Thesis Open Access

Towards a taxonomy for quality control in environmental sciences

Maduro, Jordan


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Maduro, Jordan</dc:creator>
  <dc:date>2018-09-15</dc:date>
  <dc:description>The use of environmental science data in forecasting and decision making makes producing high-quality data essential. To produce high-quality data research infrastructures develop quality control solutions ad hoc. Some methodologies, tools, and techniques apply to multiple environmental domains. However, sharing these tools is difficult because of a lack in standardization or common terminology. In this thesis, we propose a taxonomy for quality control in environmental sciences. The research was conducted through literature studies, interviews, and the development of the taxonomy. Furthermore, we surveyed the state of the art quality control methods.
This taxonomy can be used as a common vocabulary and to classify quality control methodologies, tools, and techniques.</dc:description>
  <dc:identifier>https://zenodo.org/record/1419494</dc:identifier>
  <dc:identifier>10.5281/zenodo.1419494</dc:identifier>
  <dc:identifier>oai:zenodo.org:1419494</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/676247/</dc:relation>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/654182/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.1419493</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>Towards a taxonomy for quality control in environmental sciences</dc:title>
  <dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
  <dc:type>publication-thesis</dc:type>
</oai_dc:dc>
24
11
views
downloads
All versions This version
Views 2424
Downloads 1111
Data volume 10.3 MB10.3 MB
Unique views 2020
Unique downloads 1010

Share

Cite as