Presentation Open Access

A deep learning approach to anomaly detection in nuclear reactors

Francesco Caliva


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/491b20c0-b92b-4afd-940e-f04747f3f0e9/2018_Caliva_IJCNN_ijcnn_presentation_V1.pdf"
      }, 
      "checksum": "md5:2a023bec74cfaf1fcdf123f00ad5f3f5", 
      "bucket": "491b20c0-b92b-4afd-940e-f04747f3f0e9", 
      "key": "2018_Caliva_IJCNN_ijcnn_presentation_V1.pdf", 
      "type": "pdf", 
      "size": 12204990
    }
  ], 
  "owners": [
    45514
  ], 
  "doi": "10.5281/zenodo.1410092", 
  "stats": {
    "version_unique_downloads": 47.0, 
    "unique_views": 34.0, 
    "views": 35.0, 
    "version_views": 35.0, 
    "unique_downloads": 47.0, 
    "version_unique_views": 34.0, 
    "volume": 598044510.0, 
    "version_downloads": 49.0, 
    "downloads": 49.0, 
    "version_volume": 598044510.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1410092", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1410091", 
    "bucket": "https://zenodo.org/api/files/491b20c0-b92b-4afd-940e-f04747f3f0e9", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1410091.svg", 
    "html": "https://zenodo.org/record/1410092", 
    "latest_html": "https://zenodo.org/record/1410092", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1410092.svg", 
    "latest": "https://zenodo.org/api/records/1410092"
  }, 
  "conceptdoi": "10.5281/zenodo.1410091", 
  "created": "2018-09-10T07:37:16.506070+00:00", 
  "updated": "2020-01-20T16:52:24.680604+00:00", 
  "conceptrecid": "1410091", 
  "revision": 6, 
  "id": 1410092, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1410092", 
    "description": "<p>Presented at IJCNN 2018, this presentation contains&nbsp;the description of a novel deep learning approach to unfold nuclear power reactor signals is proposed. It includes a combination of convolutional neural networks (CNN), denoising autoencoders (DAE) and k-means clustering of representations.</p>", 
    "language": "eng", 
    "title": "A deep learning approach to anomaly detection in nuclear reactors", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1410091"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1410092"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "754316", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::754316"
        }, 
        "title": "Core monitoring techniques and experimental validation and demonstration", 
        "acronym": "CORTEX", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "deep learning, convolutional neural networks, clustering trained representations, denoising autoencoders, signal processing, nuclear reactors, unfolding, anomaly detection"
    ], 
    "publication_date": "2018-07-13", 
    "creators": [
      {
        "affiliation": "University of Lincoln", 
        "name": "Francesco Caliva"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "presentation", 
      "title": "Presentation"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1410091", 
        "relation": "isVersionOf"
      }
    ]
  }
}
35
49
views
downloads
All versions This version
Views 3535
Downloads 4949
Data volume 598.0 MB598.0 MB
Unique views 3434
Unique downloads 4747

Share

Cite as