Presentation Open Access
Francesco Caliva
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Francesco Caliva</dc:creator> <dc:date>2018-07-13</dc:date> <dc:description>Presented at IJCNN 2018, this presentation contains the description of a novel deep learning approach to unfold nuclear power reactor signals is proposed. It includes a combination of convolutional neural networks (CNN), denoising autoencoders (DAE) and k-means clustering of representations.</dc:description> <dc:identifier>https://zenodo.org/record/1410092</dc:identifier> <dc:identifier>10.5281/zenodo.1410092</dc:identifier> <dc:identifier>oai:zenodo.org:1410092</dc:identifier> <dc:language>eng</dc:language> <dc:relation>info:eu-repo/grantAgreement/EC/H2020/754316/</dc:relation> <dc:relation>doi:10.5281/zenodo.1410091</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>deep learning, convolutional neural networks, clustering trained representations, denoising autoencoders, signal processing, nuclear reactors, unfolding, anomaly detection</dc:subject> <dc:title>A deep learning approach to anomaly detection in nuclear reactors</dc:title> <dc:type>info:eu-repo/semantics/lecture</dc:type> <dc:type>presentation</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 35 | 35 |
Downloads | 49 | 49 |
Data volume | 598.0 MB | 598.0 MB |
Unique views | 34 | 34 |
Unique downloads | 47 | 47 |