Report Open Access
Data Study Group team
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.1415344</identifier> <creators> <creator> <creatorName>Data Study Group team</creatorName> <affiliation>The Alan Turing Institute</affiliation> </creator> </creators> <titles> <title>Data Study Group Final Report: Codecheck</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <subjects> <subject>Data Study Groups</subject> <subject>The Alan Turing Institute</subject> <subject>Climate change</subject> <subject>Machine learning</subject> </subjects> <dates> <date dateType="Issued">2018-09-13</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Report"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1415344</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1415343</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by-sa/4.0/legalcode">Creative Commons Attribution Share Alike 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Data Study Groups are week-long events at The Alan Turing Institute&nbsp;bringing together some of the country&rsquo;s top talent from data science, artificial intelligence, and wider fields, to analyse real-world data science challenges.</p> <p><strong>CodeCheck: How do our food choices affect climate change?</strong></p> <p>Different approaches were proposed to predict the carbon footprint of products from the different datasets provided by CodeCheck.</p> <p>Multivariate linear regression and random forest regression models perform well in predicting carbon footprint, especially when - in addition to the nutrition information - the product categories, learned through Latent Dirichlet Allocation (LDA), were used as extra features in the models.</p> <p>The prediction accuracy of the models that were considered varied across datasets. A potential way to display the footprint estimates in the app was proposed.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 455 | 455 |
Downloads | 207 | 207 |
Data volume | 792.0 MB | 792.0 MB |
Unique views | 416 | 416 |
Unique downloads | 189 | 189 |