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ABSTRACT

This paper presents a multi-modal approach to automat-
ically identifying guitar chords using audio and video of
the performer. Chord identification is typically performed
by analyzing the audio, using a chroma based feature to
extract pitch class information, then identifying the chord
with the appropriate label. Even if this method proves per-
fectly accurate, stringed instruments add extra ambiguity
as a single chord or melody may be played in different
positions on the fretboard. Preserving this information is
important, because it signifies the original fingering, and
implied “easiest” way to perform the selection. This chord
identification system combines analysis of audio to deter-
mine the general chord scale (i.e. A major, G minor), and
video of the guitarist to determine chord voicing (i.e. open,
barred, inversion), to accurately identify the guitar chord.

1. INTRODUCTION

The ability of an instrument to produce multiple notes si-
multaneously, or chords, is a crucial element of that instru-
ment’s musical versatility. When trying to automatically
identify chords, stringed instruments, such as the guitar,
add extra difficulty to the problem, because the same note,
chord, or melody can be played at different positions on the
fretboard. Figure 1 depicts a musical passage in staff no-
tation, followed by three representations in tablature form
(the horizontal lines represent the strings of the guitar, and
number is the fret of that string). All of these tablature
notations are valid transcriptions, in that they produce the
correct fundamental frequencies as the staff notation when
performed. However, only one of these positions may cor-
respond to the original, perhaps easiest fingering

Guitar lessons are more accessible now than ever with
the rise of streaming Internet video and live interactive
lessons. The research presented in this paper has direct ap-
plications to these multimedia sources. A system which
can automatically transcribe chord diagrams from audio
and video lessons between student and teacher would be
an invaluable tool to aid in the learning process.
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Figure 1. Three voicings of a C major scale in staff and
tablature notation, shown in various positions along the
guitar fretboard.

Automatic chord identification algorithms have tradi-
tionally used the chroma feature introduced by Fujishima
[1]. The chroma based approach, though intuitive and eas-
ily implemented, presents many problems due to the ex-
istence of overtones in the signal. This paper avoids this
problem by using a polyphonic pitch estimation method
named Specmurt Analysis which filters out the overtones
in the log-frequency spectrum to yield only a chord’s fun-
damental frequencies [2].

Visual approaches to guitar chord and melody transcrip-
tion have been attempted. Most of these methods, while
accurate, are obtrusive to the guitarist; cameras must be
mounted to the guitar [3], or the guitarist must wear col-
ored fingertips to be tracked [4]. The method presented
here uses brightly colored dots placed at various points
along the guitar’s fretboard to be tracked by the camera.
These dots, which are unobtrusive to the guitarist, are used
as reference points to isolate the fretboard within the im-
age, so that principal components analysis may be used to
identify the guitarist’s particular voicing of that chord.

The multi-modal guitar chord identification algorithm
presented in this paper is as follows: first, using Specmurt
Analysis, fundamental frequency information will be re-
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trieved and the general chord scale identified (i.e. G ma-
jor, A# minor, etc.). Next, using video analysis, the gui-
tarist’s particular chord voicing (i.e. open, barred, inver-
sion, etc.) will be identified using principal components
analysis (PCA) of the guitarist’s fretting hand.

2. RELATED WORK

The chromagram or pitch class profile (PCP) feature has
typically been used as the starting point for most chord
recognition systems. Fujishima first demonstrated that de-
composing the discrete Fourier transform (DFT) of a signal
into 12 pitch classes and then using template matching of
various known chords produces an accurate representation
of a song’s chord structure [1].

The main problem with chroma is apparent when us-
ing template matching for various chords. For example,
a C Major triad would have an ideal chroma vector of
[1,0,0,0,1,0,0,1,0,0,0]. The existence of overtones in
the signal cause the ideal 0’s and 1’s to fluctuate and create
false chord identifications.

Modified versions of the chromagram, such as the En-
hanced Pitch Class Profile by Lee have been introduced to
ease the effects of overtones in the signal [5]. This method
computes the chroma vector from the harmonic product
spectrum rather than the DFT, suppressing higher harmon-
ics making the chroma vector more like the ideal binary
template. However, this method fails to identify the voic-
ing of the chord, such as a first or second inversion.

Burns et al. developed a visual system for left-hand fin-
ger position tracking with respect to a string/fret grid [3].
Their method relies on the circular shape of fingertips, us-
ing a circular Hough transform on an image of the left-
hand to detect fingertip locations with respect to the under-
lying fretboard. However, this method requires mounting
a camera on the headstock of the guitar, which poses many
problems: it can be obtrusive to the guitar player’s natu-
ral method of playing, and also only captures information
about the first five frets of the guitar.

Kerdvibulvech et al. proposed to track the fingering po-
sitions of a guitarist relative to the guitar’s position in 3D
space [4] . This is done by using two cameras to form a
3D model of the fretboard. Finger position was tracked
using color detection of bright caps placed on each of the
guitarist’s fingertips. Again, this can hinder the physical
capabilities and creative expression of the guitarist, which
should not happen in the transcription process.

3. AUDIO ANALYSIS

When playing a single note, instruments produce natural
harmonics (overtones) in addition to the note’s fundamen-
tal frequency. Therefore, when playing multiple notes, the
frequency spectrum of the audio appears cluttered, mak-
ing detection of the fundamental frequencies (the actual
notes) hard to locate. Saito ef al. have proposed a tech-
nique called Specmurt analysis, which will be used to ex-
tract the notes of a guitar chord from the audio signal [2].
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Figure 2. Log-spaced frequency domain cA( f ) as a con-
volution of common harmonic structure A (f) with funda-

mental frequency distribution g(f).

3.1 Specmurt Analysis

Multiple fundamental frequency estimation using Spec-
murt analysis is performed by inverse filtering the log-scale
frequency domain with a common harmonic structure of
that instrument [2]. The resulting log-frequency spectrum
contains only impulses located at the log-fundamental fre-
quencies.

Harmonics of a fundamental frequency fy normally oc-
cur at integer multiples of the fundamental, n fy. Further-
more, if the fundamental frequency changes by some A f,
the change in frequency of its respective higher harmonics
will also be nA f. By resampling the frequency domain to
have a log-scaled axis, this allows the harmonics of a given
fundamental to be consistently spaced by logn + log fo,
independent of fundamental frequency.

[ =logf (1)

3.1.1 Common Harmonic Structure

Using the log-scale frequency axis, we can assume that
the harmonic frequencies are located at f + log 2, f +
log 3, ,f + logn. When a chord is played on an in-
strument, each note will presumably contain these same
harmonic frequencies, beginning at different f ’s. There-
fore, we can assume that the log-scaled multipitch spec-
trum, ¢( f ), is a combination of these harmonic structures,
shifted and weighted differently per note. Specifically, the
resulting log-scale frequency spectrum, ¢( f ), is equal to
the convolution of a common harmonic structure, h( f )s

with a fundamental frequency distribution, g(f).

e(f) = h(f) * g(f) )
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The harmonic structure can be written in terms of its log-
frequency axis spacing, fy,, and its harmonic weights,
W,,, where n = 1,2...N harmonics.

N

Z Wné(fA - fOn)

n=1

h(f, W) = 3)

The harmonic weights will initially be a guess, which will
be refined later using an iterative process to minimize the
overall error of Specmurt analysis.

3.1.2 Specmurt Domain

In order to determine the desired fundamental frequency
distribution, g( f ), one can solve (2) by deconvolving the
log-spectrum with the common harmonic structure. An
easier way of obtaining ¢(f) would utilize the duality of
the time/frequency-convolution/multiplication relationship
(shown in Figure 2). Therefore, taking the inverse Fourier

transform would yield the relationship

FHe(f)} FHh(f) = g(f)}
C(3) H(3)G(3)

“
®

where 5 is a temporary Specmurt domain variable. Simple
algebra followed by a Fourier tranform of G(§) will yield
the resulting fundamental frequency spectrum.

66) = 1) ©®
F{G(3)} = g(f) )

The squared error after performing Specmurt analysis
can be defined as

s = [ el - nG oD} af ®

— 00

Minimizing the error of Specmurt is done by refining
the harmonic weights, W,,, of the harmonic structure. This
is done by setting the error’s [V partial derivatives aaW]i =
0, n = 1...N, and solving the system of equations for W,,.

The original Specmurt formulation assumed that the
first weight, W7 = 1, of the normalized common harmonic
structure. After experimentation with various guitar sig-
nals, the higher harmonics were sometimes of larger mag-
nitude than the fundamental frequency. By allowing the
first harmonic’s magnitude to vary, the algorithm was able
to better identify fundamental frequencies.

4. VIDEO ANALYSIS

In order to visually identify the performing guitarist’s
chord voicing, the guitar fretboard must first be located
and isolated within the image. However, the guitar can be
held in many different orientations relative to the camera,
making it difficult to find the location or coordinates of the
fretboard in the image plane.

The frets of a guitar are logarithmically spaced to pro-
duce the 12 tones of the western scale. The coordinates
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Figure 3. Ideal fretboard (top) with logarithmic x spacing
of n frets, and arbitrary neck width in y direction, and seen
image (bottom) with warped spacing.

in the (x,y) plane are plotted in Figure 3, where the x;
coordinates are related by

7
mi= Y g% 913 )
k=0

4.1 Homography

Homography is the process of applying a projective linear
transformation to a scene (a 2D image or 3D space), to de-
scribe how perceived positions of observed objects change
when the point of view of the observer (a camera) changes.
Homography will be used to determine the correct perspec-
tive transformation, i.e. rectify or warp the original image
to fit the ideal fretboard spacing in Figure 3. This will make
it easy to isolate the fretboard in the image for analysis.
The general homography matrix equation

wp’ = Hp (10)

states that points in the image, p’ can be expressed as a
warping of ideal points p with a homography matrix H,
including a scale factor w. The homography matrix is
a transformation matrix between the two images, based
on which a one-to-one relationship between the features
points p’ and p [6]. Specifically, the points will have two
dimensions, z and y, and will be expressed in terms of a
3x3 homography matrix with elements h;;.

/

x5 hoo  hio  hao Z;
w| y | = | hio hi1t hi2 Yi (11
1 haoo  hor  haa 1

x; are determined from (9) and y; are determined as
an arbitrary guitar neck width (from the ideal, rectangu-
lar fretboard). The corresponding reference points (7, y})
in the image now need to be established, to compute the
homography matrix, H.

4.2 Reference Point Tracking

In order to perform the homography rectification concepts
in 4.1, the correct reference points in the image must be
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Figure 4. (top) Original image showing tracking points (in
red), projected frets (in green) using the homography ma-
trix. (bottom) Ideal fretboard, and subsection of original

image after applying homography matrix to each coordi-
nate.

determined. Attempts were made at using an iterative non-
linear error minimization method, which proved initially
unsuccessful (see later section 6). Instead, distinct bright
colored stickers were placed at various fret locations on the
neck of the guitar. The coordinates of these points (7}, y/!)
were tracked in each frame of video using a simple color
masking followed by a k-means clustering algorithm. The
small stickers were placed on the neck of the guitar on ei-
ther side of the metal frets, so as not to interfere with the
guitarist’s playing and the timbre of the instrument.

A set of (z;,y;) and (2}, y}) now exist, corresponding
to the frets of the guitar. The homography matrix is deter-
mined by minimizing the mean square error of (11) using
these points. Applying the inverse transformation, H~1,
to the ideal grid in Figure 3 yields frets that overlay per-
fectly with the frets in the image (Figure 4). Applying H
to the original image and taking the subsection of coordi-
nates yields the rectified fretboard (Figure 4), whose fret
spacings are known from (9). The rectified fretboard is
now isolated and in a usable form for PCA.

4.3 Determination of Chord Style

The next goal is to determine which chord voicing, given
the subset of voicings that exist for a particular chord. PCA
is used to decompose the rectified fretboard in its “eigen-
chord” components, and determine the correct chord voic-
ing.

Let the training set of fretboard images be Fi, Fs...Fiyr
which are vectors of length LW for an image with di-
mensions L. by W. An example training set of fret-
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Figure 5. Example fretboard images used for training.

board images is shown in Figure 5. The average image
isA= ﬁ Zf\il F;;, and each image with subtracted mean
is F; = F; — A. PCA seeks to find the eigenvectors and
eigenvalues of the covariance matrix

1 M
nanil

ss”

C (12)

13)
where S = [F, Fy...F)y] is a set of training of images in
matrix form. However, C is of dimension LW the im-
ages used in this experiment are of size 80x640 pixels, and
computing 51200 eigenvectors and eigenvalues is compu-
tationally intractable. Turk et. al presented a method for
solving for the LW eigenvectors by first solving for the
eigenvectors of an MxM matrix STS [7]. The M eigen-
vectors v; are used to form the eigenvectors u; of C.

M
w=>» wF 1=1.M (14)
i=1

A new image F can be reduced to its eigen-chord com-
ponents, ¢, using the M’ eigenvectors which correspond
to the larger eigenvalues of S”'S.

e =up(F—A) k=1.M (15)

5. EXPERIMENTAL RESULTS

Three guitarists were asked to perform a sequence of
chords from chord diagrams. The chords were a selec-
tion drawn from eight scales (major and minor), each in
three voicing-dependent positions: open (traditional open
stringed), barred, and a Ist inversion, totaling 24 chords
all together. The system was evaluated using various
combinations of features derived from audio only, video
only, and combinations thereof. All experiments were per-
formed using leave-one-out training of audio and video
when using PCA.
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Figure 6. Specmurt piano-roll output of a C#m7b5 jazz
chord.

5.1 Audio Only

The output of Specmurt analysis is a piano-roll vector of
size 48, each element corresponding to the energy of a
chromatic note from C2 to B5 (4 octaves, 12 notes per oc-
tave). An example of a piano-roll vector over multiple time
frames is shown in Figure 6.

Two methods were used to calculate the correctness of
the chord scale and voicing using this vector. It is known
what notes make up each major and minor scale. There-
fore, the chord scale was evaluated by summing the energy
over all octaves of the notes belonging to that chord - sim-
ilar to chroma analysis. The chord scale with the highest
energy was assumed to be correct, yielding an accuracy of
98.6%.

It is not deterministic, however, as to which chord voic-
ing created a particular set of notes, or chord. For example,
both the G major open chord and G major barred chord
contain six notes total, all of the same fundamental fre-
quencies, but the notes are rearranged on different strings,
and hence use different fingerings. Therefore, a training set
using the piano-roll energy vector was developed for each
chord scale. Using PCA to identify chord voicing from the
piano-roll vector shows some accuracy (62%) but is under-

Audio only | Video only | Combined System
Scale 98.6 34.8 98.6
Voicing 62.0 94.4 94.4
Both 61.1 32.8 93.1

Table 1. Accuracy results for various combinations of
modes of information. Combined accuracy results using
Specmurt for scale identification, and video for voicing
identification showing highest accuracy.
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Figure 7. Three voicings from A minor, G major, and C
major, after being projected into the chord-space. Various
colors and symbols show the how the voicing of chords
remain grouped after dimensionality reduction.

standably low, as the difference in note energies may be
very fine and inseparable for different voicings with simi-
lar notes.

5.2 Video Only

A training set of 240 images was used to build the eigen-
chord space for each test. Frames of video were then pro-
jected into the chord-space using three eigen-chords of the
training set using (15), and its closest centroid was as-
sumed to be the correct chord.

Chord scale identification using only video performed
extremely poorly (34%). This is expected, as the chord
scale centroids in the projected chord-space after PCA are
somewhat meaningless. For a particular chord scale, many
different voicings exist at various points on the fretboard,
which is what we hope to separate by using PCA.

For chord voicing however, very high accuracy was
achieved (94.4%). Figure 7 shows how various voicings
of chords, irrespective of scale, tend to group together due
to the similar hand shapes used by the guitarist.

5.3 Combined System

The system which performs the best in terms of correctly
identifying the overall chord (scale and voicing) utilizes
the strong points of scale and voicing identification within
the audio and video results. Since Specmurt analysis
yielded extremely high accuracy for determining scale, it
was used as a preprocessing step to voicing identification
via video.

6. FUTURE WORK

The video and audio components of this guitar chord iden-
tification system have the potential to be expanded upon.
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Figure 8. Guitar image (left) and edge-thresholded image
(right).

6.1 Automatic Fretboard Registration

Placing colored tracking points along the neck of the guitar
presents additional constraints on how the guitar fretboard
can be rectified: all the tracking points must be visible in
the frame of video, and nothing else in the frame may have
similar color. Ideally, we would like to locate the fretboard
without these points. By looking at the edge-detected im-
age of a guitar, this produces a fairly accurate represen-
tation of where the frets are - the color of the metal frets
contrasts heavily with that of the wooden neck, providing
edges at frets (Figure 8).

Using the homography concept in 4.1, the points de-
noted as edges, p’, should be warped using H™! to align
with the ideal fret-grid points p. This is equivalent to min-
imizing an error function defined as

EMH)=|p-H'p|? (16)

H = argmin(E(H)) (17)
H

After experimentation, the error function E(H) is no-
ticeably non-convex, and contains local minima in H. The
two fret-grids “align” in alternate orientations which are
incorrect, but still minimize the error function. This area
of research is being continued with the motive of constrain-
ing (16) and (17), such that the error function will always
be convex, and converge to a global minimum when the
two images are correctly aligned.

6.2 Larger Training Sets

Very high accuracy of video voicing identification (94.4%)
was achieved using image data from only three guitarists.
A more robust classifier of chord voicings could be cre-
ated by collecting more data, to account for players who
use non-traditional finger orientations for chords. With
more data, the accuracy of determining chord scale from
video may increase (34.8%), as scales may then form more
meaningful distributions in the eigen-chord space.

6.3 Additional Chord Types

This system is very extendable to detect different chord
scales besides major and minor. Detection of diminished,
augmented, 7th, and other jazz chords are easily imple-
mented with the chroma-style analysis of Specmurt’s out-
put, and refined search using the eigen-chord decomposi-
tion of the fretboard image.
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6.4 Fusing Audio/Video Data

Currently the system uses Specmurt analysis to determine
a chord’s scale as a pre-processing step to eigen-chord de-
composition of the fretboard to determine voicing. This
means that any error introduced by Specmurt propagates
throughout the rest of the system. Therefore it is desired to
jointly estimate the scale and voicing together using audio
and video features simultaneously.

7. CONCLUSION

This paper has presented an alternate approach to au-
tomatic guitar chord identification using both audio and
video of the performer. The accuracy of chord identi-
fication increases from 61.1% to 93.1% when using au-
dio for scale identification, and video for voicing. The
“eigen-chord” decomposition of fretboard images proved
extremely successful in distinguishing between a given
chords voicings (normal, barred, inverted) if the chord
scale is known (94.4%).
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