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ABSTRACT

This paper presents a computational study of the percep-
tual and musicological audio features that correlate with
the structural function of sections in pop songs, specifically
the chorus. Choruses have been described as more promi-
nent, more catchy and more memorable than other sections
in a song, yet chorus detection applications have always
been primarily based on identifying the most-repeated sec-
tion in a song. Inspired by cognitive research rather than
applied signal processing, this computational analysis com-
piles a list of robust and interpretable features and mod-
els their influence on the ‘chorusness’ of a collection of
song sections from the Billboard dataset. This is done
through the unsupervised learning of a probabilistic graph-
ical model. We show that timbre and timbre variety are
more strongly related to chorus qualities than harmony and
absolute pitch height. A regression and a classification ex-
periment are performed to quantify these relations.

1. INTRODUCTION

1.1 Chorus Analysis

The term chorus originates as a designation for those parts
of a musical piece that feature a choir or other form of
group performance. When solo performance became the
norm in popular music, the term chorus was retained to in-
dicate a repeated structural unit of musical form. In terms
of musical content, the chorus has been referred to as the
‘most prominent’, ‘most catchy’ or ‘most memorable’ part
of a song and ‘the site of the more musically distinctive
and emotionally affecting material’ [4, 10].

While agreement on which section in a song constitutes
the chorus generally exists among listeners, attributes such
as ‘prominent’ and ‘catchy’ are far from understood in mu-
sic cognition and cognitive musicology [6]. On the other
hand, as a frequent subject of study in the domain of Mu-
sic Information Retrieval, the notion of chorus has been
shown to correlate with a number of computable descrip-
tors. Yet when studied more closely, the chorus detec-
tion systems that locate choruses most successfully turn
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out to rely on rather contextual cues such as the amount of
repetition and relative energy of the signal, with more so-
phisticated systems also taking section length and position
within the song into account [4, 5]. The central research
question of this paper is therefore: in which computable
properties of popular music are choruses, when compared
to other song sections, musically distinct?

The main motivations for a deeper study of the partic-
ularities of choruses are two-fold: first, the chorus being
a central element of form in popular music, insight may
be gained in the popular song as a medium, and conscious
as well as unconscious choices in songwriting may be un-
veiled. Second, as choruses can be related to a catchy
and/or memorable quality, to the notion of hooks, and per-
haps to a general cognitive salience underlying these as-
pects, the nature of choruses may indicate some of the mu-
sical properties that constitute this salience, prominence or
memorability.

This investigation relates to chorus detection as known
in Music Information Retrieval, but it does not have the
same goal. While chorus detection systems are built to lo-
cate the choruses given unsegmented raw audio for a song,
this investigation aims to use similar and novel computa-
tional methods to improve our understanding of choruses.

1.2 Related Work

Existing work on chorus detection strongly relates to au-
dio thumbnailing, music summarization and structural seg-
mentation. Audio thumbnailing and music summarization
refer to the unsupervised extraction of the most representa-
tive short excerpt from a piece of musical audio, and often
rely on full structure analysis as a first step. An overview
of relevant techniques is given by Paulus et al. [13].

Definitions of the chorus in the MIR literature charac-
terize the chorus as repeated, prominent and catchy. Since
the last two notions are never formalized, thumbnailing
and chorus detection are essentially reduced to finding the
most often-repeated segment or section. A few chorus de-
tection systems make use of additional cues from the song
audio, including RefraiD by Goto and work by Eronen [4,
5]. RefraiD makes use of a scoring function that favors
segments C occuring at the end of a longer repeated chunk
ABC and segments CC that consistently feature an internal
repetition. Eronen’s system favors segments that occur 1
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of the way through the song and reoccur near 3
4 , as well as

segments with higher energy. In most other cases, heuris-
tics are only used to limit the set of candidates from which



the most frequent segment is picked, e.g. restricting to the
first half of the song or discarding all segments shorter than
4 bars.

Paulus and Klapuri use a Markov model to label seg-
ments given a set of tags capturing which segments corre-
spond to the same structural section (e.g. ABCBCD) [12,
14]. This approach performs well on UPFBeatles, a dataset
of annotated Beatles recordings, and fairly well on a larger
collection of songs (TUTstructure07). 1 An n-gram method
with n = 3 and a Variable-order Markov Model come out
as the best techniques. The same methods have also been
enhanced by using limited acoustic information: section
loudness and section loudness deviation [14]. This boosts
the best performance (in terms of per-section accuracy) by
up to 4 percent for TUTstructure07. Whether the model
could be improved with more acoustic information remains
an open question that this paper aims to address.

The contribution of this paper is to introduce the notion
of chorusness, and a statistical model of this measure for
MIR applications, for popular music understanding and for
popular music perception and cognition, using a novel and
rigorous take on corpus-scale audio music analysis.

2. METHODOLOGY

The research question formulated above is addressed by
means of a statistical analysis of a selection of music de-
scriptors, computed over a dataset of pop songs. The Bill-
board dataset, described in section 2.1, will be used as the
ground truth. The expert structure annotations available for
these data allow for parsing audio descriptors, detailed in
part 2.2 of this paper, into per-section statistics. The anal-
ysis of the resulting variables will then be formalized by
learning a probabilistic graphical model from the data, as
explained in section 2.3.

2.1 The Dataset

The Billboard dataset is a collection of time-aligned tran-
scriptions of the harmony and structure of over 1000 songs
selected randomly from the Billboard ‘Hot 100’ chart in
the United States between 1958 and 1991 [2]. The anno-
tations include information about harmony, meter, phrase,
and larger musical structure. The Billboard dataset is one
of the largest and most diverse popular music datasets for
which expert structure annotations exist and one of few to
be consistently sampled from actual pop charts. It can be
expected to reflect both important commonalities and sig-
nificant trends in popular music of the period of focus.
It includes a wide variety of genres, and suits the goal
of drawing broadly-applicable musicological conclusions,
making it the best available dataset for analysis of popular
music choruses. For the present study, the complete v1.2
release is used (649 songs), and of the annotations, only
the structural annotations are retained.

The structural annotations in the dataset follow the for-
mat and instructions established in the SALAMI project

1 Dataset descriptions and links at http://www.cs.tut.fi/
sgn/arg/paulus/structure.html

[18]. The transcriptions contain start and end times for ev-
ery section and section labels for almost all sections. The
section labels the annotators were allowed to assign were
restricted to a list of 22, some of which were not used. The
most frequently recurring section labels are: verse (34% of
total annotated time), chorus (24%), intro, solo, outro and
bridge. The total number of sections, including the unla-
beled ones, is 7762.

2.2 Perceptual Audio Features

The proposed corpus analysis–centered study requires some-
what different kinds of descriptors than traditionally used
in machine-learning applications in Music Information Re-
trieval. Four important constraints are applied. First, all
descriptors are demonstrated correlates of a relevant per-
ceptual or cognitive attribute of music. Second, we fa-
vor musically interpretable descriptors. A classic exam-
ple of an audio feature with demonstrated perceptual cor-
relates but low interpretability are MFCC’s [1]. Third,
only transparent statistics over these features are consid-
ered. Higher order statistical moments and learned code-
words can be very informative from an engineering per-
spective, but amount to highly uninterpretable descriptions.
Finally, we also limit the set to a small number of hand-
picked descriptors since the amount of data required for
the proposed analysis grows exponentially with the num-
ber of variables. All features are one-dimensional.

Loudness The loudness descriptor is the standard psy-
chological analogy of energy. It is obtained through com-
parison of stimuli spectra and a standardized set of equal
loudness curves. We will make use of the implementation
by Pampalk [11]. The model applies outer-ear filtering and
a spreading function before computing specific loudness
values (Nk in sones) per band k and summing these values
over all bands to obtain the total loudness T :

S = max
k

(Nk) + 0.15 ·
∑

k 6=max

Nk (1)

where the factor 0.15 serves as a weighting that empha-
sizes the strongest band’s contribution. For every section,
the loudness mean is computed and stored, as well as the
inter-quartile range (Loudness IQR), as a measure of the
section dynamics.

Sharpness The sharpness descriptor is the psychoa-
coustic analog of the spectral centroid. It characterizes the
balance between higher- and lower-band loudness. We will
make use of the specific loudnesses Nk as computed by
Pampalk [11] and summing as formulated by Peeters [15]:

A = 0.11×
∑
k

g(k) · k ·Nk, where (2)

g(k) =

{
1 k < 15
0.066× exp(0.171 · k) k > 15

(3)

For every section, we use the mean sharpness.

Roughness Like the loudness descriptor, roughness
is a mathematically defined psychoacoustic measure. It



characterizes a timbral property of complex tones, relat-
ing to the proximity of its consituent partials. We will
make use of the MIRToolbox implementation by Lartillot
et al. [9], which is based on a model by Plomp and Lev-
elt [16]. Since the roughness feature is very nonlinearly
distributed, the roughness feature is summarized for every
section by taking its median.

MFCC MFCCs are established multidimensional cor-
relates of several aspects of timbre, designed to be max-
imally independent. Typically around 13 MFCC coeffi-
cients are used. In this model, the descriptor of interest is
the variety in timbre. This will be modeled by computing
the trace of the square root of the MFCC covariance ma-
trix, a measure of the timbre total variance. The MFCCs
are computed following [11], and the first component (di-
rectly proportional to energy) is discarded.

Chroma Variance Chroma features are widely used
to capture harmony and harmonic changes. In the most
typical implementation, the chroma descriptor or pitch class
profile consists of a 12-dimensional vector, each dimension
quantifying the energy of one of the 12 equal-tempered
pitch classes. These energies can be obtained in several
ways. The Chordino chroma features distributed along
with the Billboard dataset are used here. 2

In this study, the variety in the section’s harmony will
be measured by modeling the normalized chroma features
p as a 12-dimensional random variable and estimating a
Dirichlet distribution to the total of all of the section’s chro-
ma observations. Note that estimating just the total vari-
ance, as done for MFCC, would neglect the normalisa-
tion constraint on chroma vectors and the dependencies it
entails between pitch classes. The Dirichlet distribution
D12(α), can be written:

f(p) ∼ D12(α) =
Γ(
∑12
k=1 αk)∏12

k=1 Γ(αk)

12∏
k=1

pαk−1
k , (4)

where Γ is the Gamma function, and can be seen as a distri-
bution over distributions. We use the sum of the parameters
α, commonly refered to as the Dirichlet precision s:

s =

12∑
k=1

αk (5)

The Dirichlet precision quantifies the difference between
observing the same combination of pitches thoughout the
whole section (high precision) and observing many differ-
ent distributions (low precision) [3]. There is no closed-
form formula for s or α, but several iterative methods ex-
ist that can be applied to obtain a maximum-likelihood es-
timation (e.g. Newton iteration). Fast fitting can be done
using the fastfit Matlab toolbox by Minka. 3

Pitch Salience The notion of pitch salience exists in
several contexts. Here, it will refer to the strength of (a

2 http://www.isophonics.net/nnls-chroma
3 http://research.microsoft.com/en-us/um/

people/minka/software/fastfit/

discrete set of) pitches, i.e. a measure of the combined
strength of a frequency and its harmonics, as in [17]. The
mean of the strongest (per frame) pitch strength will be
computed for every section.

Pitch Centroid The pitch height of polyphonic au-
dio can be defined and computationally approximated in
several ways. A predominant fundamental frequency in
the classic sense is not always reliably found, especially
for the case of polyphonic pop music. We therefore use
the more robust pitch centroid. We define this as the aver-
age pitch height with all pitches weighted by their salience.
Note that the pitch salience profile used here spans multi-
ple octaves and exploits spectral whitening, spectral peak
detection and harmonic weighting in order to capture only
tonal energy and emphasize the harmonic components.

Our feature set includes the section mean of the pitch
centroid as well as the inter-quartile range of this measure,
represented by the Pitch Centroid IQR.

Section Length The length of the section in seconds.

Section Position The position of the section inside
the song is included as a number between 0 and 1.

The descriptors above have proven useful in a variety of
other contexts and fall within the constraints listed above.
The first three originate in psychoacoustics, the next three
descriptors stem from MIR research. The pitch centroid is
a novel descriptor designed with robustness in mind.

2.3 Analysis Method

2.3.1 PGM

The resulting descriptors make up a dataset of 7762 obser-
vations (sections) and 12 variables (descriptors) for each
observation: the above perceptual features and one section
label. These data will be used to model what features cor-
relate with a section being a chorus or not. However, mod-
eling all dependencies between a set of variables quickly
leads to complex representations that are hard to manage.

Probabilistic graphical models (PGM) are graph-based
representations of such complex higher-dimensional distri-
butions that focus on modeling the direct probabilistic in-
teractions between variables [8]. Unlike a correlation ma-
trix, they encode which variables are conditionally depen-
dent, i.e. correlate given the state of all other variables, re-
gardless of any indirect effects from other influencing vari-
ables. Examples of the use of a PGM in music analysis can
be found in [3].

Essential to a PGM is its graph structure. It is typically
constructed using prior expert knowledge but, with enough
data, can also be learned. Learning the PGM structure gen-
erally requires a great amount of conditional independence
tests. The PC-algorithm optimizes this procedure and, in
addition, provides information about the direction of the
dependencies [7]. When not all directions are found, a par-
tially directed graph is returned.

Given the limitations of currently available software pack-
ages, an important practical requirement for learning the



graph structure is that the variables follow similar distribu-
tions, e.g. all discrete, or all continuous Gaussian. In the
analysis in the next section, all data are modeled as contin-
uous. This means that also the Section Type variable will
have to be modeled as continuous. We do this by introduc-
ing the notion of Chorusness.

2.3.2 Chorusness

The Chorusness variable is derived from the Chorus Prob-
ability pC , a function over the domain of possible section
labels. The chorus probability pC(T ) of a section label T
is defined as the probability of a section with label T be-
ing labeled ‘chorus’ by an independent annotator. In terms
of the annotations x1 and x2 of two independent listeners,
pC(T ) can be written:

pC(T ) =
p(x1 = C|x2 = T ) + p(x2 = C|x1 = T )

2
,

(6)
where C refers to the label ‘chorus’.

The Billboard dataset has been annotated by only one
expert per song, therefore it contains no information about
any of the pC(T ). However, in the SALAMI dataset, an-
notated under the same guidelines and conditions, two in-
dependent annotators were consulted per song [18]. The
annotators’ behaviour can therefore be modeled by means
of a confusion matrix M(T1, T2) ∈ [0, 1]22×22:

M(T1, T2) = f(x1 = T1 ∩ x2 = T2) (7)

with frequencies f in seconds (of observed overlapping la-
bels T1 and T2). Since the two annotators are interchange-
able (and have in fact been randomized), M may be aver-
aged out to obtain a symmetric confusion matrix M?:

M? =
M +MT

2
(8)

From here we can obtain the empirical Chorus Probability:

pC(T ) =
M?(T,C)∑
kM

?(T, k)
∈ [0, 1]. (9)

Chorus Probability values for every section type were
obtained from the Codaich-Pop subset of the SALAMI data-
set (99 songs). Finally, the Chorus Probability is scaled
monotonically to obtain the Chorusness measure C(T ), a
standard log odds ratio of pC :

C(T ) = log

(
pC(T )

1− pC(T )

)
∈ (−∞,∞). (10)

It ranges from −8.41 (for the label ‘spoken’) to 0.83 (for
the label ‘chorus’).

2.3.3 Implementation

Before the model learning, a set of Box-Cox tests is per-
formed to check for rank-preserving polynomial transfor-
mations that would make any of the variables more normal.
The Chroma Precision s is found to improve with a power
parameter λ = −1, and therefore scaled as:

S =
sλ − 1

λ
= 1− 1

s
(11)

The Section Length, Loudness IQR and Pitch Centroid IQR
are found to improve with a log transform. Weeding out
divergent entries in the dataset leaves us with a subset of
6462 sections and 12 variables.

The R-package pcalg implements the PC-algorithm. Be-
ginning with a fully connected graph, it estimates the graph
skeleton by visiting all pairs of adjecent nodes and test-
ing for conditional independence given all possible subsets
of the remaining graph. 4 The procedure is applied to the
6462× 12 dataset, with ‘conservative’ estimation of direc-
tionalities, i.e. no directionality is forced onto the edges
where no V-structures were found indicating a specific di-
rection.

3. ANALYSIS RESULTS

The resulting graphical model is shown in Figure 1. It is
obtained with p < 3.5× 10−5, the significance level re-
quired to bring the overall probability of observing one or
more edges due to chance, under 5 percent. In terms of
the significance level αCI of the conditional independence
tests and αPGM of the model:

αCI = 1− (1− αPGM)1/n ≈ αPGM

n
(12)

with αPGM � 1 (here 0.05) and n the number of tests per-
formed (∼ 1500). Note that p ≈ 10−5 is a conservative pa-
rameter setting for an individual test. As a result, we may
choose to view the model as a depiction of dependencies
rather than independencies, since the latter may always be
present at a lower significance than required by the α.

3.1 Discussion

At least three kinds of feature relations are expected. First,
there are the correlations between features that are closely
related on the signal level (black edges): Loudness and
Pitch Salience, for example, measure roughly the same as-
pects of a spectrum (and can be expected to be proportional
to roughness), and so do Sharpness and Pitch Centroid.
Roughness is a highly non-linear feature that is known to
be proportional to energy. The model reflects this.

The second kind of correlations are the relations be-
tween variance-based features and the Section Length vari-
able. Musically, it is expected that longer sections allow
more room for an artist to explore a variety of timbres
and pitches. This effect is observed for Chroma Variance
and Pitch Centroid IQR, though not for MFCC Variance
and Loudness IQR. Interestingly, correlations with Section
Length point towards it rather than away (dotted edges):
the length of a section length is a result of its variety in
pitch and timbre content, rather than a cause. The impor-
tance of this distinction can be debated.

Third, some sections might just display more overall va-
riety, regardless of the section length. This would cause
different variances to relate, resulting in a set of arrows be-
tween the four variance features. Four such relations are
observed (lighter, orange edges).

4 http://cran.r-project.org/web/packages/pcalg/
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Figure 1. Graphical model of the 11 analyzed perceptual features and chorusness variable C. αPGM = 0.05.

We now note that Sharpness, Pitch Salience and Rough-
ness predict Chorusness, as well as the MFCC Variance
(bold edges). All of these can be categorized as primarily
timbre-related descriptors. Section Length, Section Posi-
tion and Chroma Variance are d-separated from Chorus-
ness, i.e. no direct influence between them has been found.
The status of Pitch Centroid, Loudness, and Loudness IQR
is uncertain. Depending on the true directionality of the
Chorusness, MFCC Variance and Roughness relations, they
may be part of the Chorusness Markov blanket, the set
of Chorusness’ parents, children, and parents of children,
which d-separates Chorusness from all other variables [8].

Also interesting are the more unexpected dependencies.
For example, two variables depend directly on the Section
Position, while Chorusness does not. This may be due to
the limitations of the normal distribution by which all vari-
ables are modeled; it is fair to say that it might not re-
flect the potentially complex relation of Chorusness vari-
able and Section Position. However, the Position variable
does predict Sharpness and Pitch Centroid to some extent
(dotted edges). A simple regression also shows both vari-
ables correlate positively. This suggests some kind of over-
time intensification along the frequency dimension exists
in the songs of the Billboard corpus.

Finally, the dashed red edges in the diagram indicate
dependencies that are most unintuitive. Tentative explana-
tions may be found, but since they have no effect on Cho-
rusness, we will omit such speculations here.

3.2 Regression

We are more interested to see in more detail how the set of
Chorusness-related features predict our variable of inter-
est. Table 1 lists the coefficients of a linear regression on

95% CI
Coeff. LL UU

Sharpness 0.11 0.10 0.13
MFCC variance 0.12 0.09 0.15
Roughness 0.12 0.08 0.16
Pitch Salience (×10) 0.04 0.03 0.05
Loudness 0.03 -0.01 0.06
Loudness IQR -0.33 -0.48 -0.18
Pitch Centroid 0.10 0.07 0.12

Table 1. Results of a multivariate linear regression on the
Chorusness’ Markov blanket (p < 10−15 for all coeff.).
CI=confidence interval, LL=lower limit, UU=upper limit.

the Chorusness variable and its Markov blanket, i.e. those
variables for which a direct dependency with chorusness is
apparent from the model. Since there is no certainty about
the exact composition of the Markov blanket, all candi-
dates are included. Note that, having defined Chorusness
as a log odds ratio, this linear regression is de facto a com-
mon form of logistic regression on the section’s original
Chorus Probability pC ∈ [0, 1].

One can see that all features but the Loudness IQR have
positive coefficients. We conclude that, in this model, sec-
tions with high Chorusness are louder, sharper and rougher
than other sections. Chorus-like sections also feature a
slightly higher and more salient pitch, a smaller dynamic
range and greater variety in MFCC timbre.

4. VALIDATION

Finally, a validating experiment is performed. It consists
of the evaluation of a 2-way classifier that aims to label



sections as either ‘chorus’ or ‘non-chorus’. A k-nearest
neighbour classifier (k = 1) is trained on half of the avail-
able sections, and tested on the other half (randomly par-
titioned). This procedure is repeated 10 times to obtain an
average precision, recall and F-measure. The results are
positive: using just the Markov blanket features of table 1,
the classifier performs better than random: F = 0.52,
95% CI [0.51, 0.52] vs. a maximum random baseline of
F = 0.36. The classifier also performs better than one
that uses all features (F = 0.48), or only Loudness and
Loudness IQR (F = 0.48), the features used in [14].

5. CONCLUSIONS

This paper presents a computational study of the musi-
cally interpretable and robust audio descriptors that cor-
relate with the ‘chorusness’ of sections in pop songs. A se-
lection of existing and novel perceptual and computational
features is presented. The set has been analyzed using
a probablistic graphical model and a measure of chorus-
ness that is derived from annotations and an inter-annotator
confusion matrix. The resulting model was complemented
with a regression on the most important variables. The re-
sults show that choruses and chorus-like sections are louder,
sharper and more rough, and feature a higher and more
salient pitch, a smaller dynamic range and greater variety
of MFCC-measurable timbre than other sections.

The results obtained in a validating classification exper-
iment show that our model does not reach the level of ac-
curacy obtained by the state of the art techniques that in-
corporate repetition information. However, it demonstrates
for the first time that there is a class of complementary mu-
sical information that, independently of repetition, can be
used to locate choruses. This suggests that our model can
be applied to complement existing structure analysis ap-
plications, while repetition information and section order
can in turn enhance our model of chorusness for further
application in popular music cognition research and audio
corpus analysis.
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