Poster Open Access

Fast open modification spectral library searching through approximate nearest neighbor indexing

Bittremieux, Wout; Meysman, Pieter; Noble, William Stafford; Laukens, Kris


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1418398</identifier>
  <creators>
    <creator>
      <creatorName>Bittremieux, Wout</creatorName>
      <givenName>Wout</givenName>
      <familyName>Bittremieux</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3105-1359</nameIdentifier>
      <affiliation>University of Washington</affiliation>
    </creator>
    <creator>
      <creatorName>Meysman, Pieter</creatorName>
      <givenName>Pieter</givenName>
      <familyName>Meysman</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5903-633X</nameIdentifier>
      <affiliation>University of Antwerp</affiliation>
    </creator>
    <creator>
      <creatorName>Noble, William Stafford</creatorName>
      <givenName>William Stafford</givenName>
      <familyName>Noble</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7283-4715</nameIdentifier>
      <affiliation>University of Washington</affiliation>
    </creator>
    <creator>
      <creatorName>Laukens, Kris</creatorName>
      <givenName>Kris</givenName>
      <familyName>Laukens</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8217-2564</nameIdentifier>
      <affiliation>University of Antwerp</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Fast open modification spectral library searching through approximate nearest neighbor indexing</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-09-17</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1418398</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1418397</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Open modification searching (OMS) is a powerful search strategy that identifies peptides carrying any type of modification by allowing a modified spectrum to match against its unmodified variant by using a very wide precursor mass window. A drawback of this strategy, however, is that it leads to a large increase in search time. Although performing an open search can be done using existing spectral library search engines by simply setting a wide precursor mass window, none of these tools have been optimized for OMS, leading to excessive runtimes and suboptimal identification results.&lt;/p&gt;

&lt;p&gt;Here we present the ANN-SoLo tool for fast and accurate open spectral library searching. ANN-SoLo uses approximate nearest neighbor indexing to speed up OMS by selecting only a limited number of the most relevant library spectra to compare to an unknown query spectrum. This approach is combined with a cascade search strategy to maximize the number of identified unmodified and modified spectra while strictly controlling the false discovery rate, as well as a shifted dot product score to sensitively match modified spectra to their unmodified counterparts.&lt;/p&gt;

&lt;p&gt;ANN-SoLo achieves state-of-the-art performance in terms of speed and the number of identifications. On a previously published human cell line data set, ANN-SoLo confidently identifies more spectra than SpectraST or MSFragger and achieves a speedup of an order of magnitude compared to SpectraST.&lt;/p&gt;

&lt;p&gt;ANN-SoLo is implemented in Python and C++. It is freely available under the Apache 2.0 license at https://github.com/bittremieux/ANN-SoLo.&lt;/p&gt;</description>
  </descriptions>
</resource>
76
96
views
downloads
All versions This version
Views 7676
Downloads 9696
Data volume 136.3 MB136.3 MB
Unique views 7373
Unique downloads 9494

Share

Cite as