Thesis Open Access

Characterizing access patterns from ftp logs: a case study on Euro-Argo research infrastructure

Bouman, Ewoud


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1419490</identifier>
  <creators>
    <creator>
      <creatorName>Bouman, Ewoud</creatorName>
      <givenName>Ewoud</givenName>
      <familyName>Bouman</familyName>
      <affiliation>University of Amsterdam</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Characterizing access patterns from ftp logs: a case study on Euro-Argo research infrastructure</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>log analytics, FTP, research infrastructure, big data management</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Supervisor">
      <contributorName>Zhao, Zhiming</contributorName>
      <givenName>Zhiming</givenName>
      <familyName>Zhao</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6717-9418</nameIdentifier>
      <affiliation>University of Amsterdam</affiliation>
    </contributor>
    <contributor contributorType="Supervisor">
      <contributorName>Taal, Arie</contributorName>
      <givenName>Arie</givenName>
      <familyName>Taal</familyName>
      <affiliation>University of Amsterdam</affiliation>
    </contributor>
    <contributor contributorType="Supervisor">
      <contributorName>Koulouzis, Spiros</contributorName>
      <givenName>Spiros</givenName>
      <familyName>Koulouzis</familyName>
      <affiliation>University of Amsterdam</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2018-09-15</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Thesis</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1419490</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1419489</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Research infrastructures provide data and other necessary services required by domain scientists for performing advanced research. The performance of the research infrastructure is crucial for the user experience. By analysing the access patterns in the log files data infrastructure operators can improve the quality of the offered end product. This study focuses on the access log files obtained from the file server of the Euro-Argo research infrastructure. Based on the operational history contained in the log files we evaluate how these usage patterns can be used to improve the offered service level to the users of the data infrastructure. We introduce a prediction based model that can forecast the future workload by exploiting the usage patterns extracted from the log files. This model makes it possible to allocate resources in advance leading to a more efficient and optimised data infrastructure improving the service level.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/676247/">676247</awardNumber>
      <awardTitle>A Europe-wide Interoperable Virtual Research Environment to Empower Multidisciplinary Research Communities and Accelerate Innovation and Collaboration</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/654182/">654182</awardNumber>
      <awardTitle>Environmental Research Infrastructures Providing Shared Solutions for Science and Society</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
81
63
views
downloads
All versions This version
Views 8181
Downloads 6363
Data volume 48.9 MB48.9 MB
Unique views 7777
Unique downloads 5656

Share

Cite as