Conference paper Open Access

Adaptive focused crawling using online learning: A study on content related to Islamic extremism

Iliou, Christos; Tsikrika, Theodora; Kalpakis, George; Vrochidis, Stefanos; Kompatsiaris, Ioannis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Focused crawling</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Adaptive learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Online learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Islamic extremism</subfield>
  </datafield>
  <controlfield tag="005">20200120162840.0</controlfield>
  <controlfield tag="001">1415483</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">24-26 October 2018</subfield>
    <subfield code="g">INSCI 2018</subfield>
    <subfield code="a">5th International Conference on Internet Science</subfield>
    <subfield code="c">St. Petersburg, Russia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Tsikrika, Theodora</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Kalpakis, George</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Vrochidis, Stefanos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Kompatsiaris, Ioannis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1143029</subfield>
    <subfield code="z">md5:51138867d13cacae34cce393497a594a</subfield>
    <subfield code="u">https://zenodo.org/record/1415483/files/INSCI2018_final_submission.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://insci2018.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-09-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1415483</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Iliou, Christos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Adaptive focused crawling using online learning: A study on content related to Islamic extremism</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">700024</subfield>
    <subfield code="a">Retrieval and Analysis of Heterogeneous Online Content for Terrorist Activity Recognition</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Focused crawlers aim to automatically discover online content resources relevant to a domain of interest by automatically navigating through the Web link structure and selecting which hyperlinks to follow based on an estimation of their relevance to the topic of interest; to this end, classifier-guided approaches are typically employed for identifying hyperlinks having the higher likelihood of leading to relevant content. However, the training data used for building these classifiers might not be entirely representative of the domain of interest, or the domain of interest might change over time. To meet these challenges, this work proposes a novel adaptive focused crawling framework that allows the classifiers that underlie the hyperlink selection policy to be adapted based on the evidence they encounter during their crawls. Our frame-&lt;br&gt;
work uses two different approaches to retrain its models: (i) Interactive Adaptation, where a user manually evaluates the discovered resources, and (ii) Automatic Adaptation, where the framework uses the already trained classifiers to assess the relevance of newly discovered resources.The evaluation experiments in the domain of Islamic extremism indicate&lt;br&gt;
the effectiveness of online learning in focused crawling.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1415482</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1415483</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="q">alternateidentifier</subfield>
    <subfield code="a">10.1007/978-3-030-01437-7_4</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
47
31
views
downloads
All versions This version
Views 4747
Downloads 3131
Data volume 35.4 MB35.4 MB
Unique views 4141
Unique downloads 2929

Share

Cite as