Thesis Open Access

Characterizing access patterns from ftp logs: a case study on Euro-Argo research infrastructure

Bouman, Ewoud


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">log analytics, FTP, research infrastructure, big data management</subfield>
  </datafield>
  <datafield tag="502" ind1=" " ind2=" ">
    <subfield code="c">University of Amsterdam</subfield>
  </datafield>
  <controlfield tag="005">20200120171739.0</controlfield>
  <controlfield tag="001">1419490</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Amsterdam</subfield>
    <subfield code="0">(orcid)0000-0002-6717-9418</subfield>
    <subfield code="4">ths</subfield>
    <subfield code="a">Zhao, Zhiming</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Amsterdam</subfield>
    <subfield code="4">ths</subfield>
    <subfield code="a">Taal, Arie</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Amsterdam</subfield>
    <subfield code="4">ths</subfield>
    <subfield code="a">Koulouzis, Spiros</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">775540</subfield>
    <subfield code="z">md5:b7bc166e92fb2c154df280aba7e71fd6</subfield>
    <subfield code="u">https://zenodo.org/record/1419490/files/characterizing-access-patterns (1).pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-09-15</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1419490</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Amsterdam</subfield>
    <subfield code="a">Bouman, Ewoud</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Characterizing access patterns from ftp logs: a case study on Euro-Argo research infrastructure</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">676247</subfield>
    <subfield code="a">A Europe-wide Interoperable Virtual Research Environment to Empower Multidisciplinary Research Communities and Accelerate Innovation and Collaboration</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">654182</subfield>
    <subfield code="a">Environmental Research Infrastructures Providing Shared Solutions for Science and Society</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Research infrastructures provide data and other necessary services required by domain scientists for performing advanced research. The performance of the research infrastructure is crucial for the user experience. By analysing the access patterns in the log files data infrastructure operators can improve the quality of the offered end product. This study focuses on the access log files obtained from the file server of the Euro-Argo research infrastructure. Based on the operational history contained in the log files we evaluate how these usage patterns can be used to improve the offered service level to the users of the data infrastructure. We introduce a prediction based model that can forecast the future workload by exploiting the usage patterns extracted from the log files. This model makes it possible to allocate resources in advance leading to a more efficient and optimised data infrastructure improving the service level.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1419489</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1419490</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
</record>
81
65
views
downloads
All versions This version
Views 8181
Downloads 6565
Data volume 50.4 MB50.4 MB
Unique views 7777
Unique downloads 5858

Share

Cite as