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ABSTRACT

This paper proposes a method for visualizing the pitch con-

tent of polyphonic music signals. More specifically, a model

is proposed for calculating the salience of pitch candidates

within a given pitch range, and an optimization technique

is proposed to find the parameters of the model. The aim

is to produce a continuous function which shows peaks

at the positions of true pitches and where spurious peaks

at multiples and submultiples of the true pitches are sup-

pressed. The proposed method was evaluated using syn-

thesized MIDI signals, for which it outperformed a base-

line method in terms of precision and recall. A straight-

forward visualization technique is proposed to render the

pitch salience function on the traditional staves when the

musical key and barline information is available.

1. INTRODUCTION

Pitch analysis of polyphonic music is a challenging task

where computational methods have not yet achieved the

accuracy and flexibility of trained musicians. Several dif-

ferent approaches have been proposed towards solving the

problem. Some methods are based on a statistical model of

the input signal [1], whereas some others model the human

auditory system [2]. Joint detection of multiple pitches has

been proposed [3], contrasted by techniques which carry

out iterative pitch detection and cancellation [4]. Some

methods are based on unsupervised learning [5] and some

others on supervised classification [6]. These examples il-

lustrate the remarkable variety of methods that have arisen

in an attempt to mimic the human ability to make sense

of complex sound mixtures. A nice review of multipitch

detection algorithms can be found in [7].

A drawback of many of the existing multipitch analy-

sis methods is that they produce a discrete set of detected

pitch values (or, fundamental frequencies, F0s 1 ) instead of

a continuous detection function that would show the likeli-

hoods of all possible pitch values within the pitch range of

1 The terms pitch and F0 are used here interchangeably.
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interest. For pitch content visualization and acoustic fea-

ture extraction purposes, a continuous detection function

is often more desirable since it allows the human eye or

a subsequent post-processing algorithm to pick the inter-

esting features from the detection function and to decide

which peaks correspond to true pitches.

A fundamental difficulty in computing such detection

functions (think of the autocorrelation function for exam-

ple) is that they do not show a peak only at the position

of the true pitch, but also at twice and half the correct

pitch, and often at all multiples and submultiples of it.

This ambiguity is particularly challenging in multipitch de-

tection where the detection function easily becomes con-

gested with spurious peaks due to the ambiguity associated

with each component sound.

Various techniques have been proposed to suppress the

extraneous peaks in a detection function. For example, it

has been proposed to detect F0s either iteratively or jointly

and to cancel all the spurious peaks that are already ex-

plained by the detected F0s [3,4]. However, these methods

produce only a discrete set of F0s. Karjalainen and Tolo-

nen proposed a method which produces an entire detection

function, where the spurious peaks were suppressed using

an “enhancing” procedure [2].

In this paper, we propose a model for calculating the

salience (or, strength) of all pitch values within a given

range of interest, and investigate a numerical optimization

technique to find the model parameters so that the truly ex-

isting pitch frequencies are indicated with peaks that tend

towards unity value and spurious peaks are forced towards

zero. We also propose a visualization technique, where the

computed pitch salience is rendered on the staves of com-

mon musical notation. This allows people who are able to

read the music notation to play directly from the visual-

ization, or to use it to study performance nuances, such as

pitch glides, vibrato, and expressive timing.

2. METHOD

In the proposed method, an audio signal is first blocked

into frames which are short-time Fourier transformed. The

spectra are whitened (see Sec. 2.1) and the noise floor in

the spectrum due to drums and other non-pitched sounds is

estimated (Sec. 2.2). The whitened spectrum and the noise

spectrum are used in the pitch salience model (Secs. 2.3

and 2.4). These steps are now explained in more detail.
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2.1 Level normalization and spectral whitening

The time-domain audio signal x(n) is blocked into partly-
overlapping analysis frames that are windowed using the

Hamming window. The signal within each frame is level-

normalized to unity variance, zero-padded to twice its length,

and then discrete Fourier transformed to obtain the magni-

tude spectrum Xt(k) in frame t. Each frame is processed
independently, therefore we drop the frame index t in the
following for convenience.

Spectral whitening, or flattening, is applied on X(k) in
order to suppress timbral information and thereby make

the subsequent pitch analysis more robust to various sound

sources. This is achieved by calculating power σ2
c of the

signal within narrow frequency bands c and by scaling the
signal within each band by gc = σν−1

c , where ν = 0.16 is
a parameter determining the amount of whitening. Center

frequencies fc of the subbands are distributed uniformly

on the critical band scale, fc = 229(10(0.33c+1)/21.4 − 1),
and each subband c = 1, . . . , 96 has a triangular power re-
sponse extending from fc−3 to fc+3. The resulting whitened

magnitude spectrum is denoted by Y (k).

2.2 Noise estimation

From the viewpoint of pitch analysis, the sounds of drums

and the beginning transients of many pitched instruments

are considered as “noise”. Several methods have been pro-

posed in the literature for estimating the “noise” (stochastic

spectral component) in music (see [3] for review). Perhaps

the most widely used is the sinusoids plus noise model,

where sinusoidal components are detected and subtracted

in the frequency domain, and the residual is considered

as coloured (filtered) white noise. Another, quite robust

method is to calculate a moving median at local regions of

the magnitude spectrum.

Here the emphasis is laid on the computational effi-

ciency and on the robustness of the method against spectral

peaks which are assumed to correspond to pitched sounds

and should not affect the estimate. The proposed noise

spectrum estimation method consists of the following steps.

First, a moving averageN ′(k) over the whitened spectrum
Y (k) is calculated as

N ′(k) =
1

uk − lk

uk
∑

k′=lk

Y (k′) (1)

where lk and uk define the lower and upper boundaries of

the critical-band subbands within which N ′(k) is calcu-
lated. Note that (1) can be computed very efficiently by

first calculating cumulative sum Ȳ (k) over Y (k) and then
N ′(k) = Ȳ (uk)− Ȳ (lk − 1). The band boundaries lk and
uk can be pre-stored.

To make the noise estimate immune to spectral peaks,

another moving average is calculated, but including in the

averaging only frequency bins for which Y (k) < N ′(k).
The resulting noise spectrum estimate is denoted byN ′′(k).
Performing one more local averaging ofN ′′(k) (by substi-
tuting N ′′(k) in place of Y (k) in (1)) produces the final
noise spectrum estimate N(k).

The presented noise estimation procedure is besides sim-

ple, also computationally efficient. If the input signal con-

sists of coloured white noise (without pitched sounds), it

can be shown that E [N(k)] = 0.61E [N0(k)], where E [·]
denotes expectation and N0(k) is the true noise spectrum
being estimated. In other words, the estimated spectrum

depends linearly on the true spectrum. In practice, how-

ever, the input signal may contain pitched sounds which

affect the estimate and the scaling factor can be anything

between 0.61 and about 1.0. In our case, the subsequent
optimization process explained below takes care of finding

the linear scaling factor for N(k), therefore the proposed
noise estimation method is well suited here.

2.3 Pitch salience model

For convenience, the whitened spectrum Y (k) and the es-
timated noise spectrumN(k) are stored as columns in ma-
trixY, together with an all-one “spectrum”:

Y =











Y (0) N(0) 1
Y (1) N(1) 1
...

...
...

Y (K − 1) N(K − 1) 1











(2)

Let us also define basis functions

am(k) = [log(k + 1)]m−1 (3)

where k denotes the frequency index andm = 1, 2, . . . ,M
indexes the basis functions. This is a polynomial basis on

the log-frequency scale. For convenience, the bases are

collected as columns in matrixA = [a1,a2, . . . ,aM ].
The columns of Y are linearly combined into a single

spectrum Z(k) according to the following linear model:

Z(k) = (AW.×Y)1 (4)

where .× denotes element-wise multiplication,W is a ma-

trix of size (M×3) that contains the model parameters, and
1 is an all-one vector of length 3 (the number of columns
inY). Note that the productAW is a matrix of size (K ×
3), the same size as Y. The three columns define fre-

quency responses for the three columns of Y, before they

are summed (by multiplying with 1) to obtain the final

spectrum Z(k). The first column of AW defines the fre-

quency response of the whitened spectrum Y (k). The sec-
ond column defines the frequency response of the noise

spectrumN(k) and allowing it to be negative leads to noise
subtraction from the final spectrum Z(k). The third col-
umn ofAW is multiplied by the all-one spectrum inY and

allows an additive frequency-dependent curve to be added

to the final spectrum Z(k).
Crucial for the model are the parameters in matrixW.

The M parameters in column i of W (together with the

fixed basis functionsA) determine the frequency response

of column i in Y. The basis functions are necessary in

order to be able to represent the frequency responses with

only a few parameter values. An algorithm for learning the

parameters will be described in Sec. 2.4.
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A harmonic transform is applied on the spectrum Z(k)
to obtain a “raw” salience function r(τ) which indicates
the strength of pitch period candidates τ :

r(τ) =
H

∑

h=1

Z(kτ,h). (5)

The period τ corresponds to the F0 value fs/τ , where fs

denotes the sampling rate. The frequency bin kτ,h corre-

sponds to the h:th harmonic (integer multiple) of the F0
and is determined by the largest value of Z(k) in the vicin-
ity of the frequency hK/τ . More exactly, the maximum is
found in range ⌊hK/(τ + ∆τ/2)⌉ , . . . , ⌊hK/(τ −∆τ/2)⌉,
where ⌊·⌉ denotes rounding to the nearest integer,K is the
length of the Fourier transform, and ∆τ = 0.5 denotes
the spacing between successive period candidates τ . The
number of harmonic partials H = 20.
The harmonic transform (5) is motivated by the Fourier

theorem which states that a periodic signal can be repre-

sented with spectral components at integer multiples of the

inverse of the period. Pitch perception, in turn, is closely

linked to the time-domain periodicity of sounds.

The function r(τ) contains peaks at the positions of true
pitch periods, but it requires further processing to suppress

peaks that often occur at integer (sub)multiples of the true

period(s). The method proposed in the following bears re-

semblance to the “enhancing” technique of Karjalainen et

al. [2] which suppresses the peaks at integer multiples of

the true period(s) in the autocorrelation function (ACF).

They clipped the ACF to positive values, scaled it to twice

its length, and subtracted the result from the original clipped

ACF. This was repreated for time-scaling factors up to about

five to suppress the peaks occurring at integer multiples of

the true period(s).

The method proposed in the following is a generaliza-

tion of the above idea. First, let us create scaled versions of

r(τ). The original function r(τ) is scaled by a factor j by
inserting zeros between the original samples, lowpass fil-

tering the result with cutoff frequency 1
2fs/j and multiply-

ing the filtered signal by j. The resulting signal, denoted
by rj(τ), is finally truncated to the same length as r(τ).
Stretched versions with scaling factors j = 2, 3, . . . , J are
calculated (here J = 5).
Secondly, we calculate shrunk versions of r(τ) by scal-

ing with factor 1/j. This is done by lowpass filtering r(τ)
with cutoff frequency 1

2fs/j and then copying every j:th
sample of r(τ) to a signal denoted by r1/j(τ). Since the
length of r1/j(τ) is only r:th fraction of r(τ), new values
have to be calculated for long periods τ using (5) in order
that the shrunk function would be of the same length as the

original r(τ).
For convenience, the strecthed and shrunk versions of

r(τ) are stored as columns in matrixR,

R =
[

r,1, r2, r3, . . . , rJ , r1/2, r1/3, . . . , r1/J

]

(6)

where we have denoted r ≡ r(τ), r2 ≡ r2(τ), and so on
for convenience, and 1 denotes an all-one vector.

Let us define basis functions

bn(τ) = [log(τ + 1)]n−1 (7)

where τ is the period and n = 1, 2, . . . , N indexes the ba-
sis functions. This is a polynomial basis on the log-period

scale. For convenience, the bases are collected as columns

in a matrix B = [b1,b2, . . . ,bN ].
The final pitch salience function s(τ) is calculated as a

linear function of the columns ofR:

s(τ) = (BV.×R)1 (8)

where V is a matrix of size (N × 2J) that contains the
model parameters, and 1 is an all-one vector of length 2J
(the number of columns in R). The product BV gives a

matrix of the same size as R. Its columns define period-

dependent weights for the columns of R, that is, for the

original raw salience r and its stretched and shrunk ver-

sions, rj and r1/j . For example, setting small negative

weights for the columns that correspond to r2 and r1/2

implements suppression of the peaks that occur an octave

above and below each true pitch period. TheN parameters
in column j of V (together with the fixed basis functions
B) determine the period-dependent weights for column j
in R. Finally, multiplication with 1 is equivalent to sum-

ming over the columns and yields s(τ).
The proposed pitch salience model is now fully defined,

except for the two parameter matricesW andV in (4) and

(8), respectively.

2.4 Algorithm for learning the parametersW andV

The described pitch salience model may look quite com-

plicated at a first sight, therefore we start from a simplified

case to develop an intuition how the model works. Let us

set the parametersW in (4) to zero for all except the first

column which corresponds to the first column ofY, and let

us set the values in the first column so that Z(k) ≈ K
k Y (k)

where K is the Fourier transform length. Furthermore, let
us set the parameters V in (8) to zero for all except the

first column (which correspond to the first column of R),

and set the values so that s(τ) ≈ 1
τ r(τ). Substituting r(τ)

from (5), the overall model becomes

s(τ) ≈
1

τ

H
∑

h=1

K

kτ,h
Y (kτ,h) ≈

H
∑

h=1

1

h
Y (kτ,h). (9)

where the latter equivalence is because kτ,h ≈ hK/τ .
In other words, salience is computed as 1

h -weighted sum

of the partial amplitudes in the whitened spectrum Y (k),
which is a reasonable (although simplistic) way of com-

puting pitch salience.

The above simplified model is actually exactly how the

parametersW and V are initialized in the learning algo-

rithm to be described here. The simple model (9) is a good

starting point, from where we iteratively refine the values.

An overview of the learning algorithm is as follows:

0) MatricesW andV are initialized to values that cor-

respond to the simple model (9).

1) MatrixW is updated, keepingV fixed.

2) MatrixV is updated, keepingW fixed.
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3) Steps 1 and 2 are repeated untilW andV converge.

In practice, it was found to be sufficient to repeat the steps

1 and 2 just a couple of times.

The exact goal of the optimization is to find such pa-

rameters W and V that the salience function s(τ) is as
close as possible to unity value at points τ that correspond
to true pitch periods, and as close as possible to zero at

next-largest peaks that correspond to “false” pitch periods.

The steps are now described in more detail.

Initialization. As already mentioned, W and V are

initialized to values that correspond to the simple model

in (9). Matrix W is initialized so that Z(k) ≈ K
k Y (k)

and matrix V so that s(τ) ≈ 1
τ r(τ). The initial values

in the first column ofW are calculated by least-squares fit

w1 = (ATA)−1ATα, where vectorα(k) = K/(k+ǫ) de-
notes the target function and regularization using ǫ ≈ 50 is
needed to avoid fitting only the largest values near the zero

frequency. Similarly, the initial values in the first column

ofV are calculated by v1 = (BTB)−1BTβ, where vector
β(k) = 1/(τ + ǫ) denotes the target function and ǫ ≈ 50
is again needed to avoid fitting only the largest values near

the zero period.

Updating W. In order to learn better values for W,

some training material is neeeded. For this purpose, we

mixed samples from 32 musical instruments with equal

mean-square levels. Random mixtures up to six simulta-

neous sounds were generated using the McGill University

Master Samples (MUMS) database.

For each training instance g, g = 1, 2, . . . , G, the fol-
lowing operations are performed:

1.a) The salience function s(τ) is calculated using (8)
and the current parametersW andV.

1.b) From s(τ), we record the exact period values of the
P annotated true pitches in training instance g. In
addition, we record the period values of 10−P next-
largest “false” peaks in s(τ). The peak periods are
denoted by τp, p = 1, . . . , 10, and the types of the
peak by φp = [1, . . . , 1, 0, . . . , 0] where 1 indicates
true peaks and 0 the false ones.

1.c) Parameter-specific salience functions sm,i(τ) are cal-
culated using (8) and currentV and specialWwhich

has value 1 at position [W]m,i and 0 elsewhere.

1.d) For each true or false peak p = 1, . . . , 10, the value
of sm,i(τp) is stored in matrixQ on row p+10(g−1)
and columnm+(i−1)M . The peak type φp is stored

in vector c on row p + 10(g − 1).

After all instances g have been processed and the corre-
sponding values stored in matrix Q and vector c, updated

parameters w are obtained by least-squares estimation

w = (QTQ)−1QTc. (10)

The corresponding matrix W is obtained by storing the

3M values in vector w to the three columns ofW. Equa-

tion (10) finds parameters which satisfy s(τ) ≈ 1 at the
positions of “true” peaks, and s(τ) ≈ 0 for the false ones.

Updating V. Updating the matrix V is analogous to

above. For each training instance g, the following opera-
tions are performed:

2.a) and 2.b) are identical to 1.a) and 1.b), respectively.

2.c) Parameter-specific salience functions sn,j(τ) are cal-
culated using (8) and currentW and specialVwhich

has value 1 at position [V]n,j and 0 elsewhere.

2.d) For each true or false peak p = 1, . . . , 10, the value
of sn,j(τp) is stored in matrixO on row p+10(g−1)
and column n+(j−1)N . The peak type φp is stored

in vector d on row p + 10(g − 1).

After all cases g have been processed and the corre-
sponding values stored in matrix O and vector d, updated

parameters v are obtained by least-squares estimation v =
(OTO)−1OTd. The corresponding matrix V is obtained

by storing the 2JN values in vector v to the 2J columns
ofV.

3. RESULTS

Figure 1 shows some example salience functions calcu-

lated for random soundmixtures using the proposed method

(right panels) and, for comparison, for a baseline method

(left panels). As a baseline method, we chose the salience

function proposed in [4, Eq. (3)]. 2 The baseline method is

practically identical to the simple model (9) which is used

to initialize the parameter learning process here.

The two panels on top of Figure 1 show the output of

the baseline and the proposed method for a single harmonic

sound. The true pitch period is marked with a circle and the

remaining largest false peaks are indicated with crosses.

The proposed method is effective in suppressing the extra-

neous peaks to zero level (indicated by the horizontal line)

and in forcing the true peak towards unity value. For cu-

riosity, the next two panels show the outputs of the baseline

and the proposed system for a single sinusoidal compo-

nent. The last four panels show the output of the baseline

system and the proposed system for a random combina-

tion of two and four sounds. As the polyphony increases,

the proposed method too shows many spurious peaks al-

though its result is still considerably cleaner that the base-

line method.

Figure 2 shows precision, recall, and F-measure for the

proposed method (solid line) and for the baseline method

(dashed line) using synthesized MIDI signals as test mate-

rial. The results were calculated by fixing a threshold value

T0, picking all the peaks in all frames above the threshold,

and then calculating the resulting precision π = C(corr.)
C(det.) ,

recall ρ = C(corr.)
C(ref.) , and F-measure ϕ = 2πρ/(π+ρ). Here

C(·), denotes the count of correct pitches found (corr.),
count of all pitches detected (det.), or count of pitches in

the reference (ref.). By varying the threshold, different pre-

cision/recall tradeoffs were obtained.

2 The subsequent iterative detection and cancellation process in [4]
was not used here, since it would lead to a discrete set of F0 values.
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Figure 1. Example salience functions for the baseline

method (left panels) and for the proposed method (right

panels). The four cases from top to bottom represent

1) harmonic sound, 2) single sinusoidal component, 3)

mixture of two harmonic sounds, and 4) mixture of four

sounds. Peaks corresponding to the true pitch are circled.

TheMIDI pieces were obtained by synthesizing random

pieces from the RWC Pop and RWC Genre databases [8]

and from midifarm.com. Synthesis of the MIDI files was

used in order to ensure the correctness and synchroniza-

tion between the synthesized file and the reference MIDI.

Timidity software synthesizer and GeneralUser GS 1.4 sound-

font were used for the synthesis. As can be seen in Fig. 2,

the proposed method improves significantly over the base-

line method. Here one should not pay too much attention

on the absolute numerical values, since the polyphony of

the pieces is quite high and especially the tails of long

sounds can be very weak and difficult to detect.

4. APPLICATION TO PITCH VISUALIZATION

Figure 3 shows the computed salience s(τ) as a function of
time for the piece No. 34 in RWC Popular Music database

[8]. Here, the audio from the database was used instead of

synthesizing from MIDI. The reference MIDI file is ren-

dered on top of the salience function as boxes. In this
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Figure 2. Precision, recall, and F-measure calculated for

synthesized MIDI signals. Results are shown for the pro-

posed method (solid line) and for the baseline method

(dashed line). The third panel shows a histrogram of the

number of concurrent sounds in the test data.

“piano roll” representation, the notes are arranged on the

vertical axis and time flows from left to right.

Many people are not comfortable with reading music di-

rectly from a piano-roll. Therefore we propose here to map

the data from the piano-roll to the traditional staves. This

“fuzzy score” is very handy since it allows studying per-

formance nuances, such as timing deviations and singing

pitch glides and vibrato quite easily.

Figure 4 illustrates the mapping of different notes on the

lines and spaces of the staves. Important to notice is that

the note positions depend on the musical key of the piece,

therefore key estimation is necessary to render the salience

function on the staves. Here we used the key estimator

from [9]. Secondly, the mapping is not linear: the distance

between a line and its neighbouring space on the staves can

be either one or two semitones. For this purpose, the piano-

roll representation is “stretched” or “shrunk” to align with

the staves.

Another requirement to make the score readable are bar

lines which function as temporal anchors and make the

timing of notes readable. Here we used the meter analy-

sis method from [10]. The barlines are indicated with ver-

tical lines and possible tempo changes appear as varying

distances between the barlines.

Figure 5 shows the resulting “fuzzy score” representa-

tion for the same example that was shown in Fig. 3. The

reference MIDI from the RWC database is drawn with cir-

cles on top of the salience. More examples of the computed

fuzzy scores and the corresponding audio excerpts can be

found at http://www.cs.tut.fi/sgn/arg/klap/ismir09/.

5. CONCLUSIONS

The proposed pitch salience model was shown to improve

over the baseline method in terms of precision and recall

when detecting multiple simultaneous pitches in synthe-
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Figure 3. Computed pitch salience for an excerpt of piece

No. 34 in RWC Pop database.
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Figure 4. Mapping of pitch values on the staves positions

in a few example musical keys.

sized MIDI files. This is due to the salience model which

allows suppressing the peaks that occur at (sub)multiples

of the true pitches in the salience function. The main ad-

vantage of the proposed method compared to many exist-

ing multipitch detection methods, however, is that it pro-

duces a continuous function that indicates the salience of

all pitch candidates within a given range. This makes the

proposed method particularly suitable for pitch content vi-

sualization. To this end, the proposed method was aug-

mented with musical key and meter estimation methods

which allow rendering the computed salience on the staves

of common musical notation. 3
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