Report Open Access
Data Study Group team
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/5f7694e7-5bc7-4ea5-ac1b-46a6f6d057db/The%20Alan%20Turing%20Institute%20Data%20Study%20Group%20Final%20Report%20-%20CodeCheck.pdf" }, "checksum": "md5:a973bbc697f0bdef75e364279a08f491", "bucket": "5f7694e7-5bc7-4ea5-ac1b-46a6f6d057db", "key": "The Alan Turing Institute Data Study Group Final Report - CodeCheck.pdf", "type": "pdf", "size": 3825967 } ], "owners": [ 52260 ], "doi": "10.5281/zenodo.1415344", "stats": { "version_unique_downloads": 189.0, "unique_views": 416.0, "views": 455.0, "version_views": 455.0, "unique_downloads": 189.0, "version_unique_views": 416.0, "volume": 791975169.0, "version_downloads": 207.0, "downloads": 207.0, "version_volume": 791975169.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.1415344", "conceptdoi": "https://doi.org/10.5281/zenodo.1415343", "bucket": "https://zenodo.org/api/files/5f7694e7-5bc7-4ea5-ac1b-46a6f6d057db", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1415343.svg", "html": "https://zenodo.org/record/1415344", "latest_html": "https://zenodo.org/record/1415344", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1415344.svg", "latest": "https://zenodo.org/api/records/1415344" }, "conceptdoi": "10.5281/zenodo.1415343", "created": "2018-09-26T11:59:39.039323+00:00", "updated": "2020-01-20T17:01:44.699809+00:00", "conceptrecid": "1415343", "revision": 76, "id": 1415344, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.1415344", "description": "<p>Data Study Groups are week-long events at The Alan Turing Institute bringing together some of the country’s top talent from data science, artificial intelligence, and wider fields, to analyse real-world data science challenges.</p>\n\n<p><strong>CodeCheck: How do our food choices affect climate change?</strong></p>\n\n<p>Different approaches were proposed to predict the carbon footprint of products from the different datasets provided by CodeCheck.</p>\n\n<p>Multivariate linear regression and random forest regression models perform well in predicting carbon footprint, especially when - in addition to the nutrition information - the product categories, learned through Latent Dirichlet Allocation (LDA), were used as extra features in the models.</p>\n\n<p>The prediction accuracy of the models that were considered varied across datasets. A potential way to display the footprint estimates in the app was proposed.</p>", "language": "eng", "title": "Data Study Group Final Report: Codecheck", "license": { "id": "CC-BY-SA-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "1415343" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "1415344" } } ] }, "keywords": [ "Data Study Groups", "The Alan Turing Institute", "Climate change", "Machine learning" ], "publication_date": "2018-09-13", "creators": [ { "affiliation": "The Alan Turing Institute", "name": "Data Study Group team" } ], "access_right": "open", "resource_type": { "subtype": "report", "type": "publication", "title": "Report" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.1415343", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 455 | 455 |
Downloads | 207 | 207 |
Data volume | 792.0 MB | 792.0 MB |
Unique views | 416 | 416 |
Unique downloads | 189 | 189 |