
ALGORITHMS FOR POLYPHONIC MUSIC RETRIEVAL: THE
HAUSDORFF METRIC AND GEOMETRIC HASHING

Christian André Romming
Stanford University

Dept. of Computer Science
romming@cs.stanford.edu

Eleanor Selfridge-Field
Stanford University

Dept. of Music
esfield@stanford.edu

ABSTRACT

We consider two formulations of the computational prob-
lem of transposition-invariant, time-offset tolerant, meter-
invariant, and time-scale invariant polyphonic music re-
trieval. We provide algorithms for both that are scalable in
the sense that space requirements are asymptotically lin-
ear and queries are efficient for large databases of music.
The focus is on cases where a query patternM consisting
of m events is to be matched against a databaseN con-
sisting ofn events, andm ≪ n. The database is assumed
to be polyphonic, and the algorithms support polyphonic
queries. We are interested in finding exact and proximate
occurrences of the query pattern. The first problem con-
sidered is that of finding the minimum directed Hausdorff
distance fromM to N . We give a(2 + ǫ)-approximation
algorithm that solves this problem inO (nm) query time
and O (n) space. The second problem is that of find-
ing all maximal subset matches ofM in N , and we give
an algorithm that solves this problem inO

(

m3 (k + 1)
)

query time andO
(

w2n
)

space, wherew represents the
maximum window size andk is the number of matches.
Using the same method, the problem can be solved in
O (m (k + 1)) query time andO (wn) space if we do not
require the time-scale invariance property. The latter query
time is asymptotically optimal for the given problem.

1 INTRODUCTION

We consider two formulations of the computational prob-
lem of content-based, polyphonic music retrieval. We sug-
gest algorithms for both, and they are linked in the sense
that they employ the same point-set representation of mu-
sic. The first problem formulation, referred to as themin-
imum Hausdorff distance problem, considers the dissimi-
larity of two point sets to be related to the Euclidian dis-
tance between points in the set. The second, which we call
the maximal subset matching problem, takes the similar-
ity to be related to the number of points in one set that are
in the same location as points in the other. Although these
two problems might seem similar, the methods required to
solve them are inherently different.

c© 2007 Austrian Computer Society (OCG).

1.1 Related Work

It is argued by Di Lorenzo and Di Maio [3] that the Haus-
dorff distance has significant relationships with perceived
musical similarity. The Hausdorff distance as formulated
in this paper is related to the Earth Mover Distance studied
by Typke [9]. The main differences lie in the metric used
to measure similarity and the indexing methods employed
in order to make queries efficient. Another related ap-
proach is that taken by Lubiw and Tanur [5], whose mea-
sure of similarity is based on the consonance of events that
overlap in time. The maximal subset matching problem
(and variants of it) has been studied by several groups.
Some of the most notable algorithms are the SIA fam-
ily, an excellent overview of which is given by Mered-
ith [6]. A recent randomized algorithm building on the
SIA algorithms is MSM, developed by Clifford et al. [2],
which achieves a running time ofO (n log n). Further-
more, problem P2 described by Ukkonen et al. [10] is
closely related to the maximal subset matching problem
as defined here. The most notable differences are that we
also require note durations to match and that we allow ar-
bitrary scaling of the pattern set in addition to translation.

1.2 Representation

We represent music as three-dimensional point sets, where
the three dimensions are pitch, duration, and onset time.
Point-set representations of music are common in the con-
text of melodic similarity algorithms [2, 9]. Another pop-
ular representation format is sets of line segments, where
the length of the line segments specifies the duration of a
musical event [5, 10]. We choose the point-set represen-
tation for two main reasons. First, it is extensible in the
sense that more features such as e.g. harmony and beat
can be included by simply adding more dimensions. The
algorithms in this paper will still work after such a mod-
ification (with slightly higher running times). Second, a
point-set representation makes it easier to apply some of
the ideas used in this paper, such as the Hausdorff metric
and geometric hashing. Only notes are explicitly repre-
sented, and ornaments and grace notes are ignored.

Let us first give the details of the point-set represen-
tation we use. The pitch of an event is encoded using
Hewlett’s base-40 notation [4], so that translations in the
pitch dimension leave all intervals unchanged. A logarith-

mic scale is used to represent duration, so that translations
in the duration dimension correspond to scaling of actual
durations. For example, the distance from a quarter note
to an eighth note is the same as the distance from a whole
note to a half note.

We identify two different ways of representing onsets,
each with different musical properties. The first is to use
a measure-relative scale, that is, we let all measures have
a fixed length (independent of meter) and set onset co-
efficients accordingly. For example, a note that begins
half-way through the fifth measure will have onset4.5 · l,
wherel is the measure-length constant. The second is to
use an absolute scale. In this system, the meter informa-
tion is ignored, and the onset coefficient of a point would
be proportional to the aggregate duration since the begin-
ning of the work. Using either the measure-relative or the
absolute scale, translations in the onset dimension clearly
correspond to a time-shift of the music. To see the differ-
ence between the two scales, observe that a piece of music
in 4/4 meter will have different onset coefficients from a
piece with exactly the same notes in 3/4 meter only when
the measure-relative scale is used.

Although translations have clear meanings in each of
the dimensions in isolation, the effect in the onset dimen-
sion of a translation upon the duration dimension is slightly
more involved. Let us assume that a translation of one
positive unit in the duration dimension corresponds to a
doubling of the duration of each note. Observe that note
onsets are left unchanged by this transformation. Using
the measure-relative scale, this transformation can equiv-
alently be seen as a change in meter. This is illustrated
in Fig. 1: The duration of each note in fragment (b) is
twice that of the corresponding note in fragment (a), but
the relative position of each note is the same in both se-
quences. We will exploit this feature when approaching
the issue of time-scale invariance. An artifact of this rep-
resentation is that fragment (a) is indistinguishable from
fragment (c), which implies that though we might achieve
the meter-invariance property, this interpretation is musi-
cally ambiguous. We would lose meter invariance if we
use absolute onsets: The meter information is ignored, and
so in order to achieve the transformation from (a) to (b)
in Fig. 1 (ignoring the time signature and the bar lines),
the translation in the duration dimension would have to be
combined with a scaling by a factor of two in the onset
dimension. Our algorithms can be used with both scale
types.

1.3 Time-Scale Invariance

One element of the richness of polyphonic music lies in
melodic imitation between voices. Imitations can be ex-
act in every respect, but commonly the melody varies from
one iteration to the next by octave or by transposition.
In these cases, a query in which pitch and duration are
defined should be adequate for retrieval. Since the need
for pitch-invariance is widely accepted, we turned our at-
tention to time-scale invariance. An imitative device in
widespread use in European art music of several centuries

Figure 1. Three related fragments. (a) A simple note sequence.
(b) The note sequence translated in the duration dimension.(c)
The note sequence from (a) shown in a different meter with
measure-relative onsets left unchanged.

was the mensuration canon, in which an imitation could
be contracted or elongated by doubling or halving note-
values. Contrapuntal techniques involving the augmen-
tation or diminution of note-durations often noted in the
work of J. S. Bach, left a significant mark on motivic pro-
cedures in later orchestral music.

1.4 Windowing

Windowing refers to the concept of splitting the music into
(overlapping) segments whose events fit into a certain on-
set interval (referred to aswindow length). This idea is
somewhat analogous to the concept ofn-grams, which is
used extensively in string matching. Then-grams tech-
nique has been applied in monophonic music query algo-
rithms, but does not easily generalize to polyphonic mu-
sic, where the target sequence may occur in any voice and
may even move between voices [2]. Windowing is made
possible by the fact that query patterns are local in time,
that is, they usually span only a limited range in the onset
dimension.

We use two forms of windowing. In section 2.1 we
suggest that the running time of our algorithm can be im-
proved if one of the subroutines queries a data structure
consisting of a small window of points rather than the en-
tire model point set. In the maximal subset matching algo-
rithm presented in section 3.1 windowing is fundamental:
The preprocessing step essentially takes windows as input,
and the algorithm makes assumptions about the relative
lengths of these windows and the query pattern lengths.

2 MINIMUM HAUSDORFF DISTANCE
PROBLEM

We begin by specifying the first of the two problems we
study in this paper, which is that of finding the minimal
directed Hausdorff distance between a patternM and a
modelN over all possible translations of the patternM .
Formally, the distance we want to find is

min
w∈R3

(

max
m∈M

(

min
n∈N

d (m + w, n)

))

, (1)

wherew is any translation vector andd is the Euclidean
distance function. To understand what is meant by Haus-
dorff distance, consider a particular translation of the pat-

Figure 2. The concept of Hausdorff distance.

tern M . For each point inM , consider the distance to
the closest point inN . The directed Hausdorff distance
is the maximum of these distances. This is illustrated in
Fig. 2(a): The crosses represent the point setN and the
dots represent the pattern point setM . The Hausdorff dis-
tance from the dots to the crosses is the furthest distance
from a dot to the cross that is nearest to it. Another way
of seeing this distance is as the smallest radius that circles
around each of the dots can have in order for each of the
circles to contain at least one cross. As stated earlier, we
allow the pattern point setM to undergo any translation
w. Such a translation that decreases the Hausdorff dis-
tance is shown in Fig. 2(b): The dots have been shifted
horizontally to the right, and this has decreased the dis-
tance fromm1 to the nearest cross fromda to db. The
task is to determine the translation vector which gives the
smallest Hausdorff distance. The example presented here
is for a two-dimensional representation, but the problem
clearly generalizes to any point dimension.

2.1 Our Algorithm

There are two main steps in our algorithm. The first step
is to align the pattern setM and the model setN with
respect to some pair of points(a, b), wherea ∈ M and
b ∈ N . Concretely, this means that we apply a translation
w to every point in the pattern setM such thata + w = b.
The next step is to find the nearest neighbor of each of
the pattern points in the model point set under this trans-
lation. The Hausdorff distance is then computed based
on this. We repeat this procedure for each of the points
in the model setN . Alg. 1 gives the details of this pro-
cedure. We will provide details about the complexity of
the algorithm, and also show that it is indeed a(2 + ǫ)-
approximation to the directed Hausdorff distance problem
outlined in the previous section.

Subsequent to the alignment, the nearest neighbor is
found in the model setN for each of the points in the pat-
tern setM . We use the approach proposed by Arya et al
in [1], which during preprocessing of the data decomposes
the setN into cells in a so-called BBD-tree structure. At
query time, the cell to which the query point belongs is
found, and a priority search routine processes nearby cells
until the nearest neighbor is found. Note that this algo-
rithm actually finds anapproximate nearest neighbor, that
is, it returns any point that is at most(1 + ǫ) times as
far away from the query point as its true nearest neigh-
bor, whereǫ > 0 is a constant of our choosing. The
time required for each such nearest neighbor computa-

Algorithm 1 Minimum Hausdorff distance algorithm
1. Pick any pointp in M

2. For every pointni in N

(a) TranslateM by (ni − p)
(b) For every point inmj in M

(c) Find the nearest neighbornj of mj in N

i. Compute the distancedij = d (mj , nj)

(d) Set distancei, di = maxj {dij}

3. Output the minimal alignment distance,mini {di}

tion is O
(

d
⌈

1 + 6 d
ǫ

⌉d
log n

)

, whered is the point di-

mension (in our cased = 3). The preprocessing time for
the data structure isO (dn log n), and the space require-
ment isO (dn).

2.2 Analysis

For each alignment, there are(m − 1) nearest neighbor
queries to process, and there is a total ofn candidate align-
ments. The total time complexity of our algorithm is thus
O (mn log n). The only preprocessing required is creating
the BBD-tree for the model points, and the space require-
ment is linear in the size of the model point set. The idea
of exploiting the spread in the onset dimension through
windowing (see section 1.4) can be used to reduce the
time complexity of queries. To do this, we require an up-
per bound on the potential difference in onset between a
query point and its nearest neighbor in the model set. This
will determine a window length and hence a maximum
size that the set of model points that fall within the limits
of such a window can have. If we build the BBD-tree for
each window, the query time is reduced toO (nm log w),
wherew is largest possible window point set size. Note
that althoughw may be large, it is inherently linked to
the representation and does not grow with eitherm nor
n. It can thus be regarded as a constant, and the asymp-
totic running time of our algorithm is thusO (mn). Time-
scale invariance is achieved in a brute-force way by re-
peating the query process for different meters applied to
the query sequence (see section 1.2). We do not discuss
the details about the set of applicable meters here, other
than to note that the set of applicable meters is finite and
relatively small. We also omit the proof that the alignment
method guarantees that the distance output is at most twice
the true Hausdorff distance. From the promises of the ap-
proximate nearest neighbor subroutine it thus follows that
our algorithm produces a distance which is at most(2 + ǫ)
times the true distance, whereǫ > 0 is arbitrarily small.

2.3 Example

In order to illustrate the algorithm outlined above, we ap-
ply our algorithm to the melody “Fuggi, fuggi, da questo
cielo”, which belongs a melodic family studied by Tagli-
avini [8]. The result of matching this theme against three
other members of this melodic family is shown in Fig. 3.

The example is meant to illustrate meter aspects of the al-
gorithm as well as to show the output when perceptually
similar pieces are compared. Note that our algorithm is
designed for polyphonic music, and in particular instances
where the models are entire works of music that are orders
of magnitude larger than the query.

The query consists of the first 19 events of “Fuggi,
fuggi, da questo cielo”; the last event has been left out so
that the query is no longer than any of the model melodies.
Note that the query is in 4/4 meter whereas the three mod-
els are in 6/8, 6/8, and 2/4 meter respectively. The query
melody matches each of the models when the onsets of
the query events are scaled according to 2/4 meter (see
section 1.2). Applying this meter has the effect of dou-
bling the number of measures. The numbers above each of
the models show the matches (i.e. geometrically nearest
neighbors) of each query event in the optimal alignment
of the query. Note that more than one query note can be
matched to a model note. The translation vector that gives
the optimal alignment is also given, where the three co-
efficients are onset, pitch, and duration, respectively. The
first two matches have a shift in the duration dimension
of 1, meaning that every query note has been doubled in
duration. This shift happens because the algorithm aligns
the first note of the query (an eighth note) with notes in
the models, and in these two cases the best matches hap-
pen to be alignments with quarter notes. For model (b)
it turns out that the distance would be smaller if we did
not translate the durations. As the algorithm is a(2 + ǫ)-
approximation, however, we are guaranteed that the dis-
tance output is at most about twice the optimal. Hence,
match (a) is in any case better than match (b), since the
distance of model (b) must be at least∼ 1.4. In each case
the note matches that are furthest apart, i.e. those that dic-
tate the Hausdorff distance, are given.

3 MAXIMAL SUBSET MATCHING

This problem is a variation of problem P2 proposed by
Ukkonen et al. [10]. In their representation, events are
line segments in two-dimensional pitch-time space where
event durations are proportional to line segment lengths.
The problem is to find all translations of a patternM such
that a subset of the onset events ofM match onset events
in N . They give an algorithm that solves this problem
in O (nm logm) time andO (m) space based on the idea
of sweepliningN . The problem we consider here is the
same, with three important modifications: First, we will
allow time-scalings (i.e. scaling in the onset dimension)
of M in addition to translations. Second, we require that
the durations of each event match (in addition to pitch and
onset). Third, we are only interested in subsets of size
two or greater. The reason for the last modification is that
in our representation, any event can be transformed into
any other by a translation. Thus, for every query there
arenm trivial subset matches of size one that result from
simply translating each event inM to each event inN .
A solution to the maximal subset matching problem is a

Figure 4. Two steps of the maximal subset matching algorithm.
Translation (gray) with respect to pointu and subsequent scaling
(black) with respect to pointv.

list of ordered triplets of the form〈v, s, M ′〉, wherev is
a translation vector,s is a scaling factor,M ′ ∈ M is the
subset of points that match points inN under translation
v and scalings, and|M | ≥ 2.

3.1 Our Algorithm

Our algorithm employs the idea of geometric hashing, an
excellent overview of which is given in [11]. The main
idea is to preprocess the models so that the representation
is invariant to translation and scaling. In order to keep
the preprocessing time and data structure size reasonable,
we window the models as described in section 1.4. For
each model pointu, we consider each other pointv that
lies within a time windowW centered atu. We refer to
each such pair of points〈u, v〉 as abasis. For each basis
we translate the window point setW so thatu is at the
origin. This is illustrated by the gray arrows in Fig. 4. We
then scale the onsets of all points in the set by a positive
factor such that the difference in the onset ofu andv is
1. In other words, we scale all onsets by the inverse of
the absolute value of the onset ofv. This is shown by the
black arrows in Fig. 4. The pitch and duration are left
unchanged by this scaling. We now compute a hash value
of the points in the point set using a hash function that
assigns a unique value to each possible point location. The
hash values are then used as indices in a hash table, the
entries of which are referred to asbins. Each bin consists
of a list of labels, which contain information about the
basis for instances of the aforementioned process where
a point in the window set ended up in this specific bin
location. For example, to each of the lists associated with
the bins for (the translated and scaled) pointsu, v, andw

in Fig. 4, we would add the label identifying the basis
〈u, v〉. We repeat this process for all pairs of points in all
windows.

Processing a query follows a similar procedure. For
a pair of query points, we translate and scale as in the
preprocessing step. We then consider the lists of labels
of the bins into which the query points fall. Each label
that occurs in one of these lists identifies a subset match,
since for this particular translation and scaling the query
and the model have at least one event in common. All that
remains is to aggregate the lists, i.e. for each label create
a set of all the points whose bins contain that label. Note
that every possible label will be present in the bin at the

Figure 3. Example of the minimum Hausdorff distance algorithm. Top: "Fuggi, fuggi da questo cielo", a canzonette from c. 1625 as
notated by Gherardo Pedali. (a) "Moldau" theme used by Smetana in his symphonic suite Ma Vlast. (b) A transcription by Coussemaker
(a noted musicologist) from c. 1850 of a popular Flemish song, "Ik zag Cecilia komen". (c) A transcription by Tagliavini from a
twentieth-century arrangement by Melchiade Benni called the "Ballo di Baraben" or the "Ballo di Mantova".

Algorithm 2 Maximum subset matching algorithm
Preprocessing:

1. For each windowWu centered at pointu ∈ N

(a) For each pairv ∈ N ∩ Wu, whereu 6= v

i. TranslateW by−u

ii. ScaleW by 1
|onset(v)|

iii. For eachw ∈ W \ {u}

A. Add label〈u, v〉 to the bin at locationw

Query:

1. For each〈a, b〉, wherea, b ∈ M anda 6= b

(a) TranslateM by−a

(b) ScaleM by 1
|onset(b)|

(c) For eachc ∈ M \ {a}

i. For each label〈u, v〉 in the bin at locationc
A. Add c to the match set for〈u, v〉

(d) Output labels whose match sets are of size≥ 2

origin, corresponding to subset matches of cardinality1 as
described earlier. To find all maximal subset matches, we
repeat this process for all pairs of query points.

3.2 Analysis

We now turn to the time and space complexity of the al-
gorithm. Denote byl the maximum pattern length and by
ǫ the smallest unit in the duration dimension. By using
a window of length2l centered at the first basis point we
are guaranteed to find all subset matches. Furthermore,
let w be the maximum number of events that occur in any
window. An event forms a basis with at most(w − 1)
other events. For each basis, at mostw new entries are
created in the hash table, and so an upper bound on the
time and space complexity of the preprocessing step is
O

(

w2n
)

. Although the complexity seems high for big
window lengths, for applications where one can define an

upper bound on pattern lengths the time and space com-
plexity of the algorithm grows linearly with the database
size.

Let us now consider the query time complexity. Each
element in the model setN is the first element of a ba-
sis at mostw times. For each basis, at most one entry is
made into the data structure per bin. Hence, each bin’s
list will have length at mostwn. For a query of sizem
there will bem such lists to consider per basis. By us-
ing a hash table, the histogram step (step 1(c) of alg. 2)
can be completed inO (wnm) time. The total running
time of the query algorithm is thusO

(

wnm3
)

, since the
computation is repeated forO

(

m2
)

bases. As the running
time of our algorithm is in fact proportional to the number
of matches, we can restate it asO

(

m3 (k + 1)
)

, where
k is the number of maximal subset matches. This entails
that the running time does not depend on the size of the
database. Our algorithm is thus asymptotically optimal up
to a m2 factor, and this at least partly justify the higher
space requirements of this relative to previous methods.
Finally, we also observe that we were not interested in
time-scale invariance, the basis in the preprocessing step
and queries would consist of one point. Thus we would
get O (wn) space andO (m (k + 1)) query time, as we
would only need to consider a single basis in the query.
This query time is asymptotically optimal assuming match
event enumeration is required.

3.3 Example

As an example of the maximal subset matching algorithm
given in this section, we consider an excerpt from the ap-
pendix to the Goldberg Variations by J. S. Bach (BWV
1087, No. 14) shown in Fig. 5. The second phrase in
the soprano (a series of eleven sixteenth notes) is later re-
peated in the tenor as quarter notes. Taking either of these
two note sequences as the query, the algorithm returns a

Figure 5. Excerpt from the appendix to the Goldberg Variations by J. S.Bach (BWV 1087, No. 14).

complete match for each basis (see previous section), cor-
responding to the scaled occurrence. Similarly, the first
seven eighth-notes in the alto are repeated in the bass as
half notes, with one difference: The 6th note in the se-
quence is a C# in the eighth-note occurrence and a C in
the half-note occurrence. Applying the algorithm to either
of these sequences thus gives a match of size six corre-
sponding to the scaled occurrence. This will be the case
for any basis that does not have the 6th note as the first
note. The relative onsets of the 6th note are the same in
the sequences, and so the bases with the 6th note as the
second note will also have a match of size six.

4 DISCUSSION AND CONCLUSIONS

We have implemented our two algorithms on the Java plat-
form. The input format for both the database and queries
is the Kern data format, and for testing our algorithms
we have made extensive use of data from the KernScores
website (http://kern.humdrum.net) [7], includ-
ing music by J. S. Bach, Corelli, and Beethoven, as well
as ragtime pieces composed by Scott Joplin. The software
produces on-the-fly output using the GUIDO NoteServer
(http://www.noteserver.org).

We continue to explore the contexts in which each of
the algorithms are useful. Provisionally, we expect that the
Hausdorff distance algorithm should be effective in situ-
ations where there is noise present in the encoded music.
Future research will focus on ways to improve the space
requirements of the time-scale invariant maximal subset
matching algorithm. Furthermore, a three-dimensional rep-
resentation of music is insufficient to capture all perceived
features of music. More work is required to determine if
the point-set model can be extended to encompass more
features, such as harmony and beat information, for ex-
ample.

5 ACKNOWLEDGEMENTS

We are thankful to Don Anthony for typesetting musical
examples for this paper, to Walter B. Hewlett for use-
ful discussions, and to Jürgen Kilian for maintaining the
GUIDO NoteServer website.

6 REFERENCES

[1] S. Arya, D. M. Mount, N.S. Netanyahu, R. Silverman,
and A. Y. Wu. “An Optimal Algorithm for Approxi-

mate Nearest Neighborhood Searching,”Proc. Symp.
Discrete Algorithms, pp. 573-582, 1994.

[2] R. Clifford, M. Christodoulakis, T. Crawford, D.
Meredith, and G. A. Wiggins. “A Fast, Randomised,
Maximum Subset Matching Algorithm for Document-
Level Music Retrieval,”Proceedings of the 7th Inter-
national Conference on Music Information Retrieval
(ISMIR 2006), pp. 153-155, 2006.

[3] P. Di Lorenzo and G. Di Maio. "The Hausdorff Metric
in the Melody Space: A New Approach to Melodic
Similarity," Ninth International Conference on Music
Perception and Cognition, Bologna, 2006.

[4] W. B. Hewlett. “A Base-40 Number-Line Representa-
tion of Musical Pitch Notation,"Musikometrika 4, pp.
1-14, 1992.

[5] A. Lubiw and L. Tanur. “Pattern Matching in Poly-
phonic Music as a Weighted Geometric Transla-
tion Problem,”Proceedings of the 5th International
Conference on Music Information Retrieval (ISMIR
2004), pp. 289-296, 2004.

[6] D. Meredith. “Point-Set Algorithms for Pattern Dis-
covery and Pattern Matching in Music,” In T. Craw-
ford and R. C. Veltkamp (Eds.),Proceedings of
the Dagstuhl Seminar on Content-Based Retrieval,
Dagstuhl, Germany, 2006.

[7] C. Sapp. “Online Database of Scores in the Hum-
drum File Format,”Proceedings of the 6th Interna-
tional Conference on Music Information Retrieval (IS-
MIR 2005), pp. 664-665, 2005.

[8] L. F. Tagliavini. “’Il ballo di Mantova’, ovvero,
’Fuggi, fuggi, da questo cielo’, ovvero, ’Ce-
cilia’, ovvero,” in Max Lutolf zum 60. Geburtstag:
Festschrift (Basel: Wiese), pp. 135-175, 1994.

[9] R. Typke. “Music Retrieval based on Melodic Similar-
ity,” Doctoral thesis. Utrecht University, 2007.

[10] E. Ukkonen, K. Lemstrom, and V. Makinen. “Geomet-
ric Algorithms for Transposition Invariant Content-
Based Music Retrieval,”Proceedings of the 4th Inter-
national Conference on Music Information Retrieval
(ISMIR 2003), pp. 193-199, 2003.

[11] H. J. Wolfson and I. Rigoutsos. “Geometric Hashing:
An Overview,” IEEE Computational Science and En-
gineering, 4(4), pp. 10-21, 1997.

