There is a newer version of this record available.

Dataset Open Access

Ultrafine Particle Dataset Collected by the OpenSense Zurich Mobile Sensor Network

Maag, Balz; Hasenfratz, David; Saukh, Olga; Zhou, Zimu; Walser, Christoph; Beutel, Jan; Thiele, Lothar


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1415369</identifier>
  <creators>
    <creator>
      <creatorName>Maag, Balz</creatorName>
      <givenName>Balz</givenName>
      <familyName>Maag</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2925-4560</nameIdentifier>
      <affiliation>ETH Zurich</affiliation>
    </creator>
    <creator>
      <creatorName>Hasenfratz, David</creatorName>
      <givenName>David</givenName>
      <familyName>Hasenfratz</familyName>
      <affiliation></affiliation>
    </creator>
    <creator>
      <creatorName>Saukh, Olga</creatorName>
      <givenName>Olga</givenName>
      <familyName>Saukh</familyName>
      <affiliation>CSH Wien, TU Graz</affiliation>
    </creator>
    <creator>
      <creatorName>Zhou, Zimu</creatorName>
      <givenName>Zimu</givenName>
      <familyName>Zhou</familyName>
      <affiliation>ETH Zurich</affiliation>
    </creator>
    <creator>
      <creatorName>Walser, Christoph</creatorName>
      <givenName>Christoph</givenName>
      <familyName>Walser</familyName>
      <affiliation></affiliation>
    </creator>
    <creator>
      <creatorName>Beutel, Jan</creatorName>
      <givenName>Jan</givenName>
      <familyName>Beutel</familyName>
      <affiliation>ETH Zurich</affiliation>
    </creator>
    <creator>
      <creatorName>Thiele, Lothar</creatorName>
      <givenName>Lothar</givenName>
      <familyName>Thiele</familyName>
      <affiliation>ETH Zurich</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Ultrafine Particle Dataset Collected by the OpenSense Zurich Mobile Sensor Network</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>ultrafine particles</subject>
    <subject>mobile sensor network</subject>
    <subject>air pollution</subject>
    <subject>air quality</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-09-13</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1415369</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1415368</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;Ultrafine Particle Dataset Collected by the OpenSense Zurich Mobile Sensor Network&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;This dataset contains one year (2012/04- 2013/04, ~11Mio. samples) worth of ultra-fine particle (UFP) concentration measurements collected by a mobile senor network. The sensors are mounted on top of 10 streetcars in the city of Zurich, Switzerland.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Hardware:&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;&lt;strong&gt;Ultrafine particle sensor&lt;/strong&gt;: MiniDiSC (see also: Martin Fierz et al. Design, Calibration, and Field Performance of a Miniature Diffusion Size Classifier. Aerosol Science and Technology, Volume 45, 2011.)&lt;/li&gt;
	&lt;li&gt;&lt;strong&gt;GPS receiver&lt;/strong&gt;: u-blox EVK-6p&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;*.csv column format:&lt;/strong&gt;&lt;/p&gt;

&lt;ol&gt;
	&lt;li&gt;Time of day: yyyy.mm.dd HH:MM&lt;/li&gt;
	&lt;li&gt;Latitude WGS84&lt;/li&gt;
	&lt;li&gt;Longitude WGS84&lt;/li&gt;
	&lt;li&gt;HDOP: horizontal dillusion of precision, uncertainty of the GPS position&lt;/li&gt;
	&lt;li&gt;Tram ID&lt;/li&gt;
	&lt;li&gt;Number of particles [#/ccm]&lt;/li&gt;
	&lt;li&gt;Average particle diameter [nm]&lt;/li&gt;
	&lt;li&gt;LDSA: lung deposited surface area [um2 /cm3]&lt;/li&gt;
&lt;/ol&gt;

&lt;p&gt;&lt;strong&gt;Data quality:&lt;/strong&gt;&lt;br&gt;
The data has been post-processed by performing a periodic null-offset calibration and &amp;nbsp;filtering samples during malfunction.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;References:&lt;/strong&gt;&lt;br&gt;
The dataset has been used and is described in more detail in the following publications:&lt;/p&gt;

&lt;ol&gt;
	&lt;li&gt;David Hasenfratz et al.&lt;em&gt; Pushing the Spatio-Temporal Resolution Limit of Urban Air Pollution Maps.&lt;/em&gt; IEEE International Conference on Pervasive Computing and Communications (PerCom). Budapest, Hungary, March 2014. Best Paper Award.&amp;nbsp;&lt;/li&gt;
	&lt;li&gt;David Hasenfratz et al. &lt;em&gt;Deriving High-Resolution Urban Air Pollution Maps Using Mobile Sensor Nodes. &lt;/em&gt;Pervasive and Mobile Computing. Elsevier, 2015.&amp;nbsp;&lt;/li&gt;
	&lt;li&gt;David Hasenfratz et al. &lt;em&gt;Demo Abstract: Health-Optimal Routing in Urban Areas.&lt;/em&gt; ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). Seattle, USA, April 2015.&lt;/li&gt;
	&lt;li&gt;Michael M&amp;uuml;ller et al. &lt;em&gt;Statistical modelling of particle number concentration in Zurich at high spatio-temporal resolution utilizing data from a mobile sensor network. &lt;/em&gt;Atmospheric Environment. Elsevier, 2016.&lt;/li&gt;
&lt;/ol&gt;

&lt;p&gt;For further information, visit: &amp;nbsp;&lt;a href="http://www.opensense.ethz.ch"&gt;http://www.opensense.ethz.ch&lt;/a&gt;&lt;/p&gt;</description>
  </descriptions>
</resource>
493
108
views
downloads
All versions This version
Views 493405
Downloads 10883
Data volume 13.5 GB10.8 GB
Unique views 432361
Unique downloads 7661

Share

Cite as