There is a newer version of this record available.

Dataset Open Access

Ultrafine Particle Dataset Collected by the OpenSense Zurich Mobile Sensor Network

Maag, Balz; Hasenfratz, David; Saukh, Olga; Zhou, Zimu; Walser, Christoph; Beutel, Jan; Thiele, Lothar


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.1415369", 
  "title": "Ultrafine Particle Dataset Collected by the OpenSense Zurich Mobile Sensor Network", 
  "issued": {
    "date-parts": [
      [
        2018, 
        9, 
        13
      ]
    ]
  }, 
  "abstract": "<p><strong>Ultrafine Particle Dataset Collected by the OpenSense Zurich Mobile Sensor Network</strong></p>\n\n<p>This dataset contains one year (2012/04- 2013/04, ~11Mio. samples) worth of ultra-fine particle (UFP) concentration measurements collected by a mobile senor network. The sensors are mounted on top of 10 streetcars in the city of Zurich, Switzerland.</p>\n\n<p><strong>Hardware:</strong></p>\n\n<ul>\n\t<li><strong>Ultrafine particle sensor</strong>: MiniDiSC (see also: Martin Fierz et al. Design, Calibration, and Field Performance of a Miniature Diffusion Size Classifier. Aerosol Science and Technology, Volume 45, 2011.)</li>\n\t<li><strong>GPS receiver</strong>: u-blox EVK-6p</li>\n</ul>\n\n<p><strong>*.csv column format:</strong></p>\n\n<ol>\n\t<li>Time of day: yyyy.mm.dd HH:MM</li>\n\t<li>Latitude WGS84</li>\n\t<li>Longitude WGS84</li>\n\t<li>HDOP: horizontal dillusion of precision, uncertainty of the GPS position</li>\n\t<li>Tram ID</li>\n\t<li>Number of particles [#/ccm]</li>\n\t<li>Average particle diameter [nm]</li>\n\t<li>LDSA: lung deposited surface area [um2 /cm3]</li>\n</ol>\n\n<p><strong>Data quality:</strong><br>\nThe data has been post-processed by performing a periodic null-offset calibration and &nbsp;filtering samples during malfunction.</p>\n\n<p><strong>References:</strong><br>\nThe dataset has been used and is described in more detail in the following publications:</p>\n\n<ol>\n\t<li>David Hasenfratz et al.<em> Pushing the Spatio-Temporal Resolution Limit of Urban Air Pollution Maps.</em> IEEE International Conference on Pervasive Computing and Communications (PerCom). Budapest, Hungary, March 2014. Best Paper Award.&nbsp;</li>\n\t<li>David Hasenfratz et al. <em>Deriving High-Resolution Urban Air Pollution Maps Using Mobile Sensor Nodes. </em>Pervasive and Mobile Computing. Elsevier, 2015.&nbsp;</li>\n\t<li>David Hasenfratz et al. <em>Demo Abstract: Health-Optimal Routing in Urban Areas.</em> ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). Seattle, USA, April 2015.</li>\n\t<li>Michael M&uuml;ller et al. <em>Statistical modelling of particle number concentration in Zurich at high spatio-temporal resolution utilizing data from a mobile sensor network. </em>Atmospheric Environment. Elsevier, 2016.</li>\n</ol>\n\n<p>For further information, visit: &nbsp;<a href=\"http://www.opensense.ethz.ch\">http://www.opensense.ethz.ch</a></p>", 
  "author": [
    {
      "family": "Maag, Balz"
    }, 
    {
      "family": "Hasenfratz, David"
    }, 
    {
      "family": "Saukh, Olga"
    }, 
    {
      "family": "Zhou, Zimu"
    }, 
    {
      "family": "Walser, Christoph"
    }, 
    {
      "family": "Beutel, Jan"
    }, 
    {
      "family": "Thiele, Lothar"
    }
  ], 
  "type": "dataset", 
  "id": "1415369"
}
489
103
views
downloads
All versions This version
Views 489405
Downloads 10378
Data volume 12.9 GB10.1 GB
Unique views 428361
Unique downloads 7257

Share

Cite as