On the first hypothesis, then, we must write,

A

? ' = «

and
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21. We shall use this formula for the fraternal correlation to estimate the relative
importance of dominance and environment in the data derived from the figures given
by PEARSON and LEE.

Assuming as the observed correlations

/*
v
/

we obtain as before

c , c 2 . . . .

A

and calculating Cx from the formula

we obtain the three values

1-031

Stature.
•2804
•5066
•5433

•7913
•2219

- 4 / -

1

Clc2(l+2A),

•155

Span.
•1989
•4541
•5351

•7575
•1507

•957

Cubit.
•1977
•4180
•4619

•6980
•1377

with a standard error of '072, and a mean of l'O48.
This relatively large standard error, due principally to our comparative ignorance

of the fraternal correlations (errors in M have scarcely any effect, and those in p
are relatively unimportant), prevents us from making on a basis of these results
a close estimate of the contributions to the total variance of the factors under
consideration.

Remembering that Cx is intrinsically less than unity, the second value is
inexplicably high, whilst the first and third are consistent with any value sufficiently
near to unity. The mean of these results is materially greater than unity, and
therefore gives no support to the supposition that there is any cause of variance in
these growth features other than genetic differences. If this is so, we should put
Ci= 1, and compare the observed values of /wi th those calculated from the formula

4 / = l + c2(l + 2A).

With their standard errors we obtain

Observed
Calculated
Difference

Stature.
•5433
•5356

. - -0077

Span.
•5351
•4964

- -0387

Cubit.
•4619
•4726

+ •0107

Standard Erroi
•016
•008
•018

The exceptional difference in the fraternal correlations for span might, perhaps,
be due to the effects of epistacy, or it may be that the terms which we have neglected,
which depend upon the finiteness of the number of factors, have some influence. It
is more likely, as we shall see, that the assumption of direct sexual selection is
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not justified for this feature. Accepting the above results for stature, we may ascribe
the following percentages of the total variance to their respective causes :—

A n c e s t r y . . . . . . . . . 5 4 p e r c e n t .

V a r i a n c e o f s i b s h i p :

J T 2 . . . . . . 3 1 p e r c e n t .

h* 15 „
Other causes

A.R

100 per cent.
Again it may be divided :

Genotypes (a2):

Essential genotypes (T 2 ) . . 62 per cent.

Dominance deviations (c2) . . 2 1 „

83 per cent.

Association of factors by homogamy . . . 17 „

Other causes . . . . . . . .

100 per cent.

These determinations are subject, as we have seen, to considerable errors of
random sampling, but our figures are sufficient to show that, on this hypothesis, it
is very unlikely that so much as 5 per cent, of the total variance is due to causes
not heritable, especially as every irregularity of inheritance would, in the above
analysis, appear as such a cause.

It is important to see that the large effect ascribed to dominance can really be
e2

produced by ordinary Mendelian factors. The dominance ratio, -g, which may be
determined from the correlations, has its numerator and denominator composed of
elements, <̂2 and a2, belonging to the individual factors. We may thereby ascertain
certain limitations to which our factors must be subject if they are successfully to
interpret the existing results. The values of the dominance ratio in these three cases
are found to be :

Stature. Span. Cubit. Standard Error.
Dominance ratio . . . -253 -274 -336 -045

22. The correlations for uncles and cousins, still assuming that the association of
factors is due to a direct selection of the feature x, may be obtained by the methods
of Article 14, using the two series already obtained : that for ancestors

12 2~"V"1~J'

and that for collaterals, like sibs and double cousins, which have all their ancestors of
a certain degree in common,

^,[1+36,(1+4A)J
and so on.
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Thus if a group be chosen so that ,r = t,
// of group is Cj/,
z of group is c^t,

1 + A
z of sibs is CjC2 t,

Z
also

y of sibs is \cx\l +c2(l + 2A)]*,
// of sibs mates is ^ct[] +c2(l + 2A)]c,/x/,

• .? of sibs mates is £cj[l+c-2(l+2A)]Atf.
Hence

2 of nephews is ̂ 1[2ci(l +A) + {1 +P 2 (1 + 2A)}A]/,
giving the correlation

Again for cousins, if a group be chosen so that x = t, we have

[ / 1 + A \ 2 1

CjC2( —-— j + £cxA(l - c2) %\ 2i / J/ I +A\2
z of uncles is excl '- 1 ,

and
r / i+A\ 2 i

7. of uncles mates is c^J —-— j 4- icxA(l - c2) \At,

hence
r /i + A\3 i

z of cousins is r.rj ) + XV^,A2(1 — c9) \t,

giving the correlation
The formulas show that these two correlations should differ little from those for

grandparent and great-grandparent, using the values already found, and putting
C-L = 1 we have

Stature. Span. Cubit.
Grandparent . . . -3095 -2612 -2378
Great-grandparent . . -1891 '1503 '1353
Uncle . . . . -3011 2553 -2311
Cousin . . . . -1809 -1445 -1288

23. On the third supposition, that the marital correlation is due primarily to an
association in the essential genotype z, we obtain results in some respects more
intelligible and in accordance with our existing knowledge.

From the fundamental equations

we may deduce

whence the following table is calculated :—
Stature. Span. ' Cubit. Standard Error.

H . . -2804 -1989 -1977 -0304
p . . -5066 -4541 -4180 -0115
f . . -5433 -5351 -4619 '0160
cic2 . . 7328 -7093 -6383 -038
A . . -3826 -2804 -3097 -028
|(1 +A) . -6913 -6402 "6549 -014
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and making use of the fraternal correlations to separate cx and c2, by the equations

or

we obtain

f!.

. -8796

•8331

•2450

10333

•6864

•3883

•8139

•7842

•2850

•078

077

•105

The standard error for the dominance ratio is now very high, since the latter is
proportional to the difference/"— p. If we assume a known value for cl5 and calculate
the dominance ratio from p and /« only, the standard error falls nearly to its value in
Article 18.

The three values for the ratio of the ancestral correlations '691, "640, '655 are
now higher than that obtained from observations of eye colour, and are more similar
to the value '660 obtained for the coat colour of horses. Without knowing the
marital correlations in these cases, it is not possible to press the comparison further.
It would seem unlikely that the conscious choice of a mate is less influenced by eye
colour than by growth features, even by stature. But it is not at all unlikely that
eye colour is but slightly correlated with other features, while the growth features
we know to be highly correlated, so that a relatively slight selection in a number of
the latter might produce a closer correlation in each of them than a relatively intense
selection of eye colour.

The value of cx for span is still greater than unity, l'O33, but no longer unreason-
ably so, since the standard error is about '078. If we were considering span alone the
evidence would be strongly in favour of our third hypothesis. A remarkable con-
firmation of this is that PEARSON and LEE (loc. cit., p. 375), considering organic and
marital correlations alone, show that the observed correlations could be accounted
for by the following direct selection coefficients :—

Stature. Span. Cubit.
•2374 -0053 -1043

Naturally these cannot be taken as final, since there are a large number of other
features, which may be connected with these and at the same time may be subject to
sexual selection. The correlations of cross assortative mating are in fact smaller
than they would be if direct selection to this extent were actually taking place. The
influence of other features prevents us from determining what proportion of the
observed association is due to direct selection, but if inheritance in these growth
features is capable of representation on a Mendelian scheme—and our results have
gone far to show that this is likely—it would be possible to distinguish the two parts
by comparing the parental and fraternal correlations with those for grandparents
and other kindred.

On our present supposition that the association is primarily in z, and for the case
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of span this seems likely, the correlations for uncle and cousin will be the same as
those for grandparent and great-grandparent, being given by the formulae

I + A>
and

* *\ 2 /
leading to the numbers

Stature. Span. Cubit.
Grandparent . . . -3502 -2907 -2737
Great-grandparent . . -2421 -1861 '1793

24. Neither these nor the similar table for the first hypothesis accord ill with
the value obtained for uncle and nephew, '265, from measurements of eye colour. It
may, however, be thought that neither of them give high enough value for cousins.
Certainly they do not approach some of the values found by Miss ELDERTON in her
memoir on the resemblance of first cousins {Eugenics Laboratory Memoirs, iv).
Series are there found to give correlations over '5, and the mean correlation for the
measured features is "336. From special considerations this is reduced to '270, but
if the similarity of first cousins is due to inheritance, it must certainly be less than
that between uncle and nephew. No theory of inheritance could make the correla-
tion for cousins larger than or even so large as that for the nearer relationship.

It will be of interest finally to interpret our results on the assumption that the
figures quoted (Article 20) represent actual coefficients of selection. Manifestly it
would be better to obtain the value of A experimentally from the ratio of the
ancestral correlations, using the collateral correlations to determine what are the
marital correlations for y. For the present we must neglect the possibility of an
independent selection in y; and although we know that the figures are not final, we
shall write s, the coefficient of selection, equal to '2374. '0053, and "1043 in our
three cases.

Further, let A = c c s + >x~s,

so that

whence we deduce

cte2

A . . .

the values of A being now in much closer agreement for the three features.
Further, from the fraternal correlation we have

cx 1-0112 1-0370 -8940

with a mean at *9821.
Again, for the dominance ratio

•2763 -3880 '2940 -3194 (mean),

leaving a trifle under 2 per cent, for causes not heritable, but requiring high values
about '32 for the dominance ratio.

Stature.
•7841
•2410
•6205

Span.
•7108
•2761

•6381

Cubit.
•6725
•2090
•6045
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25. The Interpretation of the Statistical Effects of Dominance.—The results
which we have obtained, although subject to large probable errors and to theoretical
reservations which render an exact estimate of these errors impossible, suggest that

e2

the ratio -g, the statistical measure of the extent of dominance, has values of about

'25 to '38. In his initial memoir on this subject. KARL PEARSON has shown that,
under the restricted conditions there considered, this ratio should be exactly \.
Subsequently UDNY YULE (Conference on Genetics) pointed out that the parental
correlation could be raised from the low values reached in that memoir to values
more in accordance with the available figures by the partial or total abandonment of
the assumption of dominance. To this view Professor PEARSON subsequently gave
his approval; but it does not seem to have been observed that if lower values are
required—and our analysis tends to show that they are not—the statistical effects are

governed not only by the physical ratio —, but by the proportions in which the three
a

Mendelian phases are present. This effect is an important one, and very considerably
modifies the conclusions which we should draw from any observed value of the
dominance ratio.

S2

The fraction -s-, of which the numerator and denominator are the contributions of
or

a single factor to e2 and o-2, is equal, as we have seen (Article 5, equations V-VII) to

(p + qfa2 - 2(p2 - q*)ad + (p* + q*)cP '

and depends wholly upon the two ratios - and *-. We may therefore represent the

variations of this function by drawing the curves for which it has a series of constant
values upon a plane, each point on which is specified by a pair of particular values
for these two ratios. The accompanying diagram (fig. 1, p. 430) shows such a series of

CM "Y)

curves, using — and log - as co-ordinates. The logarithm is chosen as a variable,

because equal intensity of selection will affect this quantity to an equal extent, what-
ever may be its value; it also possesses the great advantage of showing reciprocal

values of*- in symmetrical positions.

It will be seen that 3 is not by any means the highest value possible : when d = a,

and when *- is very great, any value up to unity may appear; but high values are

confined to this restricted region. When — is less than '3 the ratio is never greater
a

than '05, and we cannot get values as high as "15 unless - be as great as "5. On the
a
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other hand, all values down to zero are consistent with complete dominance, provided

that the values of ^ are sufficiently small.
q

We know practically nothing about the frequency distribution of these two ratios.
The conditions under which Mendelian factors arise, disappear, or become modified
are unknown. It has been suggested that they invariably arise as recessive mutations

in a dominant population. In that case ±- would initially be very high, and could

only be lowered if by further mutation, and later by selection, the recessive phase
became more frequent. These factors would, however, have little individual weight

if better balanced factors were present, until - had been lowered to about 10. In

face of these theories it cannot be taken for granted that the distribution of these
ratios is a simple one. It is natural, though possibly not permissible, to think of
their distributions as independent. We may profitably consider further the case in
which the distribution is symmetrical, in which the factor of known a and d is
equally likely to be more frequent in the dominant as in the recessive phase.

For this case we combine the numerators and denominators of the two fractions

(p + qfd1 - 2(p2- q-)ad + ljF+ q2)tP a " (pTqfa^^Ji2- q^ad +J^+ q2)d2 '

and obtain the joint contribution
2pqd

the curves for which are shown in fig. 2, representing the combined effect of two
similar factors, having their phases in inverse proportions. It will be seen that
complete dominance does not preclude the possibility of low value for the dominance
ratio : the latter might fall below '02 if the greater part of the variance were con-
tributed by factors having the ratio between p and q as high as 100 to 1. This ratio
is exceedingly high ; for such a factor only one individual in 10,000 would be a
recessive. We may compare the frequency of deaf mutism with which about one
child in 4000 of normal parents is said to be afflicted. It would be surprising if more
equal proportions were not more common, and if this were so, they would have by far
the greater weight.

The fact that the same intensity of selection affects the logarithm of - equally,

whatever its value may be, suggests that this function may be distributed approxi-
mately according to the law of errors. This is a natural extension of the assumption
of symmetry, and is subject to the same reservations. For instance, a factor in
which the dominant phase is the commonest would seem less likely to suffer severe
selection than one in which the recessive phase outnumbers the other. But if
symmetry be granted, our choice of a variable justifies the consideration of a normal
distribution.



430 R. A. FISHER ON THE CORRELATION BETWEEN

10
•05 •10 -16 •3 •50

\

•50

•4

0 -2 -4 -6
1 | 2 3 4

, 8
s i

•8 1 0
6 8 10

F IG. 1.—Values of logw (p/q) (upper figures) and of p/q (lower figures),

10

25

-« 16

3

•05
•3

•25 •16 •10 •05

1

•2 -4 -6
2 3 4

10
10

1-2 1-4 1-6
16 20 30

IB
60

Fio. 2.—Values of log10 {p/q) (upper figures) and of>/tf (lower figures).

20
100



RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE. 431

4

3

1

0

\

\

-

—-
• .

• • -

1-2 1-6 20 24- 28

FIG. 3.—Values of 0-log10 e=-4343(r.

32 3 6 4 0

•3

•9

•8

•7

6

8

•S '5

1
1 -4

•3

0

—

-—-

y

——-

/

y

^^

^ ^

y

16

/

/

^ ^

^ ^

10

y

^*—

•

•2 -4
Z

•6
4-

•8 10
8 10 •

12 1-4
20

16
40

18

05

2-0
100

FIG. 4. —Values of log10 of standard ratio (upper figures) and of standard ratio (lower figures).

TRANS. ROY. SOC. EDIN., VOL. LII, PART II (NO. 15). 66



432 R. A. FISHER ON THE CORRELATION BETWEEN

Writing f for log* - and a- for the standard deviation of £, we have

p = «W/2 cosh Jf, q = a-it/2 cosh §£ and 2pg = | sech2 §|.

Hence we have to evaluate

E = —]L f I sect2 tf. e-«*Vtf= 1 f J sech* ^>-«Vf . . (XXVIII)

and the dominance ratio derived from the whole group is

E is a function of a- only, which decreases steadily from its value ^ when <*• = 0,

approaching when <r is large to the function — ; = . The function (16 + 16<r2 + — cr4 )
/2 \ 4

osculates it at the origin, and appears on trial to represent it effectively to three
significant figures. This function has been used for calculating the form of the
accompanying curves. Fig. 3 shows the course of the function E. Fig. 4 gives the
curves comparable to those of figs. 1 and 2, showing the value of the dominance

ratio for different values — and cr. If the assumptions upon which this diagram is

based are justified, we are now advanced some way towards the interpretation of an
observed dominance ratio. A ratio of '25 gives us a lower limit of about "8 for

- , and no upper limit. If the possibility of superdominance (<i>a) is excluded, then
cc
the ratio of the phases must be so distributed that the standard ratio e" is not greater
than about 3:1. A greater value of the standard ratio would make the effect of
dominance too small; a smaller value could be counteracted by a slight reduction of

—. We haye therefore no reason to infer from our dominance ratios that dominance
a
is incomplete. We may speak of it as having at least four-fifths of its full value,
but we can set no upper limit to it.

26. Throughout this work it has been necessary not to introduce any avoidable
complications, and for this reason the possibilities of Epistacy have only been
touched upon, and small quantities of the second order have been steadily ignored.
In spite of this, it is believed that the statistical properties of any feature determined
by a large number of Mendelian factors have been successfully elucidated. Due
allowance has been made for the factors differing in the magnitude of their effects,
and in their degree of dominance, for the possibility of Multiple Allelomorphism, and
of one important type of Coupling. The effect of the dominance in the individual
factors has been seen to express itself in a single Dominance Eatio. Further, the
effect of marital correlation has been fully examined, and the relation between this
association and the coefficient of marital correlation has been made clear.

By means of the fraternal correlation it is possible to ascertain the dominance
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ratio and so distinguish dominance from all non-genetic causes, such as environment,
which might tend to lower the correlations : this is due to the similarity in siblings
of the effects of dominance which causes the fraternal correlation to exceed the
parental. The fact that this excess of the fraternal correlation is very generally
observed is itself evidence in favour of the hypothesis of cumulative factors. On
this hypothesis it is possible to calculate the numerical influence not only of
dominance, but of the total genetic and non-genetic causes of variability. An
examination of the best available figures for human measurements shows that there
is little or no indication of non-genetic causes. The closest scrutiny is invited on
this point, not only on account of the practical importance of the predominant
influence of natural inheritance, but because the significance of the fraternal correla-
tion in this connection has not previously been realised.

Some ambiguity still remains as to the causes of marital correlations: our
numerical conclusions are considerably affected according as this is assumed to be of
purely somatic or purely genetic origin. It is striking that the indications of the
present analysis are in close agreement with the conclusions of PEARSON and LEE as
to the genetic origin of a part of the marital correlation, drawn from the effect of the
correlation of one organ with another in causing the selection of one organ to involve
the selection of another. This difficulty will, it is hoped, be resolved when accurate
determinations are available of the ratio of the grandparental to the parental correla-
tion. From this ratio the degree of genetic association may be immediately obtained,
which will make our analysis of the Variance as precise as the probable errors will
allow.

In general, the hypothesis of cumulative Mendelian factors seems to fit the facts
very accurately. The only marked discrepancy from existing published work lies in
the correlation for first cousins. SNOW, owing apparently to an error, would make
this as high as the avuncular correlation; in our opinion it should differ by little
from that of the great-grandparent. The values found by Miss ELDERTON are certainly
extremely high, but until we have a record of complete cousinships measured
accurately and without selection, it will not be possible to obtain satisfactory
numerical evidence on this question. As with cousins, so we may hope that more
extensive measurements will gradually lead to values for the other relationship
correlations with smaller standard errors. Especially would more accurate deter-
minations of the fraternal correlation make our conclusions more exact.

Finally, it is a pleasure to acknowledge my indebtedness to Major LEONARD

DARWIN, at whose suggestion this inquiry was first undertaken, and to whose kindness
and advice it owes its completion.


