Report Open Access

Data Study Group Final Report: Codecheck

Data Study Group team


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1415344</identifier>
  <creators>
    <creator>
      <creatorName>Data Study Group team</creatorName>
      <affiliation>The Alan Turing Institute</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Data Study Group Final Report: Codecheck</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Data Study Groups</subject>
    <subject>The Alan Turing Institute</subject>
    <subject>Climate change</subject>
    <subject>Machine learning</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-09-13</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Report"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1415344</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1415343</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-sa/4.0/legalcode">Creative Commons Attribution Share Alike 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Data Study Groups are week-long events at The Alan Turing Institute&amp;nbsp;bringing together some of the country&amp;rsquo;s top talent from data science, artificial intelligence, and wider fields, to analyse real-world data science challenges.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;CodeCheck: How do our food choices affect climate change?&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Different approaches were proposed to predict the carbon footprint of products from the different datasets provided by CodeCheck.&lt;/p&gt;

&lt;p&gt;Multivariate linear regression and random forest regression models perform well in predicting carbon footprint, especially when - in addition to the nutrition information - the product categories, learned through Latent Dirichlet Allocation (LDA), were used as extra features in the models.&lt;/p&gt;

&lt;p&gt;The prediction accuracy of the models that were considered varied across datasets. A potential way to display the footprint estimates in the app was proposed.&lt;/p&gt;</description>
  </descriptions>
</resource>
455
207
views
downloads
All versions This version
Views 455455
Downloads 207207
Data volume 792.0 MB792.0 MB
Unique views 416416
Unique downloads 189189

Share

Cite as