There is a newer version of this record available.

Preprint Open Access

UP versus NP

Frank


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1419750</identifier>
  <creators>
    <creator>
      <creatorName>Frank</creatorName>
      <affiliation>Joysonic</affiliation>
    </creator>
  </creators>
  <titles>
    <title>UP versus NP</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>P</subject>
    <subject>NP</subject>
    <subject>UP</subject>
    <subject>NP-conplete</subject>
    <subject>Quadratic Congruences</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-09-16</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Preprint</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1419750</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1419749</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;P versus NP is considered as one of the most important open problems in computer science.This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently in 1971 by Stephen Cook and Leonid Levin . Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is UP. Whether UP=NP is another fundamental question that it is as important as it is unresolved. To attack the UP=NP question the concept of NP-completeness is very useful. If any single NP-complete problem is in UP, then UP=NP. Quadratic Congruences is a well-known NP-complete problem. We prove Quadratic Congruences is also in UP. In this way, we demonstrate that UP=NP.&lt;/p&gt;</description>
  </descriptions>
</resource>
73
51
views
downloads
All versions This version
Views 7324
Downloads 5120
Data volume 8.8 MB1.7 MB
Unique views 4623
Unique downloads 3617

Share

Cite as