Conference paper Open Access

What to Read Next? Challenges and Preliminary Results in Selecting Representative Documents

Beck, Tilman; Böschen, Falk; Scherp, Ansgar


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Representative document selection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Document clustering</subfield>
  </datafield>
  <controlfield tag="005">20200120165326.0</controlfield>
  <controlfield tag="001">1409662</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, Kiel University, Kiel, Germany</subfield>
    <subfield code="0">(orcid)0000-0003-4223-5353</subfield>
    <subfield code="a">Böschen, Falk</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Computing Science and Mathematics, University of Stirling, Stirling, Scotland, UK</subfield>
    <subfield code="0">(orcid)0000-0002-2653-9245</subfield>
    <subfield code="a">Scherp, Ansgar</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">761901</subfield>
    <subfield code="z">md5:51cd0d42cbd0468d43b2c5de5d6dcd2c</subfield>
    <subfield code="u">https://zenodo.org/record/1409662/files/2018_TIR_Beck_et_al.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-08-07</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:1409662</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, Kiel University, Kiel, Germany</subfield>
    <subfield code="a">Beck, Tilman</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">What to Read Next? Challenges and Preliminary Results in Selecting Representative Documents</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The vast amount of scientific literature poses a challenge when one is trying to understand a previously unknown topic. Selecting a representative subset of documents that covers most of the desired content can solve this challenge by presenting the user a small subset of documents. We build on existing research on representative subset extraction and apply it in an information retrieval setting. Our document selection process consists of three steps: computation of the document representations, clustering, and selection of documents. We implement and compare two different document representations, two different clustering algorithms, and three different selection methods using a coverage and a redundancy metric. We execute our 36 experiments on two datasets, with 10 sample queries each, from different domains. The results show that there is no clear favorite and that we need to ask the question whether coverage and redundancy are sufficient for evaluating representative subsets.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-319-99133-7_19</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
61
71
views
downloads
Views 61
Downloads 71
Data volume 54.1 MB
Unique views 59
Unique downloads 68

Share

Cite as