
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

DOI : 10.5121/vlsic.2012.3201 1

A SYSTEMC/SIMULINK CO-SIMULATION

ENVIRONMENT OF THE JPEG ALGORITHM

Walid Hassairi, Moncef Bousselmi, Mohamed Abid and Carlos Valderrama

UMons University of Mons, Electronics & Microelectronics Dpt., Mons, Belgium

Laboratory CES, National School of Engineers of Sfax, Tunisia

1. INTRODUCTION

In the past decades, many factors have been continuously increasing like the functionality of

embedded systems as well as the time-to-market pressure has been continuously increasing.

Simulation of an entire system including both hardware and software from early design stages is

one of the effective approaches to improve the design productivity. A large number of research

efforts on hardware/software (HW/SW) co-simulation have been made so far. Real-time

operating systems have become one of the important components in the embedded systems.

However, in order to validate function of the entire system, this system has to be simulated

together with application software and hardware. Indeed, traditional methods of verification have

proven to be insufficient for complex digital systems. Register transfer level test-benches have

become too complex to manage and too slow to execute. New methods and verification

techniques began to emerge over the past few years. Highlevel test-benches, assertion-based

verification, formal methods, hardware verification languages are just a few examples of the

intense research activities driving the verification domain.

Our work articulates on three contributions which are the proposal for solutions to the

implementation of the different parts of the architecture using SystemC and Matlab/Simulink

simulators. Second the definition of a co-simulation environment based on the automatic

generation of the interfaces required to the integration of these simulators. Finally the proposal of

a new verification framework based on SystemC Verification standard that uses

MATLAB/Simulink to accelerate the test-bench development. The MATLAB/Simulink to

SystemC interface and the advanced version of transactors are combined in a scalable multi-

abstraction level verification platform. The proposed refined co-simulation platform enables co-

simulation with hardware models written in SystemC. On that platform, application software and

hardware modules are directly executed on a host computer, which leads to a high co-simulation

speed. The MATLAB/SystemC interface is mainly used for the verification of the lower

abstraction levels with a high level model of their execution environment.

The integration of SystemC within MATLAB/Simulink and the resulting verification flow is

tested on the JPEG compression algorithm. The required synchronization of both simulation

environments, including data type conversion, is solved by using the proposed co-simulation

flow. The application is divided into two JPEG encoder parts: the DCT (Direct Cosine

Transform), the HW part implemented in SystemC, and the QEE (Quantization and Entropy

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

2

Encoding), the SW part implemented in Matlab. With this research premise, this study introduces

a new HW implementation of the DCT algorithm in SystemC. For the communication and

synchronization between these two parts we use the S-Function and the MATLAB/Simulink

engine. In addition, we compare the co-simulation results to a pure software simulation.

In this chapter, the related work is discussed in Section 2 and the proposed co-simulation

methodology is presented in Section 3. Then, in Section 4, we propose the implementation of

the JPEG image compression as a case study. In Section 5, we summarize the proposed approach

and co-simulation results. Finally, we sum up the proposal including suggestions and

recommendations to future works.

2. RELATED WORK

Connecting Simulink and SystemC together have already been tried in the literature. Authors in

[6] propose a solution to integrate SystemC models in Simulink. This wrapper is created using S-

Functions to link SystemC modules with Simulink.

This wrapper initializes the SystemC kernel and converts Simulink data to SystemC signals.

Simulation control is entirely handled by Simulink. Simulation control is entirely handled by

Simulink. Some extensions of the SystemC kernel are required for initialization and simulation

tasks. In [7], SystemC calls MATLAB using the engine library. MATLAB provides interfaces to

external routines written in other programming languages. Using the C engine library, it is

possible to share data between SystemC models and MATLAB. This work demo shows how to

use the library to send and retrieve data from the MATLAB workspace. The main difference with

[6] is with the simulation control: SystemC is now the master of the simulation and MATLAB

operates as a slave process. Also, Simulink is not supported in this example.

In a similar way, MathWorks provides a commercial solution to close the gap between the

algorithmic domain and the hardware design. The link for ModelSim [8] is a co-simulation

interface that integrates MATLAB and Simulink into the hardware design flow. It provides a

link between MATLAB/Simulink and Model Technology’s HDL simulator, ModelSim. This

interface makes the verification and co-simulation of RTL-level models possible from within

MATLAB and Simulink. As opposed to the two previous techniques, there is no support for

system level languages like SystemC.

These approaches [6, 7, 8] all try to reduce the barrier that exist between higher level modeling

and existing hardware design flow. While [8] is a fully functional commercial tool for RTL

verification, [6, 7] suffer from their embryonic stage (i.e. incomplete solutions for hardware

design and verification).

The authors in [9] look at the problem of cosimulating continuous systems with discrete systems.

The increasing complexity of continuous/discrete systems makes their simulation and validation a

demanding task for the design of heterogeneous systems. They propose a co-simulation interface

based on Simulink and SystemC. The main objective of the proposed solution is to provide a

framework to evaluate continuous/discrete systems modeling and simulation.

In work [10], they have created a tool called: co-simulation COLIF that defines a subset of

Matlab / simulink and combines a set of descriptive rules allows for the specification and

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

3

functional validation efficient algorithms for the application. To reduce the "gap" between the

functional model and architecture model in SystemC, they proposed a new intermediate

transactional model in Simulink executable that combines both the algorithm and architecture in a

single model representation. To validate their work, they applied to decoder MPEG Layer III.

They found that the simulation model in Simulink is 50 times faster than the macro-level

architecture. The difference is mainly due to the complexity of the description and details of the

communication are present at the macro architecture.

In our former work [11], we adopted the methodology of communication and synchronization. To

exchange data between a Simulink model and SystemC module, the cosimulation interface must

integrate a bridge between the two simulators. This bridge is built with two Simulink S-

Functions. An S-Function is a language description of a Simulink block. It uses syntax of call

allowing us to interact with Simulink solvers. For our bridge, we create two C++ S-Functions.

The representation of simulation time differs significantly from SystemC and Matlab. SystemC is

cycle-based simulator and simulation occurs at multiples of the SystemC resolution limit. The

default time resolution is one picosecond. This limit can be changed with the function

sc_set_time_resolution. However, the time in Simulink simulation is a double precision value

scaled to seconds. Thus, our co-simulation interface uses a one-toone correspondence between

simulation time in Simulink and SystemC.

3. METHODOLOGIES

The implementation of applications on embedded systems is a very time expensive task using the

standard development tools. The proposed heterogeneous model is also executable to simulate the

co-design implementation. Such simulation of the heterogeneous model is realized using

SystemC. In fact, a description of a hardware module is transformed into a structural description

with SystemC components (RT-level). Then, the interface between hardware and software parts is

implemented using special SystemC constructs. This interface can be compared with the interface

of the implementation in the real system. SystemC provides several levels of abstraction to

describe hardware. For the simulation of hardware modules in the shown design flow given by

figure Fig1, the cycle accurate level (CA) of SystemC is used. The interface to the software

kernel is untimed functional level (UTF). A wrapper was designed to connect the modules to the

software kernel. This wrapper is based on two shell-blocks which connect the CA-model to the

software kernel by realizing an interface between the CA- and the UTF-model (Untimed

Functional) of SystemC.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

4

Fig. 1: Integrated SystemC in Simulink S-Function.

Simulink is a commonly used tool for designing DSP applications. It supports with a lot of

libraries distinguished suppositions to develop single machine vision operators, e.g. the

possibility to generate intelligent test environments for image. To use the tool for generation of

hardware operators, an interface between SystemC and Simulink was developed. Thus, the

visualized tool in more common design flows is integrated using Simulink S-Functions. Those

Functions provide a powerful mechanism for extending Simulink with custom blocks and can be

implemented as C++ Code. Within the S-Function the output is calculated from input and from

states at each time step using a cycle by cycle SystemC-simulation as a fixedstep discrete time

solver. The initialization of the SystemC kernel should be separated from simulation.

To meet these requirements a wrapper has been inserted between the S-Function and the SystemC

model (Fig. 1). The wrapper functionalities are:

• connecting Simulink ports to a SystemC-TM-Block,

• converting Simulink data types to SystemC-TM signals and vice versa,

• initializing of the SystemC-Kernel,

• converting events; function call from Simulink to sc_cycle(),

• providing a DLL interface to the Simulink S-Function.

So, our methodology tries to pull the idea a step further than just a co-simulation interface. It is a

complete verification solution. It uses MATLAB external interfaces, similar to the example

described in [6], to exchange data between SystemC and Simulink. Once this link is established,

it opens up a wide range of additional capability to SystemC. SystemC generate stimulus and data

visualization [10]. We also based our methodology on a portion of the methodology in the work

[11]. In this work, they are based on the transformation of a task in SystemC. The first benefit of

our technique is to use the right tool for the right task. Complex stimulus generation and signal

processing visualization are carried out with MATLAB and Simulink while hardware verification

is performed with SystemC verification standard. The second benefit is to have a SystemC centric

approach allowing greater configurability and flexibility.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

5

With this approach the overall system simulation can be controlled by Simulink through settings

of duration time and step size.

There are three new call-backs provided via virtual methods for classes derived from sc_module,

sc_port, sc_export, and sc_prim_channel. These call-backs will be invoked by the SystemC

simulation kernel when certain phases of the simulation process occur. The novel methods are:

void before_end_of_elaboration();

This method is called just before the end of elaboration processing is to be done by the simulator.

void start_of_simulation();

This method is called just before the start of simulation. It is intended to allow users to set

up variable traces and other verification functions that should be done at the start of simulation.

void end_of_simulation();

If a call to sc_stop() had been made this method will be called as part of the clean up process

as the simulation ends. It is intended to allow users to perform final outputs, close files, storage,

etc.

It is also possible to test whether the callbacks to the start_of_simulation methods or

end_of_simulation methods have occurred. The Boolean functions

sc_start_of_simulation_invoked() and sc_end_of_simulation_invoked() will return true if their

respective callbacks have occurred.

The tasks at the transactional level under Simulink are included in a software knot represented by

a sub-system having the prefix ' SW_ ' in its name. These tasks are modeled under Simulink in

several ways.

They can be trained by a merger of several blocks in one under system having the name preceded

by the prefix ' TASK _ ' either they are trained by individual blocks. These last ones, in turn can

be predefined blocks of the library either Functions modelled in language C.

In what follows, the modelling of the tasks in SystemC will be explained before describing the

various manners admitted to transform the tasks of transactional Simulink into tasks described in

SystemC.

For the modelling and description of the tasks in SystemC, we used the notion of

"SC_MODULE". A module can be hierarchical containing the other modules, or elementary

containing an active or passive behaviour using the elementary modules "SC_CTHREAD".

On the other hand, the communication is determined through an interface of communication. This

last one is described through a set of ports which can be inputs, output or inputs / output ones.

SystemC also supplies a specific port for the modelling of a physical clock. The figure 2 shows

the header file of a task described in SystemC. The interface of this module is formed by an input

port and an output port of type 'long int'. The task has a service port 'SAP', which allows

synchronization of tasks in the co-simulation.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

6

Fig 2: Example of a file header. "h" has a corresponding TASK SystemC.

However, the figure 3 shows the main file. "cpp '. The main calculation is done to the body of this

task. The communication of this module with the system is through the interfaces represented by

the ports of entry and exit 'DATA_IN1'and 'DATA_OUT1' by means of APIs defined in the

library.

Fig 3: Example of a file header. "cpp" has a corresponding task SystemC.

3.1 Transformation the S-Functions of Simulink in task SystemC.

SystemC is used by the synthesis tools and co-simulation in the stream of conception flow of

the proposed heterogeneous Systems. The conception process always begins with the

specification of the application in the Simulink environment using S-Functions blocks. The

S-Functions are developed in language C according to precise rules and through methods decided

by the Simulink simulator. An S-Function is formed by four essential methods. In our work, a

block S-Function will be converted in a module in SystemC trained by a ' thread ' sensitive to a

signal ' SAP '. The file S-function C will be processed in a direct manner in a header file and the

implementation file in C + +. To understand better the transformation of one S-Function into a

task, we divided into four parts.

In the first part, we define global variables and we include the header files. 'H'. S-function:

header files of the library of Simulink (Simstruct.h ...) macros, header files of the code, and global

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

7

variables are defined. SystemC: The header files of the SystemC library, macros, code header

files and global variables are defined.

In the second part, the initialization of variables and definition of input ports and output are

included in this section. S-function: This part is formed by the method mdlInitializeSizes

(SimStruct * S) where variables are initialized, and the number and size of ports of entry and

exit are defined. SystemC: This part is divided on the header file and implementation file for

SystemC. In the first type of port is defined. In the second module ports are declared and

initialized. The type of the port depends on the type of communication used by the port (Shared

memory, FIFO, signal synchronization).

In the third part, the APIs and the communication are the main calculation developed in this

part along a loop that is repeated several times. S-function: Method mdloutput (SimStruct *S) is

used in this part. The main calculation of the block is made. The data to be transmitted are

affected ports by using the operator "=". This is a communication primitive. SystemC: The loop

for (;;) in the implementation file contains the main calculation module. The calculation code in C

is similar to that of the S-function.

The difference in this part occurs at the level of communication primitives. In S-function, a

reading and writing data port is through the assignment operator "=". In SystemC there are two

types of communication primitives:

- The Get () and Put () to communicate through a FIFO.

- The operator "=" to read and write to shared memory.

In the final part, this is the last part that runs at the end of the simulation. S-function: This part is

formed by the method mdlterminate (SimStruct * S). SystemC: This part is after the end of the

loop for (;;) of Part III and the end of the module.

3.2 Creating a task from a SystemC predefined block in the Simulink library.

In the case of an elementary block a different type of S-function included in a software node

(a subsystem with the prefix 'SW_'), the generation of the tasks SystemC is made from a

bookshop of functions describing the behaviour of all the blocks Simulink used in the application.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

8

Fig 4: Generating a task from a basic block.

Each function has the same name as the Simulink block and the corresponding module in our

methodology. However, reading and writing data are specific through the APIs to each

communication protocol. These APIs exist in the communication library. The type of

communication protocol is identified in the 'Port' of each module in our methodology. Figure 4

shows the generation of a task in SystemC from an individual block in Simulink transaction, this

block is transformed into a parameterized module under our methodology.
3.4 Fusion of several blocks Simulink in one task SystemC.

In the case where several units are grouped in a subsystem representing a task whose name is

prefixed with 'TASK_’ the generation of the task SystemC is by assembling several library

functions into a single task SystemC. Functions have the same names of the blocks. These

functions exchange data via common variables. Communication with the system 'inter_Thread' is

via the APIs generated following the protocol communication defined in our methodology.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

9

Fig 5: Generating a task from a set of blocks in Simulink

Figure 5 illustrates the merger of several blocks in Simulink transactional to generate a task in

SystemC. The functions of the library F0 (), F1 () have the same names as the blocks F0, F1. The

generation of APIs is done by identifying the type of protocol in each port of the module in the

virtual architecture of our methodology.
4. JPEG COMPRESSION ALGORITHM

The baseline JPEG compression algorithm is the most basic form of sequential DCT based

compression [12]. The process of JPEG-based encoding and decoding of images vary according

to color depth (8, 24 or 32 bits). However, the basic ideology for all color depths is same. The

bitmap image stores raw pixel-by-pixel color values. In addition, 54 bytes are stored at the start of

file as header information that includes image width and height, image file size, image color

depth, etc. These 54 bytes must be taken into account whenever working with the bitmap images.

Following the 54-byte header, the bitmap image holds the color values of each pixel that varies

for different color depths. For an 8-bit image, this is simply one byte (8-bits) per pixel and for a

32-bit image; they are 4 bytes per pixel. For 8-bit pixels, the pre-processing stage divides image

data into 8x8 blocks that are shifted from unsigned integers with range [0, 2
8

– 1] to signed

integers with a range of [–2
7
, 2

7
 – 1] and then individually compressed at the 8x8 block level. The

compression process for each block goes through the following processes in addition to

preprocessing.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

10

• Discrete Cosine Transform (DCT)

• Quantization

• Zigzag

• Entropy Encoding (commonly Huffman)

Decompression is an inverse process that performs the individual inverse of all the above

processes.

4.1 FDCT and IDCT 8x8

The input to the encoder, source image samples are grouped into 8x8 blocks, shifted from

unsigned integers with range [0, 2
7
 - 1] to signed integers with range [-2

7
-1, 2

7
ˉ¹-1], and input

to the Forward DCT (FDCT). The output from the decoder, the Inverse DCT (IDCT) outputs

8x8 sample blocks to form the reconstructed image. The following equations are the idealized

mathematical definitions of the 8x8 FDCT and 8x8 IDCT:

The DCT is related to the Discrete Fourier Transform (DFT). Some intuition for DCT-based

compression can be result by viewing the FDCT as a harmonic analyzer and the IDCT as a

harmonic synthesizer. All 8x8 block of source image samples is effectively a 64-point discrete

signal which is a function of the two spatial dimensions x and y. The FDCT takes such a signal as

its input and decomposes it into 64 orthogonal basis signals. All contains one of the 64 unique

two-dimensional (2D) “spatial frequencies’’ which comprise the input signal’s “spectrum.” The

output of the FDCT is the set of 64 basis-signal amplitudes or “DCT coefficients” whose values

are uniquely determined by the particular 64-point input signal.

The DCT coefficient values can thus be regarded as the relative amount of the 2D spatial

frequencies contained in the 64-point input signal. The coefficient with zero frequency in both

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

11

dimensions is called the “DC coefficient” and the remaining 63 coefficients are called the “AC

coefficients.’’ Because sample values typically vary slowly from point to point across an image,

the FDCT processing step lays the foundation for achieving data compression by concentrating

most of the signal in the lower spatial frequencies. For a typical 8x8 sample block from a typical

source image, most of the spatial frequencies have zero or near-zero amplitude and need not be

encoded.

Fig 6: The JPEG decoder.

For the IDCT reverses, it takes the 64 DCT coefficients and reconstructs a 64-point output image

signal by summing the basis signals. If the FDCT and IDCT could be computed with perfect

accuracy and if the DCT coefficients were not quantized as in the following description, the

original 64-point signal could be exactly recovered. In principle, the DCT introduces no loss to

the source image samples. It just transforms them to a domain in which they can be more

efficiently encoded. Some properties of practical FDCT and IDCT implementations raise the

issue of what precisely should be required by the JPEG standard. A fundamental property is that

the FDCT and IDCT equations contain transcendental functions.

4.2 Quantization

After output from the FDCT, each of the 64 DCT coefficients is consistently quantized in

conjunction with a 64-element Quantization Table, which must be specified by the application (or

user) as an input to the encoder. Each element can be any integer value from 1 to 255, which

specifies the step size of the quantizer for its corresponding DCT coefficient. The goal of this

processing step is to discard information which is not visually significant. Quantization is a

many-to-one mapping, and therefore is fundamentally lossy. It is the principal source of lossiness

in DCT-based encoders. Quantization is defined as division of each DCT coefficient by its

corresponding quantizer step size, followed by rounding to the nearest integer:

This output value is unified by the quantizer step size. Dequantization is the inverse function,

simply means in this case that the normalization is removed by multiplying by the step size,

which returns the result to a representation appropriate for input to the IDCT:

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

12

When the aim is to compress the image as much as possible without visible artifacts, each step

size ideally should be chosen as the perceptual threshold or “just noticeable difference” for the

visual contribution of its corresponding cosine basis function. These thresholds are likewise

functions of the source image characteristics, display characteristics and viewing distance. For

applications in which these variables can be reasonably well defined, psycho visual experiments

can be performed to determine the best thresholds.
4.3 DC Coding and Zig-Zag Sequence

After quantization, the DC coefficient is treated in isolation from the 63 AC coefficients. The

DC coefficient is a measure of the average value of the 64 image samples. Because there is

usually strong correlation between the DC coefficients of adjacent 8x8 blocks, the quantized DC

coefficient is encoded as the difference from the DC term of the previous block in the encoding

order (defined in the following), as shown in Figure 7. This special treatment is worthwhile, as

DC coefficients generally contain a significant fraction of the total image energy.

Fig 7: Preparation of Quantized Coefficients for Entropy Coding

Finally, all of the quantized coefficients are ordered into the “zig-zag” sequence, also shown in

Figure 7. This ordering helps to facilitate entropy coding by placing low-frequency coefficients

(which are more likely to be nonzero) before high-frequency coefficients.
4.4 Entropy Coding\Huffman

Huffman coding is a technique which will assign a variable length codeword to an input data

item. Huffman coding assigns a smaller codeword to an input that occurs more frequently. It is

very similar to Morse code, which assigned smaller pulse combinations to letters that occurred

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

13

more frequently. Huffman coding is variable length coding, where characters are not coded to a

fixed number of bits.

This is the last step in the encoding process. It organizes the data stream into a smaller number of

output data packets by assigning unique code words that later during decompression can be

reconstructed without loss. For the JPEG process, each combination of run length and size

category, from the run length coder, are assigned a Huffman codeword.

4.5 Decomposition and implementation of the JPEG algorithm

It is possible to increase speed and to reduce power consumption by running portions of the

algorithm implemented in the custom hardware. To do this, parts of the algorithm remains the

SW and the other part goes to HW area and must be well chosen. This is called hardware

partitioning software (HW / SW partitioning). Many factors must be considered when the HW /

SW partitioning is done. The problem is to utilize the right amount of material. To use too much

material implies a rise in costs and probably increase the time of placing on the market.

The first step in a HW / SW partitioning is to identify the parts of the algorithm that consumes a

lot of time if left in the software or by the implementation of the algorithm entirely in software or

perform estimates on the number of cycles. The next step is to evaluate and decide which parts

need to be moved to the HW area. It is important to take into account more things than just a

party that consumes more cycles of the software. Perhaps it is better to leave this part of

computation in software intensive and move some other parts in HW, the parts that are better

suited for hardware implementation. This is of course possible only if time constraints may even

now be suffering the most intense in the software calculation.

To make a good HW / SW partitioning a simulation tool is needed where much can be moved

from HW field to SW field and vice versa. In addition, it should be possible to specify the

execution time for different parts. This part of the design process is important and time spent here

is well spent and often reduces the work in phases. If the processor architecture likewise must be

chosen in the design process, the problem becomes even more complicated. With a more

powerful processor, it is probably possible to do more in software and thus reduce the cost of

designing and manufacturing the hardware. The question then is of course how this affects the

total cost. The entire HW / SW partitioning problem is an optimization problem where constraints

are typical on the surface of silicon, energy, monetary cost and execution time. So the time aspect

of the market must be considered. In this section, we illustrate the approach we have followed for

the implementation of JPEG through our methodology. As we have previously presented the most

important part of the chain compression and DCT part, it has a lot of calculating. In this case we

will implement this part with SystemC and the rest of the chain compression is implemented on

MATLAB. Figure 8 shows the implementation of the encoder jpeg presenting all the different

parties.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

14

Fig 8: implementing the JPEG algorithm.

As motion in the chair, the DCT is the most important and contains much of calculation. This part

of the chain will be developed in SystemC, and represents part Hardware Figure8. We explain it

using an example process named ‘DCT’ (in JPEG encoder) in SystemC as shown in Figure 9.

Fig 9: The DCT in SystemC.

It has two FIFO channels, one for receiving data and the other for sending data. From the

SystemC code, we remove all SystemC dependent statements and exchange the FIFO read/write.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

15

Fig 10: Two FIFO channels.

To proceed to an FPGA implementation, the resulting netlist from the previous stage has to be

mapped to the FGPA's logic block structure and interconnect. The main outcome of this

technology mapping, placing, and routing is a bit stream which can be programmed into a FPGA

figure 10.

The virtual architecture model is described using SystemC language and is generated according to

the parameters specified in the initial Simulink model. SystemC allows modeling a system at

different abstraction levels from functional to pin accurate register transfer level.

Contrary to the RTW which generates only single task code, the software at the virtual

architecture level represents a multitasking systemC code description of the initial Simulink

application model. The generation has to support also user defined systemC codes integrated in

the Simulink model as S-functions. For the S-functions, the task code represents a function call of

the user written systemC function. The semantics of the argument passing are identical to those of

the definition in the configuration panel of the SFunction Builder tool in Simulink. The hardware

is refined to a set of abstract SystemC modules (SC_MODULE) for each subsystem. The

SC_MODULE of the processor includes the tasks modules that are mapped on the processor and

the communication channels for the intra-subsystem communication between the tasks inside the

same processor. The communication channels between the tasks mapped on the FPGA is

implemented using standard SystemC channels. The tasks modules are implemented as SystemC

modules (SC_MODULE). The development of the JPEG Decoder application in Simulink

requires 7 S-Functions in order to integrate the systemC code of the main parts of the decoding

algorithm. Which are: jpeg_sfun_h, dct_sfun_h, sfc_sf.h, sfc_mex.h, sfcdebug.h,

jpeg_sfun.mexw32, dct_sfun.mexw32.

Once this link is established, it opens up a wide range of additional capability to SystemC, like

stimulus generation and data visualization. The first gain of our technique is to use the right tool

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

16

for the right task. Complex stimulus generation and signal processing visualization are carried out

with MATLAB and Simulink while hardware verification is performed with SystemC verification

standard. The second gain is to have a SystemC centric approach allowing greater flexibility and

configurability.

In this part, we make a comparison between the previous methodology based on the

communication and the synchronization between both simulators and the new approach which is

based on the integration of systemC in matlab / Simulink in other applications.

CODIS (COntinuous DIscrete Simulation) is a tool which can automatically produces

cosimulation instances for continuous/discrete systems simulation using SystemC and Simulink

simulators. This is done by generating and providing co-simulation interfaces and the co-

simulation bus. To evaluate the performances of simulation models generated in CODIS, they

measured the overhead given by the simulation interfaces. The experiments have shown

synchronization overhead of less than 30 % in simulation time [9]. In the [5] A Software-Defined

Radio (SDR) is a combination of digital filters, analog components and processors, each requiring

different design approaches with a different tool or language. Using a traditional design flow,

where the verification effort represents 70% of the total design time, will yield in more time spent

on test-bench development and simulation runs. The result is 192 days as the total development

time for this project, compared to 131 days using the improved design flow. This represents a

productivity gain of around 32% over a traditional design flow that has limited test-bench

components reuse and software interoperability. But the implementation HW/SW reduced the

number of clock cycle: 1334722 to 158044 times of execution. The reduction on the total

execution time of the JPEG algorithm was 88. 15%.

5. Conclusion

In this chapter, we presented a new approach based on the integration systemC in matlab /

simulink. The capital advantage of this approach is the possibility of modeling and verifying the

overall system within the same design environment. The result is shorter design cycles for

applications using heterogeneous architectures. The co-simulation interface we presented a

method for reducing the time spent on validation and verification while improving overall test-

bench quality. MATLAB/Simulink assists the SystemC verification environment in a unified

approach. It has been shown that the methodology allows complex stimulus generation and

exhaustive data analysis for the design under verification. As FPGA designs encompass larger

and larger systems, the need to efficiently model the complex external environment during the

architecture and verification phases becomes greater. The whole verification flow has been

evaluated, using an example. It has been shown, that the usage of the extended verification flow

saves a significant amount of time during the development process. The proposed platform is

tested on the JPEG compression algorithm. The execution time of such algorithm is improved by

88.15% due to the hardware implementation of the Matlab mult16 Function using SystemC. As

future works, we aim to test our platform with the whole video compression chain using MPEG4

modules and Software-Defined Radio (SDR). It includes hardware and software components that

require rigorous verification all along the design flow.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012

17

References

[1] A. Avila, “Hardware/Software Implementation of a Discrete Cosine Transform Algorithm Using

SystemC” Proceedings of the 2005 International Conference on Reconfigurable Computing and

FPGAs (ReConFig 2005)

[2] M.Abid, A. Changuel, A. Jerraya,” Exploration of Hardware/Software Design Space through a

Codesign of Robot Arm Controller” EURO-DAC '96 with EURO-VHDL '96 pp 17-24

[3] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, M. Poncino, “SystemC Cosimulation and

Emulation of Multiprocessor SoC designs,” Computer Magazine, April 2003 pp: 53 – 59

[4] The Open SystemC Initiative (OSCI) http://www.systemc.org

[5] J.F. Boland “Using MATLAB and Simulink in a SystemC Verification Environment”, Proc. Of

Design and Verification Conference & Exhibition, San Jose, Californie, Février 2005

[6] F. Czerner and J. Zellmann. “Modeling cycle-accurate hardware with matlab/ simulink using

systemc”. 6th European SystemC Users Group Meeting (ESCUG), October 2002.

[7] C. Warwick. Systemc calls matlab. MATLAB Central, March 2003.

[8] The MathWorks. Link for ModelSim 2.0, 2006.

[9] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E.M. Aboulhamid. A SystemC/Simulink co-

simulation framework for continuous/discrete-events simulation. In Behavioral Modeling and

Simulation Workshop, Proceedings of the 2006 IEEE International, pages 1–6, 2006

[10] Youssef ATAT “Conception de haut niveau des MPSoCs à partir d’une spécification Simulink :

Passerelle entre la conception au niveau Système et la génération d’architecture“21 Mai 2007

[11] W.hassairi, M.Bousselmi, M.Abid,C.valderama “Using Matlab And Simulink In SystemC

Verification Environment By JPEG Algorithm“ICECS 2009 ,page 912-915

[12] Draft Standard SystemC Language Reference Manual April 25 2005 Independent JPEG Group,

http://www.ijg.org

[13] Hiroyasu Mitsui “A Student Experiment Method for Learning the Basics of Embedded Software

Development Including HW/SW Co-design” 22nd International Conference on Advanced

Information Networking and Applications – Workshops 2008 pp.1367- 1376

[14] James Rosenthal “ JPEG Image Compression using an FPGA” A Thesis submitted in partial

satisfaction of the requirements for the degree Master of Science in Electrical and Computer

Engineering December 2006

