ficial helping to raise the altitude of the planet and thus conduce to better definition. But the chief value of the site lies in the relatively steady character of the air for which quality it was originally selected. Though not so important spectroscopically as visually it is nevertheless a factor to be taken into account.

As to the advantages of the time chosen for the research in its bearing on the result they are set forth by Mr. Slipher in his article as is also the manner an ingenious. one in which he reduced systematic error to as nearly nul as possible.

Mr. Slipher was left entirely unbiassed in his investigation. In order furthermore to render himself unprejudiced in his measurements, in every case where he could have occasion to recognize or to think he recognized a plate, a paper covering up the plate number and bearing a ficticious number written without his knowledge by an assistant was
put over the plate mark and was not removed until, not only the plate was measured, but practically the whole investigation closed.

His result follow. It is noteworthy that the value got with the slit parallel to the terminator is very nearly the value of the probable error in the investigation for the motion with the slit perpendicular to the terminator. This is of course what it should be as the probable error means that where no force is at work the result got would probably differ from zero by just this amount.

From the efficiency of the instrument and the unbiassed manner in which the measurements were made we may, I think, conclude from the size of the probable error that the evidence of the spectroscope is against rotation of short duration and that so far as its measure of precision permits the investigation confirms a rotation period of 225 days.

Lowell Observatory, 1903 March 28.
Percival Lowell.

A Spectrographic Investigation of the Rotation Velocity of Venus.

 By V. M. Slipher.If v is the velocity of a point on the equator of Venus, due to axial rotation; then the relation between the rotation and spectrographic velocity is given by the equation,

$$
v_{s}=2 v(1+\cos i)
$$

where i is the angle Earth-Venus-Sun, and v_{s} is the spectrographic velocity corresponding to the opposite displacement of the planetary lines at the edges of the spectrum the slit of the spectrograph being set on the planet's equator. For Venus at superior conjunction $i=0^{\circ}$ and $v_{s}=4 v$, at elongation $i=90^{\circ}, v_{s}=2 v$, and at inferior conjunction $i=180^{\circ}, v_{s}=0$. Thus to gain most from the condition that Venus shines by reflected sunlight the observations must be made when i is small. The present passage of Venus through superior conjunction gave an opportunity to investigate the rotation velocity under favorable conditions. An investigation of this kind was made by A. Belopolsky ${ }^{1}$), at Pulkowa, in 1900, but when the planet was near elongation. Although I began observations the first of last November, the nearness of the planet to the Sun and unfavorable weather allowed me to secure only a few satisfactory plates before the middle of February. Plates secured since that time were made in a manner which so facilitated the measurements, that I have preferred not to include measures from the early plates, although those measured gave results in entire accord with those from the later ones given below.

In the above equation the factor

$$
2(1+\cos i)=K
$$

is known when i is given. The values of i, K^{2}) and the semidiameter of Venus for the dates of the observations are given in the following table:

1903	i	K	Semidiam.
Febr. 23	29.6	3.8	5.47
Mar. 2	31.3	3.7	5.56
	7	33.1	3.7
	12	35.0	3.6
19	37.6	3.6	5.71

This apparent diameter gave the spectrum a breadth on the plates of a little more than 0.4 mm .

In this work the new three-prism spectrograph was employed, attached to the 24 -inch refractor. A comparison of the optical power of this and other large spectrographs is given, by Director Lowell in his paper. For the region of the spectrum measured the linear dispersion is about 11.5 tenth metres to the millimeter. It is arranged with two devices for guiding, the one by light reflected from the first prism, the other, by light from the slit-plate. I have found guiding by the latter method more accurate, especially for planetary work, since one can see what part of the disk is on the slit. The attachment of the spectrograph to the adapter is such as to readily permit rotation through any desired angle about the optical axis of the telescope. This made easy the obtaining of plates with the slit in different positions.

Since measures from my first plates gave no certain evidence of rotation I was convinced that the displacement must be very small even with the considerable dispersion employed. These early results, undecisive as they were, lead me to take every possible precaution against instrumental errors and any personal systematic errors in the measurements. To effect the elimination of such errors as far as possible, I made the plates with the spectrograph in the following positions:

[^0]

The effect of changing the camera from above in i) to below in 2) is, of course, to reverse the direction of the the inclination of the planetary lines; while the planetary lines in 3) should be without inclination, since it is here assumed that the axis of rotation is about perpendicular to the planet's orbit. On March 19, I secured two pairs of plates, with camera above and below, and with the slit set at an angle of 45° to the terminator.

In order to further increase the accuracy of the measurements blank spaces of about $1 / 2 \mathrm{~mm}$ were left on the negatives between the planetary spectrum and the two parts of the comparison. To do this the slit length was fixed at 2.3 mm and before the exposure to the iron spark which was generally made after the exposure to the planet a metall tongue was drawn across the slit until it occulted the central $\mathrm{I}^{1 / 2} \mathrm{~mm}$, or about three times the length occupied by the image of the planet. This left about $1 / 3 \mathrm{~mm}$ open at the ends for the two parts of the comparison spectrum. Leaving the slit long during the exposure to Venus was helpful in judging of the accuracy of the guiding since errors would reveal themselves by causing a broadening of the spectrum.

These spectrograms were made on plates of very fine grain, with a slit width of 0.018 mm and an exposure of about 8 minutes. They were obtained during the hour immediately following sunset. The quiescence of the atmosphere at this time of day and the elevation of $1 \frac{1 / 3}{}$ miles of the observatory made good to a very large degree the low altitude of the planet. The seeing was especially fine during the week from March 6, to 12, when most of the plates were secured. The temperature of the spectrograph was easily kept constant during the evening by the device for that purpose. An idea of the exellence of the plates may be had from the great number of fine monochromatic lines I was able to select for measurement.

Measurement of Plates.

The plates were measured under a micrometer microscope of the usual type, equipped with a protractor arc and vernier reading to single minutes, with an eyepiece magnifying about 18 diameters. The plates were placed under the microscope most frequently with violet end to right. I always kept my self ignorant of the position of the slit and camera for the plate, so that I should not be biassed by knowing in which direction to expect inclination. When the attention was centered on the planetary lines the blank spaces of about $1 / 2 \mathrm{~mm}$ between them and the comparison lines above and below - kept the latter quite out of view. Thus the settings on the planetary lines - which, of course, were always measured first - were made with less difficulty and with freedom from any influence of the comparison lines. This increase in the distance between the two parts of the comparison spectrum also increased the accuracy of the measures on the comparison lines. In order to avoid measuring lines which might appear good and still be affected
by close neighboring lines I kept a Rowland Atlas of the solar spectrum before me on the measuring table.

The reading of the protractor for an undisplaced (comparison) line is indicated by φ_{0} and that for the displaced (planetary) line by φ, where φ increases with inclination toward the right. Thus for direct rotation

$$
\varphi_{0}-\varphi=\Delta \varphi
$$

is positive for camera above and negative for camera below.
The measures of the plates follow.
Febr. 23, Plate 765. Slit parallel to terminator.

λ	φ	λ		${ }_{0}$
4185.1	$1^{\circ} 5 \mathrm{I}^{\prime}$	4185.1		50^{\prime}
87.2	155	91.5	1	46
99.3	I 54	4204.2	1	47
4204.2	159	22.4	1	47
06.7	223	47.7	1	44
10.5	215	82.6	1	55
15.6	2 I	99.4	I	44
22.4	24	4315.2	1	42
33.7	29	37.2		46
39.0	29	53.0		49
45.4	139	76.2	1	45
47.0	159	4427.5	1	52
47.7	-142	Mean $\rho_{0}=1^{\circ} 47.3$		
50.3	147	$\varphi_{0}-\varphi=-0 \quad 4.8$		
75.0	129			
$93 \cdot 3$	2 I			
4318.8	120			
44.7	148			
59.8	124			
4401.7	133			
Mean	$1^{\circ} 52.1$ 1			

Slit perpendicular to terminator, camera below. Good plate

λ	φ	λ	φ_{0}
4199.3	$2^{\circ} 50$	4210.5	$2^{\circ} 4^{6}$
4204.2	312	19.5	248
06.7	316	22.4	250
08.7	240	27.5	252
10.5	254	33.7	253
11.2	244	36.0	247
12.7	244	82.6	253
15.6	317	82.6	257
1 7.7	318	94.3	248
19.5	321	99.4	252
22.4	250	4315.2	246
27.6	23^{8}	37.2	254
31.2	25^{2}	Mean	$2^{\circ} 50^{\prime} 5$
39.0	317 7	$\varphi_{0}-\varphi=-0 \quad 0.1$	
40.0	227		
45.4	254		
47.0	248		

λ	φ	
4250.3	$2^{\circ} 25^{\prime}$	
51.0	3	5
54.5	2	30
93.3	2	57
94.3	2	37
98.2	2	31
4318.8	2	17
28.1	2	42
Mean $\varphi=$	$2^{\circ} 50.6$	

Febr. 25, Plate 775.
Slit perpendicular to terminator, camera above.

λ	φ
4250.3	$1^{\circ} 16^{\prime}$
54.5	119
85.6	15
87.0	16
93.3	16
94.3	110
4337.2	16
38.1	19
44.4	118
59.8	- 46
70.0	- 44
76.2	19
99.8	14
4407.8	- 54
17.8	111
25.5	- 54
30.8	15
42.4	- 44
44.0	- 58
47.8	- 59
56.0	- 59
Mean	$1{ }^{\circ}$ 3:0

Febr. 26, Plate 780 . Slit perpendicular to terminator, camera above. Very good plate.

λ	φ	λ		φ_{0}
4206.7	$1^{\circ} 22^{\circ}$	4210.5	$1{ }^{\circ}$	5'
10.5	-51	19.5	1	7
19.5	15	22.4	1	11
22.4	16	33.7	1	9
33.7		47.7	1	14
39.0	115	82.6	1	6
40.0	- 57	94.3	1	5
45.4	112	99.4	1	5
47.7	112	4315.2	1	11
50.3	- 41	37.2	1	8
51.0	115	53.0	1	9
54.5	149	76.2	1	6
75.0	118	$\overline{\text { Mean } \varphi_{0}}=1^{\circ} \quad 8: 0$		
82.5	111	$\varphi_{0}-\varphi=+0 \quad 0.1$		
85.6	- 59			
87.1	18			
93.3	- 55			
4318.8	13			
25.2				

Febr. 26, Plate 78 I .
Slit parallel to terminator. Good plate.

λ	φ	λ		φ_{0}
4222.4	$1^{\circ} 32^{\prime}$	4222.4		${ }^{1} 3^{\prime}$
33.7	- 57	33.7	1	11
38.2	110	47.7	1	10
46.2	17	82.6	1	7
47.0	129	94.3	1	15
50.3	127	99.4	1	6
54.5	127	4315.2	1	9
$93 \cdot 3$	119	37.2	1	14
94.3	115	76.2	1	11
4318.8	119	4427.5	1	15
59.8	120	42.4	1	14
67.7	$\bigcirc 47$	$\overline{\text { Mean } \varphi_{0}=1{ }^{\circ} 11.4}$		
70.0	$\bigcirc 57$	$\varphi_{0}-\varphi=+0 \quad 1.5$		
90.2				

4407.8	\circ	53
17.8	1	6
25.5	1	0
35.8	1	12
42.5	0	57
44.0	1	1
47.8	1	4
Mean $\varphi=$	1°	9.9

Febr. 27, Plate 783.
Slit parallel to terminator. Superb plate.

λ	φ
4204.2	$1^{\circ} 15^{\prime}$
11.2	19
22.4	119
38.2	16
47.0	15
47.7	112
50.3	111
54.5	20
75.0	20
85.6	14
93.3	13
94.3	-
4318.8	13
53.0	115
59.8	19
75.1	114
76.2	114
91.2	12
4407.8	16
25.5	17
42.4	115
Mean	$1^{\circ} 10.9$

λ	φ_{0}
4202.3	$1^{\circ} 9^{\circ}$
10.5	19
33.7	10
47.5	9
82.6	10
94.3	10
99.4	9
4315.2	11
37.2	10
76.2	112
4427.4	10
Mean $\varphi_{0}=1^{\circ} \quad 9.9$	
$\varphi_{0}-\varphi=$	- 1.0

Mar. 2, Plate 789. Slit perpendic. to terminator, camera above.

λ	φ
4204.2	$2^{\circ} 22^{\prime}$
10.5	25
15.6	157
22.4	20
33.7	2
39.0	I 56
50.3	20
51.0	2 II
54.4	28
78.4	225
85.6	228
93.3	229
$94 \cdot 3$	230
$43^{15} 5$	225
18.8	236
53.0	227
59.8	232
70.0	214
76.2	222
99.8	220
4407.8	236
22.7	222
25.5	220
Mean	$2^{\circ} 17{ }^{\prime}$

λ	φ_{0}	
4210.5	$2^{\circ} 19^{\prime}$	
22.4	2	26
33.7	2	21
47.7	2	23
82.6	2	21
94.3	2	23
99.4	2	23
4315.2	2	23
37.2	2	21
53.0	2	21
76.2	2	24
Mean $\varphi_{0}=$	$2^{\circ} 22.3$	
$\varphi_{0}-\varphi=$	-0	4.6

Plate was under microscope with film
down, which chan-
ges sign of $\varphi_{0}-\varphi$.

March 2, Plate 790.
Slit perpendicular to terminator, camera below. Excellent plate.

λ	φ	λ	$\varphi{ }_{0}$	
4182.5	$1^{\circ} 4^{6}$	4187.2		
87.2	5	91.7		3
4204.2	1 39	4204.2		
05.7	50	10.5		3
06.7	53	19.5		8
10.5	45	22.4		6
15.6	49	33.7		3
17.7	13	47.7		3
19.5	45	82.6		3
25.6	43	94.3		45
27.5	52	99.4		39
30.0	22	43×5.2		37
33.7	24	37.2	1	40
39.0	30	76.2	1	42
40.0	18	Mean		
45.4	$\begin{array}{r}9 \\ 4 \\ 4 \\ \hline\end{array}$	$\varphi_{0}-9$		
47.0	138			
47.7	135			
50.3	59			
51.0	125			
54.5	52			
85.6	140			
93.3	6			
94.3	137			
98.2	134			
4307.0				
18.8				
59.8	120			

March 2, Plate 79 r. Slit parallel to terminator. Good plate.

March 6, Plate 792.
Slit perpendicular to terminator, camera above.
Excellent plate.

λ	φ	λ	φ_{0}
4182.2	$2^{\circ} 8^{\prime}$	4182	$1^{\circ} 39^{\circ}$
4200.1	34	88	139
04.2	24	99.3	138
10.5	156	$4227 \cdot 5$	139
15.6	149	33.7	150
22.4	44	36.0	135
33.7	125	51.0	144
39.0	148	82.6	141
40.0	40	94.3	142
45.4	49	99.4	138
47.0	40	4315.2	138
47.7	143	37.2	139
54.5	142	76.2	137
75.0	143	$\begin{aligned} & \hline \text { Mean } \varphi_{0}=1^{\circ} 39.9 \\ & \varphi_{0}-\varphi=-0 \quad 3.8 \end{aligned}$	
85.6	I 56		
93.3	21		
$94 \cdot 3$	131		
4306.8	131		
60.0	151		
70.0	139		
Mean	$1^{\circ} 43^{\prime} 7$		

Mean $\varphi=1^{\circ} 37: 7$

March 6, Plate 793.
Slit parallel to terminator. Only a fair plate; comparison not so good as planetary spectrum.

λ	φ	λ	φ_{0}
4210.5	$2^{\circ} 6^{\prime}$	4219.5	$1^{\circ} 47^{\circ}$
11.2	I 56	27.5	149
15.6	24	33.7	149
17.7	55	36.0	145
19.5	17	50.3	147
22.4	12	51.0	147
33.7	3	82.6	145
39.0	217	94.3	147
38.2	214	99.4	147
45.4	135	4315.2	14^{8}
47.0	145	76.2	148
47.7	134	$\begin{aligned} & \text { Mean } \varphi_{0}=1^{\circ}{ }_{47 \prime 2}^{\prime} \\ & \varphi_{0}-\varphi=+0 \quad 2.7 \end{aligned}$	
50.3	16		
51.0	27		
54.5	25		
75.0	8		
85.6	- 54		
93.3	20		
4313.8	34		
18.8	134		
70.0	131		
77.4	131		
Mean $\varphi=\mathrm{I}^{\circ} 44^{\prime} 5$			

March 6, Plate 794.
Slit perpendicular to terminator; camera below.
Excellent plate.

λ	φ	λ	φ_{0}
4200.1	$1^{\circ} 45^{\prime}$	4204.2	$1^{\circ} 25^{\prime}$
04.2	12	10.5	124
06.7	133	19.5	122
10.5	124	22.4	123
11.2	115	27.5	124
12.7	132	33.7	125
17.7	129	36.0	123
19.5	110	51.0	129
22.4	1 I	82.6	125
33.7	113	94.3	126
38.2	130	99.4	125
390	140	4315.2	127
45.4	159	Mean 9	$1^{\circ} 24.8$
47.0	119	$\varphi_{0}-\varphi=+0 \quad 1.3$	
47.7	137		
50.3	133		
51.0	114		
54.5	117		
55.2	115		
85.6	121		
86.6	13		
90.0	112		
93.3	128		
94.3	132		
4318.8	114		
Mean $\varphi=1^{\circ}{ }^{2} 3.5$			

March 9, Plate 803.
Slit perpendicular to terminator; camera below. Excellent plate.

λ	φ	λ	φ_{0}
4199.3	$1^{\circ} 18^{\prime}$	4204.2	$1^{\circ} 15^{\prime}$
4200.1	133	22.4	15
04.2	116	47.7	119
06.7	123	68.0	14
10.5	13	82.6	12
15.6	139	85.6	117
21.6	121	4306.0	22
22.4	117	15.2	114
33.7	113	37.2	116
39.0	I 39	53.0	20
40.0	18	70.0	119
45.4	21	76.2	114
46.3	13	Mean φ	$1^{\circ} 16.4$
47.0		$\varphi_{0}-\varphi=+0 \quad 0.6$	
47.7	116		

50.3118
$\begin{array}{lll}51.0 & 1 & 4 \\ 54.5 & 1 & 8\end{array}$
$85.6 \quad 1 \quad 6$
87.1 ○ 53
$\begin{array}{lll}83.3 & 1 & 51 \\ 94.3 & 1 & 6\end{array}$
$\begin{array}{lll}4318.8 & 1 & 25 \\ 530 & 1 & 10\end{array}$
$53.0 \quad 110$
$\frac{59.8}{\operatorname{Mean} \varphi=} \quad \frac{1}{0} 1_{5: 8}$
March 9, Plate 804.
Slit perpendicular to terminator; camera below.

λ	φ	λ	φ_{0}	
4176.7	$2^{\circ} 27^{\prime}$	4185.1	$2{ }^{\circ}$	5*
77.7	214	4204.2	2	7
8 1.0	223	10.5	2	5
85.1	221	19.5	2	11
87.2	29	22.4	2	9
99.3	217	33.7	2	5
4200.1	15^{1}	39.0	2	8
04.2	152	47.7	2	12
06.7	227	82.6	2	5
10.5	213	94.3	2	7
12.7	154	99.4	2	7
13.7	226	4315.2	2	3
15.6	28	Mean 9		7:0
17.7		$\varphi_{0}-\varphi$		0.9
18.8	155			
19.5	24.			
21.6	149			
22.4	150			
24.3	158			
33.7	21			
37.4	156			
39.0	2 I			
45.4	224			
51.0	213			

λ	${ }^{\varphi}$	
4254.5	2°	5^{\prime}
93.3	2	1
94.3	1	44
4318.8	2	7
Mean $\varphi=2^{\circ}$	$6!1$	

March 1o, Plate 809. Slit parallel to terminator; camera to right. An excellent plate.

λ	φ
4179.0	$2^{\circ} 4^{\prime}$
85.1	132
87.3	43
88.8	10
92.7	47
99.3	136
4204.2	40
06.7	47
10.5	43
12.8	126
17.8	54
18.8	30
20.5	133
22.4	148
24.3	I 56
3 x .0	128
33.7	25
38.2	I 49
47.0	150
47.7	I 39
50.3	151
68.8	145
82.6	I 36
83.2	131
85.6	24
93.3	1 36
94.3	4
4318.8	129
Mean	$1^{\circ} 40^{\prime} .6$

λ	φ_{0}
4187.2	$1^{\circ} 41^{\prime}$
99.3	4 I
4206.7	140
19.5	41
22.4	140
27.5	142
33.7	137
36.0	144
50.3	I 36
82.6	139
94.3	141
99.4	141
4315.2	139
37.2	143
Mean $\varphi_{0}=1^{\circ}{ }^{\circ} 0^{\prime} .4$	
$\varphi_{0}-\boldsymbol{\varphi}$	0.2

$\varphi_{0}-\boldsymbol{\varphi}=-0 \quad 0.2$

March ir, Plate 8 Im .
Slit perpendicular to terminator; camera above. A good plate.

λ	φ	λ	φ_{0}
$4^{182.5}$	$0^{\circ} 57^{\prime}$	4182.0	$0^{\circ} 50^{\prime}$
85.1	16	87.2	- 49
87.2	- 49	4210.5	- 48
99.3	- 53	19.5	- 55
4204.2	- 36	22.4	- 51
06.7	- 48	27.5	- 54
10.5	12	33.7	- 54
11.1	- 53	36.0	- 52
19.5	- 49	47.7	- 51
22.4	15	82.6	- 56
25.5	19	94.3	- 55
33.9	- 55	99.4	- 55
39.0	- 42	4315.2	- 53
$45 \cdot 4$	10	Mean $\varphi_{0}=0^{\circ} 52.5$	
47.0	- 43	$\varphi_{0}-\varphi=-0 \quad 0.5$	
47.7	$\bigcirc 47$		

λ	φ
4250.3	$0^{\circ} 4^{\prime} 6^{\prime}$
51.0	1
10	
85.6	0
1	
93.3	0
94.3	0
94	
4318.8	0
Mean $\varphi=$	$0^{\circ} 53^{\prime} \circ$

March in, Plate 8i5.
Slit perpendicular to terminator; camera below.

λ	φ	λ		φ_{0}
4199.3	$2^{\circ} 16^{\prime}$	4210.5		
4200.1	24	19.5	1	53
06.7	I 55	33.7	2	8
15.6	22	36.0	2	7
19.5	27	47.7	2	7
22.4	139	51.0	1	53
25.5	218	82.6	2	I
33.7	148	94.3	2	3
39.0	28	99.4	2	1
46.3	21	4315.2	2	3
47.7	148	37.2	2	\bigcirc
50.3	224	53.0	2	10
51.0	150	Mean $\varphi_{0}=2^{\circ} \quad 2.3$		
54.5		$\varphi_{0}-\boldsymbol{\varphi}=+0 \quad 0.6$		
71.3	221			

March 12, Plate 818.
Slit parallel to terminator; camera to right.

λ	φ	λ	φ_{0}
4199.3	$2^{\circ} 21^{\prime}$	4199.3	$1^{\circ} 4^{8 \prime}$
4200.1	12	4219.5	44
04.2	\bigcirc	27.5	147
06.7	57	33.7	145
10.5	218	36.0	I 47
12.7	12	50.3	148
15.6	8	51.0	139
19.5	117	60.7	144
22.4	148	82.6	148
23.7	30	94.3	143
33.7	146	99.4	141
39.0	27	4315.2	146
40.0	119	$\begin{aligned} & \text { Mean } \varphi_{0}=1^{\circ} 45!\mathrm{o} \\ & \varphi_{0}-\varphi=+0^{2.5} \end{aligned}$	
46.3	136		
47.0			
47.7	143		
50.3	138		

λ	φ
4251.0	$1^{\circ} 47^{\circ}$
54.5	130
75.0	156
77.7	117
94.3	110
95.4	129
4313.8	19
18.8	146
Mean	$\mathrm{I}^{0} 42$ 2! 5

March 12, Plate 819.
Slit perpendicular to terminator; camera below. Fine plate.

λ	φ	λ	φ_{0}
4182.5	$1^{\circ} 57^{\prime}$	4202.2	$1^{\circ} 24^{\prime}$
85.0	129	10.5	129
87.3	123	19.5	28
99.3	33	27.5	125
4200.1	125	33.7	26
04.2	22	36.0	21
06.7	25	51.0	123
10.5	124	60.7	126
11.2	118	82.6	21
12.8	137	94.3	147
15.6	115	99.4	127
22.4	141	4315.2	128
24.3	113	Mean $\varphi_{0}=1^{\circ}{ }^{2} 5 \cdot 4$	
27.5		$\varphi_{0}-\varphi=+0 \quad 0.1$	
33.7	115		

$\begin{array}{ll}33.7 & 15 \\ 38.2 & 1\end{array}$
$39.0 \quad 141$
$45.4 \quad 1 \quad 13$
$47.0 \quad 113$
$47.7 \quad 1 \quad 16$
$51.0 \quad 115$
$54.5 \quad 120$
93.3 I 34
94.3 I 2
4313.8 I 18
$\frac{18.8}{\text { Mean } \varphi=1} \quad 1 \quad 1^{\circ}{ }^{2} 5^{\prime} 3$
March 12, Plate 82 I .
Slit perpendicular to terminator; camera above.

λ	φ	λ	φ_{0}
4175.7	$1^{\circ}{ }^{\circ} 8^{\prime}$	4191.6	$\mathrm{I}^{\circ} 49^{\text {c }}$
77.7	118	4204.5	147
81.0	21	10.5	145
85.1	40	19.5	146
87.3	149	22.4	47
98.8	137	33.7	150
99.3	42	39.0	153
4204.2	22	47.7	47
06.7	41	82.6	147
08.7	137	94.3	151
10.5		99.4	148
15.6		4315.2	153
17.7	147	Mean 90	$1^{\circ} 48.6$
19.5		$\varphi_{0}-\boldsymbol{\varphi}=+03.6$	
22.4	1 I9		

λ	φ
4225.7	$1^{\circ} 51^{\prime}$
31.2	$13{ }^{\circ}$
33.7	50
39.0	141
40.0	146
46.3	149
47.0	135
50.3	119
51.0	141
54.5	126
82.6	157
93.3	213
94.3	20
4318.8	155
Mean	$1^{\circ} 45$: 0

March 19, Plate 822.
Slit at an angle of 45° to terminator; camera above.
Excellent plate.

λ	φ	λ	$\begin{gathered} \varphi_{0} \\ \mathbf{1}^{\circ} 34^{\circ} \end{gathered}$	
4199.3	$1^{\circ} 22^{\prime}$	4210.5		
4204.2	134	19.5	1	32
05.7	141	22.4	1	35
06.7	142	27.5	1	31
10.5	127	33.7	1	31
12.1	137	36.7	1	33
15.6	134	47.7	1	32
19.5	127	82.6	1	32
20.5	134	94.3	1	31
22.4	150	99.4	1	33
31.3	127	4315.2	1	32
38.3	I 36	Mean 9		32.4
39.0	I 34	$\varphi_{0}-\varphi$		2.9
45.4	I 56	$\varphi_{0}-\varphi$		2.9
47.0	I 26			
47.7	I 36			
50.3	I 56			
51.0	136			
75.0	135			
85.6	I 28			
94.3	I 36			
98.3	132			
4301.3	128			
15.2	129			
18.8	140			
Mean	$1^{\circ} 35^{\prime} 3$			

March 19, Plate 823

Slit at an angle of 45° to terminator; camera above.
Excellent plate.

λ	φ	λ	φ_{0}
4199.3	$1^{\circ} 54{ }^{\prime}$	4210.5	$1{ }^{\circ} 3^{8 \prime}$
4200.2	146	19.5	139
04.2	21	22.4	139
05.7	I 59	33.7	139
10.5	150	36.0	138
15.6	135	51.0	142
19.5	134	82.6	141

λ	φ	λ	φ_{0}
4222.4	$2^{\circ} 2^{\prime}$	4294.3	$1^{\circ} 36^{\prime}$
23.7	118	99.4	I 39
24.4	137	4315.2	141
24.7	I 49	Mean φ_{0}	$\mathrm{I}^{\circ} 39^{\prime} 2$
3 I. 3	$1{ }^{12}$	φ	0.7
33.7	137		
38.3	143		
39.0	126		
45.4	123		
46.3	139		
47.0	144		
47.7	143		
50.3	140		
51.0	117		
54.5	24		
85.6	116		
$94 \cdot 3$	118		
$43^{15} 5$	15		
$25 \cdot 3$	140		
Mean	$\mathrm{I}^{\circ} 3^{8 .} 5$		

March 19, Plate 824.
Slit at an angle of 45° to terminator; camera below.

λ	φ	λ	φ_{0}
4179.6	$2^{\circ} 33^{\circ}$	4185.1	$\mathrm{I}^{\circ} 5^{\text {2 }}$
81.0	32	91.6	156
85.1	156	4204.2	150
87.3	159	10.5	I 54
96.4	25	19.5	I 55
98.8	1 57	22.4	154
99.3	48	33.7	155
4200.2	151	47.7	154
04.2	59	82.6	153
06.7	223	94.3	152
10.5	146	99.4	153
15.6	223	4395.2	158
19.5	21	Mean φ	$1^{\circ} 53: 8$
22.4	147	$\varphi_{0}-\varphi=$	- 0.0
25.0	151		
31.2	132		
39.0	45		
40.0	130		
45.4	143		
47.0	140		

λ	φ	
4247.7	1°	43^{\prime}
51.0	1	46
54.5	2	9
92.3	2	6
93.3	2	0
94.3	1	45
98.3	1	30
4318.8	2	28
25.3	1	33
Mean $\varphi=$	1°	$53^{\circ} 8$

March 19, Plate 825.
Slit at an angle of 45° to terminator; camera below.

λ	φ
4176.7	$\mathrm{I}^{\circ} 16^{\prime}$
77.7	131
79.6	1 3^{6}
81.0	129
85.1	139
87.3	145
99.3	11
4204.2	135
06.7	118
10.5	112
11.2	124
15.5	132
19.5	I 23
22.4	128
23.7	12
33.4	125
33.7	16
39.0	110
45.0	125
47.0	113
47.7	I 30
50.3	I 9
51.0	123
54.5	143
75.0	122
$93 \cdot 3$	110
94.3	123
4315.2	115
Mean $\varphi=1{ }^{\circ} 22.3$	

$\frac{\lambda}{4181.0}$	$\begin{gathered} \varphi_{0} \\ 1^{\circ}{ }_{2}^{\prime} \end{gathered}$
91.6	123
4204.2	129
10.5	124
19.5	123
22.4	128
33.7	128
47.7	129
82.6	126
94.3	122
99.4	122
4315.2	125
Mean $\varphi_{0}=\mathbf{1}^{\circ} 25.3$	
$\varphi_{0}-\varphi$	- 3.0

The results of the measures are here tabulated for convenience of reference:
Tabular View of Measurements and Reductions.
$\varphi_{0}=$ Reading of protractor for comparison lines $\quad v_{s}=$ spectroscopic Velocity in kilometers per sec. $\varphi=\ggg$ planetary $\quad>\quad v=$ true $\varphi_{0}-\varphi=\Delta \varphi$

1903	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Plate } \end{array}\right\|$	Mean φ_{0}	Mean φ	$\varphi_{0}-\varphi$	Position		$\begin{gathered} v_{s} \\ \text { Direct }(+) \\ \text { Retrogr. }(-) \end{gathered}$	$\frac{v_{s}}{K^{-}}=v$
					of slit to terminator	of camera		
Febr. 23	765	$1^{\circ} 47$ \% 3	$1^{\circ} 5$ 2! r	$-4: 8$	parallel	-	$(-) 0.45$	(-)0.12
23	766	250.5	250.6	-0.1	perpend.	below	+ 0.01	+ 0.00
25	775	1 6.6	130	+3.6	\%	above	+0.34	+ 0.09
26	780	18.0	17.9	+0.1	,	»	$+0.01$	+ 0.00

1903	$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Number } \\ \text { of } \\ \text { Plate } \end{array}\right. \end{array}$	Mean φ_{0}	Mean φ	$\varphi_{0}-\varphi$	of slit to terminator	of camera	$\begin{gathered} v_{s} \\ \text { Direct }(+) \\ \text { Retrogr. }(-) \end{gathered}$	$\frac{v_{s}}{K}=v$
Febr． 26	781	$1{ }^{\circ} 111.4$	$1^{\circ} 9.9$	＋1＇5	parallel	to right	$(+) 0.14$	$(+) 0.04$
27	783	19.9	$1 \quad 10.9$	1.0	，	＊	$(-) 0.09$	（－）0．02
Mar． 2	789	222.3	217.7	-4.6 ＊	perpend．	above	－0．43	-0.12
2	790	137.5	137.7	－0．2	，	below	$+0.02$	＋ 0.01
2	791	116.2	113.3	＋2．9	parallel	to right	$(+) 0.27$	$(+) 0.07$
6	792	139.9	143.7	-3.8	perpend．	above	-0.36	－0．10
6	793	147.2	144.5	＋2．7	parallel	to right	$(+) 0.26$	$(+) 0.07$
6	794	124.8	123.5	＋1．3	perpend．	below	－0．12	-0.03
9	803	116.4	$1 \begin{array}{ll}1 & 15.8\end{array}$	＋0．6	»	＊	－ 0.06	－0．02
9	804	27.0	26.1	＋0．9	＊	》	－ 0.09	－ 0.02
10	809	140.4	140.6	－0．2	parallel	to right	$(-) 0.02$	（－）0．01
11	811	$\bigcirc 52.5$	－ 53.0	－0．5	perpend．	above	－ 0.05	－0．01
11	815	$2 \quad 2.3$	$2 \quad 1.7$	＋0．6	，	below	－0．06	－0．02
12	818	45.0	142.5	$+2.5$	parallel	to right	$(+) 0.24$	$(+) 0.06$
12	819	125.4	125.3	＋0．1	perpend．	below	－0．01	－ 0.00
12	821	148.6	145.0	＋3．6	，	above	＋0．34	＋0．09
19	822	132.4	I $35 \cdot 3$	-2.9	angle 45°	，	（－）0．27	$(-) 0.07$
19	823	I 39.2	138.5	＋0．7	，	＊	$(+) 0.07$	（＋）0．02
19	824	153.8	153.8	0.0	＊	below	（土）0．00	（土） 0.00
19	825	125.3	122.3	＋3．0	＊	，	$(+) 0.28$	（＋）0．08

－See notes on measurements．
Slit perpendicular to terminator，camera above，

$$
\begin{aligned}
\Delta \varphi_{m} & =-0^{\circ} 0^{\prime} 27 \pm 0.96 \\
& =+00.46 \pm 0.14
\end{aligned}
$$

$$
\geqslant \ggg>\text { parallel to the right, } \gg+00.5^{1} \pm 0.71
$$

To make clear the value of $\Delta \varphi$ in terms of velocity in the line of sight and of the planet＇s limb I have added columns 8 and 9 ．A glance at the table will show that the errors of observation were small and that there is no evi－ dence of a short rotation period for the plavet．A rotation period of twenty－four hours would incline the planetary lines one－third of a degree，a quantity quite large in comparison
with the errors of observation．I am at present unable to state definitely how small a rotation velocity might be de－ tected with this instrument．In the case of Venus where there is great intensity of light，permitting the use of plates of fine grain，it should be small．This is a point which I hope soon to investigate．

Lowell Observatory， 1903 March 28.

Photometrische Beobachtung der Mondfinsternis 1903 April 11.

Von Dr．H．Clemens．

Um die relativen Helligkeiten der einzelven Phasen der Finsternis zu messen，benutzte ich ein Webersches Milchglas－ plattenphotometer，das mir in liebenswürdigster Weise von der Firma Schmidt u．Hänsch in Berlin zur Verfugung ge－ stellt worden war．Die Konstruktion darf als bekannt vor－ ausgesetzt werden．Die Vergleichung der beiden vom Monde resp．von der Vergleichsflamme，einer Benzinflamme von 20 mm Höhe，beleuchteten Scheiben erfolgte mittelst eines Lummer－Brodhunschen Wurfels，die Einstellung geschieht durch Änderung des Abstandes der einen Milchglasplatte von der Benzinflamme．Die Höhe der letzteren stand unter fortlaufender Kontrolle und für jedes Zehntelmillimeter ibrer sich in sehr engen Grenzen haltenden Abweichung von 20 mm wurde nach Vorschrift von Professor Weber die gemessene Helligkeit um 1% korrigiert．

Um die Lichtabnahme des Mondes möglichst weit ver－ folgen zu können，hatte ich die von ihm erleuchtete Milch－
glasplatte，die dem Apparate beigegeben war，durch eine be－ deutend lichtdurchlässigere Scheibe aus gewöhnlichem matten Glase ersetzt．Der sehr auffällige Farbenunterschied 2 wischen dem Monde und der Vergleichsflamme wurde durch Ein－ schieben eines blauen Glases vor letztere derartig herab－ gemindert，daß die Schärfe der Einstellung durch ihn nicht mehr beeinträchtigt ward．Bei den Messungen 1 bis 34 und 58 bis 79 war das Mondlicht durch ein Rauchglas gedämpft， dessen Absorptionskoeffizient zu 3.75 bestimmt ist．

Wabrend der größten Phase der Finsternis war die Helligkeit $z u$ gering，um noch gemessen $z u$ werden．Die Luft war sehr rein und durchsichtig，so daß trotz der be－ trächtlichen Zenitdistanz des Mondes eine ungünstige Be － einflussung durch atmosphärische Verhältnisse，mit Ausnahme der noch näher $2 u$ betrachtenden letzten Messungen，aus． geschlossen sein dürfte．

Jede der im folgenden aufgefuhrten Messungen besteht

[^0]: ${ }^{1}$) See Astronomische Nachrichten, No. 3641.
 ${ }^{7}$) This is the same as Belopolsky's k.

