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a b s t r a c t

In order to achieve near-optimal fuel economy for plug-in hybrid electric vehicle
equivalent consumption minimum strategy (ECMS), it is necessary to dynamically
factor (EF). Unlike widely used model-based approaches, this paper proposes a da
determines the EF using an artificial neural network (ANN). First, by comparing Po
Principle (PMP) with the ECMS, one can find that the EF is related to the co-stat
method. Then, an ANN is constructed with three accessible input variables, in
demanded power, the ratio of the distance travelled to the total distance, and the ba
(SOC). The neural network is subsequently trained using real-world speed profi
Plug-in hybrid electric vehicle
Equivalent consumption minimum strategy
Equivalent factor

performed considering different initial SOC values. The results reveal that the proposed data-driven
ECMS demonstrates satisfactory fuel economy compared to global optimization methods like dynamic
ectrific
e sak
Artificial neural network
Pontryagin's minimum principle

1. Introduction

In recent years, transportation el
growing attention worldwide for th

provements, greenhouse gas emission red
dependence on fossil fuels [1]. In particular
vehicles (PHEVs) have been increasingly

ergy-so

powertrain makes it necessary to carefully
programming and PMP methods. The computational time of the proposed method relative to the
duration of the entire trip indicates a great potential for the development of a time-conscious energy
management strategy. Moreover, the impact of training sample size on the ANN performance is
discussed.

© 2018 Elsevier Ltd. All rights reserved.

ation has been gaining
e of fuel economy im-
uctions, as well as less
, plug-in hybrid electric
investigated, as they

optimization theory-based methods [5e7], and artificial intelli-
gence methods [8,9].

Despite a common choice for commercial hybrids [3], rule-
based EMSs, which depend on practical engineering experience,
prevent them from being applied to make the most of hybrid
powertrains. Fuzzy logic has been introduced to improve the flex-
ibility of such rules [10]. However, a significant weakness of rule-
address range anxiety and enable en
vehicle-grid interaction [2].
urce diversification via based methods lies in the fact that they cannot realize optimal or
Integrating more than two power sources within a hybrid
near-optimal fuel economy due to a lack of optimality. Dynamic
programming (DP) algorithms that can produce a provably globally
devise an energy man- optimal solution have been widely used. However, driving cycle

agement strategy (EMS), so as to coordinate power-flow distribu-
tion for better fuel economy. Various methods have been proposed
to develop EMSs, including rule-based or fuzzy logic methods [3,4],
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information is required to be known a priori. Thus, real-time ap-
plications of DP algorithms cannot be easily achieved [11]. Sto-
chastic DP algorithms have been suggested by considering the
randomness of speed distribution [12,13]. Owing to massive itera-
tive and interpolation calculations required to estimate the cost-to-
go, the DPmethodology is often time-consuming [14]. Nonetheless,
it is often regarded as a benchmark to evaluate other EMSs, thanks
to salient optimality. The Pontryagin's Minimum Principle (PMP)
algorithm is another global optimization algorithm used to develop
EMSs. It determines the optimal power-allocation policy by
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Nomenclature

Pr demanded power
Pbat total battery power
Pb power consumed by electrical load
Pl battery internal power loss
Pm total motor power
Pegu EGU output power
Paux power consumed by auxiliary components
Qb battery capacity
Uoc battery open circuit voltage
Rb battery internal resistance
J total cost
L instantaneous cost
H Hamilton function
mf fuel rate
cf , ce prices of fuel fossil and electricity
l
L ratio of travelled distance to total distance

l co-state variable
S equivalent factor
Eb battery energy

List of abbreviations
SOC battery stage of charge
HEV hybrid electric vehicle
PHEV plug-in hybrid electric vehicle
EMS energy management strategy
EGU engine-generator-unit
DP dynamic programming
PMP Pontryagin's minimum principle
ECMS equivalent consumption minimum strategy
EF equivalent factor
MPC model predictive control
ANN artificial neural network
ANN-ECMS artificial neural network based equivalent

consumption minimum strategy
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instantaneously minimizing the Hamiltonian function [15e17],
thereby greatly reducing the computational burden. Similar to the
DP method, the PMP method requires prior knowledge of driving
cycle. However, both DP and PMP methods can be implemented
over amoving horizon to capture a local optimal solution, yielding a
model predictive control (MPC)-based EMS [18,19].

The equivalent consumption minimum strategy (ECMS) derived
from the PMP algorithmmakes a real-time EMS possible, which has
become an alternative to develop EMSs [6]. The ECMS, which was
originally applied to HEVs [20], provided that the consumed battery
power was offset by the on-board engine, was then extended to
PHEVs [21]. However, a key issue about implementing the ECMS
still remains, that is, how may the equivalent factor (EF) - a critical
scaling factor that determines the proportion of energy consumed
from fuel and the battery- be dynamically tuned so as to accomplish
energy consumption similar to that determined by a global opti-
mization algorithm, e.g., DP. As such, various approaches to tuning
the EF have been reported. For example, an adaptive ECMS (A-
ECMS) calibrates the EF based on the feedback on the SOC deviation
from a preset reference [22e24]. Thus, it is important for the A-
ECMS to construct a reference SOC by leveraging the available in-
formation, e.g., the distance travelled or telematics information
[25]. It is worth noting that the reference SOC for PHEVs and HEVs
are totally different. Specifically, the reference SOC for the former
varies with driving environment, i.e., the distance travelled,
whereas the one for the latter can be set to a constant level (e.g.
0.6), due to charge sustenance over a trip [26]. Moreover, taking
into account different energy conversion efficiencies during driving
and braking of HEVs, two constants, rather than a single one, have
been used to define the EF [5]. A map-based ECMS for PHEVs has
been proposed as well, in which the optimal energy distribution is
performed offline and stored in tables so that the EF can be
determined by searching the tables online [22]. Furthermore, an
improved adaptive equivalent consumption minimization strategy
(IA-ECMS) has been designed to instantaneously adjust the EF
based on the identified driving behavior and predicted real-time
traffic information [27]. The particle swarm optimization algo-
rithm has been put forward to tune the EF for a plug-in hybrid city
bus in Ref. [28]. Fuzzy logic has also been utilized to calculate the EF
[29].

Additionally, artificial neural networks have been exploited to
develop EMSs. Generally, the selection of input and output
variables for an artificial neural network significantly affects the
network performance and its utilization/generalization. Eleven
variables were chosen as network inputs to predict the demanded
output [9]. In addition, two individual neural networks were
deployed to develop an EMS, where the first network performed
SOC planning, and the second network realized power distribution
[30].

The aforementioned approaches to adjusting the EF in ECMSs of
PHEVs can be viewed as model-based ECMSs. Within model-based
ECMSs, e.g., techniques based on SOC deviation feedback control
from a SOC reference, the SOC reference is established involving an
initial SOC value. This means that the model-based controller
intended for a specific SOC level may not be applicable to cases with
other different initial SOC levels, greatly weakening the robustness
of the controller. Actually, due to many uncertain conditions, initial
SOC levels for PHEVs always alter in daily running and are thus
unfixed. From this perspective, a data-driven method that has the
potential of covering various initial SOC levels during neural
network training could be favorable. As a result, to bridge this
research gap, this paper proposes a data-driven artificial neural
network-enhanced ECMS (ANN-ECMS). Main contributions have
been made to distinguish our study from existing ones. First, a
framework of an artificial neural network based ECMS is proposed,
and a spectrum of cases with different initial SOC levels is utilized
to examine the proposedmethod. Second, a concise neural network
structure with three accessible input variables is established, with
the aim of improving the computational efficiency and reducing the
controller memory. Finally, the impact of training sample size on
the ANN-ECMS performance is evaluated based on real-world
driving cycles, and the time efficiency of ANN-ECMS is systemati-
cally contrasted to other typical methods. A significant advantage of
the proposed method is the capability of dealing with changeable
initial SOC levels and improving the robustness of the controller.

The remainder of this paper is organized as follows. Section 2
describes the powertrain model, and Section 3 establishes the
relationship between the EF and co-state by equating the PMP al-
gorithm to the ECMS. Then, the PMP algorithm is applied to real-
world speed profiles to generate training data in Section 4. The
proposed artificial neural network is detailed and trained in Section
5. After that, Section 6 presents the framework for the ANN-ECMS.
Section 7 displays important results, followed by main conclusions
in Section 8.



2. PHEV modeling
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Fig. 2. Torque/Speed curve and Efficiency contour plot of electrical machine [31].

Table 1
Powertrain Parameters [31].

Item Parameter Value

Vehicle Mass/kg 16500
Final gear ratio 6.733

Electrical machine Peak power/kW 150
Peak torque/Nm 2100
Peak speed/rpm 3000

ISG Peak power/kW 90
Peak torque/Nm 330
Peak speed/rpm 3000

Engine Displacement/L 2.78
Peak power/kW 110
Peak speed/rpm 3200

Battery Voltage/V 537.6
Capacity/Ah 180
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The PHEV examined in this study is based on a prototype in
Ref. [31] and has a serial configuration, as illustrated in Fig. 1. An
integrated-starter-generator (ISG) and a diesel engine are me-
chanically coupled to form an engine-generator-unit (EGU) that can
supply electric energy to the battery. The electrical machine (EM),
with the efficiency contour plot in Fig. 2, can operate as either a
driving motor or a generator. The maximum generating power of
the EM is limited to 30 kW during regenerative braking, taking into
account the battery health. The specifications of powertrain are
summarized in Table 1. By combining the brake specific fuel con-
sumption (BSFC) of the engine and the generator efficiency, the
equivalent energy efficiency of the EGU can be calculated, as plotted
in Fig. 3, with the optimal EGU fuel rate indicated by the red line.

2.1. Battery model

An equivalent electrical circuit to simulate the lithium ion
phosphate battery system is shown in Fig. 4. The open circuit
voltage and equivalent internal resistance are functions of the
battery SOC, neglecting the effects of temperature [32]. Based on
experimental data, the estimated open circuit voltage and equiva-
lent internal resistance of a battery cell are plotted in Fig. 5.

The power balance equation of the battery system is formulated
as

Pbat ¼ Pb þ Pl ¼ Pb þ I2Rb (1)

where Pbat is the internal battery power, Pb is the terminal battery
power, and Pl is the internal power loss of the battery; I is the
electrical current, and Rb is the equivalent internal resistance.

According to (1), the battery dynamics can be described by

_SOC ¼ f ðSOCÞ ¼ �
Uoc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
oc � 4RbPb

q
2QbRb

(2)
Fig. 1. Powertrain architecture in PHEV [31].



whereQb is the nominal battery capacity, and Uoc is the open circuit

2.2. Vehicle dynamics

3. Relationship between PMP and ECMS

3.1. PMP
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voltage.
For the PHEV, the vehicle-level power balance equation can be
formulated as follows:

1
3600

�
mgf vþ CdA

21:15
v3 þ xm

dv
dt

v

�
¼ Pmh

sgnðPmÞ
m (3)

Pb þ Pegu ¼ Pm þ Paux (4)

where m is the mass, f is the rolling resistance coefficient, Cd is the
air resistance coefficient, A is the front area, v is the speed, x is the
equivalent mass inertia, hm is the electric efficiency of the motor,
and Pm is the total power consumed by the motor or the recuper-
ated power during braking. When Pm is larger than zero (for pro-
pelling), sgn equals 1; when Pm is less than zero (for recuperation),
sgn equals -1. Moreover, Pegu is the EGU output power, and Paux is
the power consumed by auxiliary components, e.g., the electrical
steering system and the braking system.
As the ECMS can be essentially derived from the PMP method,
the two methods can be tied, as shown in the following.
The PMP minimizes the total cost of energy consumption over a
trip, including the fuel cost and electricity cost, which has the form
of [15,17]:

J ¼ min
Ztf
0

Lð$Þdt ¼ min
Ztf
0

�
cf _mf þ ce

Pbat
3600

�
dt (5)

where J denotes the total cost; L is the instantaneous cost; tf is the
trip duration; cf and ce are the unit prices for fuel (CNY.L�1) and
electricity (CNY.kWh�1), respectively; _mf is the fuel rate (L.s

�1), and
Pbat is the total battery power.

Consequently, the Hamiltonian function can be expressed as

H ¼ cfm
:

f þ ce
Pbat
3600

þ l _SOC (6)

where l is the co-state variable, which is governed by the co-state
dynamics:

l
:

¼ � vH
vSOC

¼ �l
v _SOC
SOC

: (7)

And the normal equation is described as

_SOC ¼ vH
vl

: (8)

When minimizing the Hamiltonian function, the SOC upper and
lower boundary constraints should be satisfied:

n
SOCinitial ¼ SOC0; SOCend ¼ SOCf

o
:

Additionally, the physical limitations imposed on the power
components are given below:



�
Pbat;min � PbatðtÞ � Pbat;max;

different initial SOCs are hence considered for performing a
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Pegu;min � PeguðtÞ � Pegu;max;
Tm;min � TmðtÞ � Tm;max;

nm;min � nmðtÞ � nm;max
�
:

3.2. ECMS

The ECMS instantaneously minimizes the equivalent energy
consumption cost, with the objective function described as [22,33]:

J ¼ cfm
:

f þ SðtÞ cePbat
3600

(9)

where SðtÞ is the EF.

3.3. Relationship between both methods

The SOC dynamics can be rewritten as

_SOC ¼ f ðSOCÞ ¼ � I
Q

¼ � IUoc

QUoc
¼ � Pbat

3:6Eb
(10)

where Eb denotes the battery energy, kJ.
Then the Hamiltonian function can be rewritten as

H ¼ cfm
:

f þ
Pbat
3600

�
ce � 1000l

Eb

�
: (11)

Comparing (6) and (11) yields

ce � 1000lðtÞ
Eb

¼ ceSðtÞ: (12)

Then,

SðtÞ ¼ 1� 1000lðtÞ
ceEb

: (13)

Equation (13) demonstrates that the optimal EF, SðtÞ, of the
ECMS can be determined, if the optimal co-state value, l, of the PMP
is known, similar to the conclusion in Ref. [34].

4. Acquisition of network training data

In this section, the PMP algorithm is employed to generate a
data set for the neural network training in Section 5.

4.1. Samples of driving cycle

The bus route considered in Xi'an city, China has a round-trip
distance of around 71 km, and the speed profiles along this route
during a half-year period were acquired. As the bus route is almost
flat, the road gradient was neglected. Without loss of generality,
five speed profiles were randomly chosen from the data set for the
neural network training and verification, as shown in Fig. 6. Spe-
cifically, the speed profiles (No.1 - No.4) were used for the network
training, while the last one (No.5) for the network verification. In
addition, to evaluate the impact of sample size on the network
performance, two cases are considered: case 1 based on two speed
profiles (No.1 - No.2) and case 2 based on four speed profiles (No.1 -
No.4).

As the initial SOC levels for a PHEV vary from trip to trip due to
many random factors, the initial SOCs for the network training
change from 0.3 to 0.9 with an increment of 0.1; seven cases with
comprehensive network training.

4.2. Solution of PMP

As the PMP algorithm often cannot be solved analytically, the
shooting method is leveraged to obtain the mathematical solution,
where the secant method is used to calibrate the initial co-state
value in each shooting [17],

�
li ¼ l0 ði ¼ 1Þ; li ¼ li�1 þ d ði ¼ 2Þ; li

¼ li�1 � ðli�1 � li�2Þ
SOCi�1 � SOCf
SOCi�1 � SOCi�2

ði ¼ 3;4;/Þ
�
:

(14)

where i is the shooting index; li (i¼1,2) are the first two initial co-
state values determined by constants l0 and d; SOCf is the final SOC
value, which is set to 0.3.

The detailed flowchart of the shooting method is presented in
Fig. 7, where k is the time step, the parameter ε is used to control the
shooting time and computational accuracy, which is specified as
0.001. Furthermore, the values of l0 and d are set to�64.5 and 0.05,
respectively, for all cases.

4.3. Results and analysis

To demonstrate the process of solving the PMP algorithm, a
particular case, with an initial SOC of 0.9 and speed profile No.1, is
presented. The SOC profiles generated by the shooting method are
shown in Fig. 8. Six shootings are iterated before the algorithm
converges, indicating that the final SOC in the sixth shooting can
reach the preset scope. Also, it can be observed that the SOC profile
experiences a gradual decline during the whole shooting process.
Accordingly, six initial co-state values adjusted by the secant
method in each shooting increased before reaching a stable level, as
illustrated in Fig. 9. The optimal co-state trace, which is generated
in the sixth shooting process, reveals the power distribution policy,
as portrayed in Fig. 10.

The optimal co-state traces for case 1 (No.1 and No. 2 speed
profiles as training samples) and case 2 (No.1 to No. 4 speed profiles
as training samples) with seven different initial SOCs are shown in
Figs. 11 (a) and Fig. 12 (a). Two optimal co-state traces and four
optimal co-state traces are yielded, respectively, for case 1 and case
2, under different initial SOC levels. It can be seen that the co-state
traces move downward as the initial SOC reduces from 0.9 to 0.3.



Also, it is notable that almost all co-state traces maintain a rising
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tendency over the trip, except the case of the initial SOC of 0.3, as
shown in Figs. 11 (b) and Fig. 12 (b). When the initial SOC is 0.3, the
SOC is maintained by a charging-sustaining state, leading to a
declining co-state trace, whereas in all the other cases, the SOC
declines over the trip, leading to rising co-state traces.

5. Neural network modeling

5.1. Neural network structure

A common three-layer back-propagation neural network is
adopted, as illustrated in Fig. 13. Three variables are chosen as
network inputs: the current demanded power Pr, the battery SOC,
and the ratio of the distance travelled to the total distance l

L.
The demanded power Pr is computed by�

PrðkÞ ¼ 1
3600

�
mgf vðkÞ þ CdA

21:15
vðkÞ3 þ dm

DvðkÞ
Dt

vðkÞ
�
;
DvðkÞ
Dt

¼ vðkÞ � vðk� 1Þ
3:6Dt

�
(15)

where DvðkÞ
Dt is the acceleration at the k-th time step, andDt is the



time step, being set to 1s.
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From Equation (15), it is evident that the demanded power
depends on the speed at the current time step vðkÞ and the previous
one vðk� 1Þ.

The total trip distance L is known for the city bus route, and the
distance travelled l is determined by integrating the speed,

l ¼
Xtn
i¼1

viDt (16)

where tn is the current time.
The network output is the co-state value, which reflects the

power distribution between the battery and EGU.
Compared with existing neural network structures with many

input variables [8,9,30], the proposed network with three inputs is
simple but utilizes sufficiently varied information to determine the
co-state. In fact, the selection of the three input variables is
somewhat inspired by the SOC reference for the SOC feedback



based EMSs [17] or predictive EMSs [14]. 6. ANN-ECMS
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5.2. Neural network training

As stated in Section 4.1, to evaluate the impact of sample size on
the neural network performance, two neural networks are
considered: ANN-2 (based on No.1 - No.2 speed profiles) and ANN-
4 (based on No.1 - No. 4 speed profiles). Also, the specifications of
the neural network applied to both networks are summarized in
Table 2.

The main procedures of the neural network training are given as
follows [35,36]:

Step 1: Neural network initialization.
Assume that n (i¼ 1,2,…,n), q (j¼ 1,2,…q) andm (k¼ 1,2,…,m)

denote the node numbers of the input, hidden, and output
layers, respectively, and i, j, and k denote the ith, jth, and kth

neurons in the three layers, respectively. For this proposed ANN,
it is known that n¼ 3, q¼ 8, and m¼ 1. Also, assume that uij
denotes the weights between the input and hidden layers, and
ujk denotes the weights between the hidden and output layers.
Step 2: Compute the hidden layer.

G ¼ f

 Xn
i¼1

uijxi � aj

!
(17)
where G is the output of the hidden layer, f is the activation func-
tion, x is the element of the input layer, and a is the threshold of the
hidden layer.

Step 3: Compute the output layer.
With the hidden layer output G, the weights ujk, and the

threshold of the output layer bk, the predicted output of the
neural network Ok can be computed as

Ok ¼
Xl

Gjujk � bk: (18)

j¼1

Step 4: Compute the error and update the weights.

8>>>< ek ¼ Yk � Ok

u ¼ u þ hG
	
1� G



x
Xq

u e (19)
>>>: ij ij j j i
j¼1

jk k

ujk ¼ ujk þ hGjek

where e is the prediction error, and h is the learning ratio.
Step 5: Update the thresholds.8><
> aj ¼ aj þ hGj

	
1� Gj



xi
Xm
k¼1

ujkek (20)
:
bk ¼ bk þ ek:
Table 2
Specifications of neural network.

Item Value

Number of hidden layer nodes 8
Iterative time 100
Learning ratio 0.1
Learning target 0.00004
Activation function 1

1� e�x
Fig. 14 outlines the framework of the proposed ANN-ECMS. The
relationship between the EF (S) and the co-state variable (l) is first
established by comparing the PMP method and the ECMS, as
described in Equation (13). Then, an artificial neural network is
constructed, and the PMP method is applied to samples of speed
profiles to acquire network training data. With the trained neural
network, the optimal co-state can be determined online. Conse-
quently, the optimal EF can be determined according to Equation
(13), for use in the ECMS.

7. Results and discussion

Both the ANN-ECMS-2 (based on ANN-2) and ANN-ECMS-4
(based on ANN-4) are verified using the No. 5 speed profile with
four initial SOCs (0.85, 0.65, 0.45, and 0.35). The outcomes of typical
global optimization methods, including the DP and PMP algo-
rithms, as well as the rule-based charging-depleting and charging-
sustaining (CD-CS) strategy, are also presented in this section for
comparisons. The discretization of the SOC for the DP method
greatly affects the solution accuracy and the computational time.
Thus, in order to make a fair comparison with other methods, the
number of discrete SOC points is set to 400 after several trials. The
prices of fuel and electricity are set at 5.4 CNY.L�1 and 0.8
CNY.kWh�1, respectively. All simulations were performed in the
Matlab environment on a laptop computer with a 2.3-GHz CPU and
8-GB memory.

The simulation results of these differentmethods considered are
summarized in Table 3, which is divided into four blocks, high-
lighted by different colors, depending on the initial SOC.

From this Table, it is known that the total costs with high initial
SOC levels are less than thosewith low levels, because higher initial
SOCs allow inexpensive battery energy (electricity) to be used in
greater proportions, resulting in smaller total costs. Comparing the
results of the ANN-ECMS-2 and ANN-ECMS-4 methods within each
block shows that they always have similar total costs, indicating
that the performance of the ANN-ECMS is unaffected by an increase
in the training sample size from 2 to 4 speed profiles. This could be
due to the fact that the traffic environment along the city bus route
remains relatively consistent over a half-year period, so that the
two speed profiles are sufficient to reflect the traffic environment
along the city bus route.

It can be seen that ANN-ECMSs deliver comparable fuel econ-
omy to that of the global optimization methods (DP and PMP) in all
cases. Besides, the PMP always yields a lower total cost than the DP
method, despite both being global optimization methods, because
interpolating calculations needed by the DP algorithm to estimate
the cost-to-go value affects the accuracy. As a rule-based strategy
without any optimization, the CD-CS obviously leads to the lowest
fuel economy.

Additionally, with initial SOCs of 0.65, 0.45, and 0.35, ANN-
ECMSs have smaller total costs than do the PMP and DP methods.
This is because the final SOCs of the ANN-ECMSs in these cases have
fallen under the preset lower boundary value of 0.3, so the PHEV
has consequently consumed a greater proportion of inexpensive
battery energy, leading to slightly smaller total costs for the ANN-
ECMSs, versus the other methods.

As for the computational time, Table 3 suggests that the CD-CS
method always yields the smallest computational time, whereas
the DP method is most time-consuming in all cases. Compared to
the DP algorithm, the computational time of the PMP algorithm is
greatly reduced. It can also be exposed that both ANN-ECMS-2 and
ANN-ECMS-4 maintain a similar computational efficiency in all
cases. Although the computational time of ANN-ECMSs is greater



than that of the CD-CS method, its time efficiency, i.e., the SOC profiles of the ANN-ECMSs slightly deviate from that of the
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Fig. 14. Framework of ANN-ECMS.

Table 3
Simulation results of different methods.

Method Initial 
SOC F.C.(L) E.C. 

(kWh)
Total cost 

(CNY)
Final 
SOC

Computation time 
(s)

DP

0.85

4.0862 53.9045 65.3114 0.3013 1361

PMP 3.9988 54.0951 64.9897 0.2994 57

ANN-ECMS-
2

4.1462 53.5309 65.3386 0.3052 124

ANN-ECMS-
4

4.0541 53.8799 65.1174 0.3016 125

CD-CS 7.2999 49.5495 79.2780 0.3475 8
DP

0.65

9.2508 34.1509 77.5524 0.3013 1359
PMP 9.1799 34.2961 77.2835 0.2999 56

ANN-ECMS-
2

9.0440 34.8030 76.9513 0.2946 123

ANN-ECMS-
4

9.0771 34.6772 77.0305 0.2959 124

CD-CS 14.5252 29.5155 102.4843 0.3500 8

DP

0.45

14.4890 14.5210 90.2920 0.3013 1360

PMP 14.4212 14.6496 90.0268 0.3000 31
ANN-ECMS-

2
14.1499 15.6505 89.3543 0.2897 125

ANN-ECMS-
4

14.2242 15.3736 89.5365 0.2926 129

CD-CS 21.6252 9.8330 125.2914 0.3500 9

DP

0.35

17.1256 4.7380 96.7825 0.3013 1362

PMP 17.0542 4.8562 96.4891 0.3001 38
ANN-ECMS-

2
16.7418 6.0104 95.7163 0.2882 122

ANN-ECMS-
4

16.8162 5.7340 95.8989 0.2911 120

CD-CS 25.0321 0.2821 136.1497 0.3475 9

Note: F.C. and E.C. stand for fuel consumption and electricity consumption respectively.
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computational time relative to the duration of the entire trip (6 h),
suffices to ensure the development of a time-conscious EMS in real-
time.

Figss. 15e18 depict the SOC profiles of different methods for the
four cases considered. In Figs. 15e17, the SOC profiles of the DP,
PMP, and both ANN-ECMSs exhibit a similar trend. In Fig. 18, the
PMPmethod. This can be explained by their different trends of SOC
profiles. Specifically, the profiles with high initial SOC levels e.g.
0.9e0.4 decline approximately linearly and clearly feature slopes
from an overall perspective, whereas the profiles with a low initial
SOC level, e.g. 0.3, almost fluctuates around a horizontal line.
Therefore, the case with an initial SOC of 0.35, close to the low



initial SOC level (0.3), is affected accordingly, leading to a slight

overall, these SOC profiles are nearly overlapped, which induces
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Fig. 15. SOC profiles of different methods (Initial SOC¼ 0.85).
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S. Xie et al. / Energy 163 (2018) 837e848846
difference from the SOC profile of the PMP method. However,
virtually identical electricity energy consumption. The difference in
the SOC profiles of the DP and PMPmethods is mainly attributed to
their different optimization mechanisms: the PMP algorithm de-
termines the power allocation by minimizing the Hamiltonian
function under SOC boundary constraints and other physical limi-
tations, whereas the DP algorithm obtains the optimal solution by
minimizing the cost-to-go value based on the Bellman Principle.
With initial SOCs of 0.85, 0.65, and 0.45, the CD-CS strategy, with
SOC thresholds for switching the EGU on/off being set to 0.35 and
0.30, respectively, first experiences a CD stage, followed by a CS
stage. However, with an initial SOC of 0.35, the CS stage lasts
throughout the trip.

To further demonstrate the solving process of the ANN-ECMS,
Fig. 19 portrays the optimal co-state traces for the PMP method
and the ANN-ECMSs in all cases. It is noticed that, at most times, the
optimal co-state traces of the ANN-ECMSs approach the optimal co-
state trace of the PMP method. However, in the final phase of the
trip (roughly 4.8 h - 6 h), the traces experience a sharp change. This
is because the optimal co-state traces with an initial SOC of 0.3
decline with time (see Figs. 11 (b) and Fig. 12 (b)), whereas those
with initial SOC s of 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 rise with time.
Therefore, a drop in optimal co-state values occurs when the SOC is
in the proximity of 0.3 at the final portion of the trip. Accordingly,
the EF traces of the ANN-ECMS-2 and ANN-ECMS-4 are illustrated
in Fig. 20, based on the relationship expressed in Equation (13).

Furthermore, it can be unveiled in Fig. 19 that the discrepancies
of the co-state traces between the ANN-ECMS and PMP with an
initial SOC of 0.85 are more noticeable than those with an initial
SOC of 0.65, 0.45, or, 0.35. ANN-ECMS-2 is taken as an example to
explain such a phenomenon. In Fig. 11(a), as the initial SOC de-
creases from 0.9 to 0.3, the width between the co-state traces of No.
1 and No. 2 speed profiles (denoted as internal belt width) almost
reduces, and the width between the neighboring two internal belts
(denoted as external belt width) also reduces. When the initial
SOC¼ 0.85, the ANN-ECMS-2 cannot accurately identify which co-
state trace is better (co-state trace of No. 1 speed profile or No. 2
speed profile) or which group of co-state traces is better (group 1 -
the co-state traces with an initial SOC of 0.9 or group 2 - the co-state
traces with an initial SOC of 0.8), for the neural network to follow.
As a result, the predicted co-state traces with an initial SOC of 0.85
are more fluctuating than those with an initial SOC of 0.65, 0.45, or



0.35, and the associated discrepancies of the co-state traces be- significantly reduces the total energy consumption cost, compared
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tween the ANN-ECMS and PMP look more obvious.
8. Conclusions

Acknowledgements
This paper proposes a data-driven energy management strategy
for PHEVs, i.e., an artificial neural network improved equivalent
consumption minimum strategy (ANN-ECMS). The ANN-ECMS
dynamically identifies the equivalent factor (EF) for the ECMS us-
ing an artificial neural network. Three accessible input variables to
the ANN, including the current demanded power, the ratio of the
distance travelled to the total distance, and the battery SOC, are
picked. Real-world speed profiles, along with the relationship be-
tween Pontryagin's Minimum Principle (PMP) and ECMS, are
leveraged to train the neural network. Simulations considering
various initial SOC levels are carried out. The results disclose that
the proposed ANN-ECMS induces similar fuel economy to global
optimization methods such as the DP and PMP methods, and
to the rule-based charge-depleting and charge-sustaining (CD-CS)
method, by 17.7%, 24.9%, 28.7%, and 29.6% for the initial SOC levels
of 0.85, 0.65, 0.45, and 0.35, respectively. Furthermore, we can find
that the performance of the ANN-ECMS is not significantly affected
by an increase in the training sample size from 2 to 4 speed profiles
for the case study of a city bus. In addition, the computational time
of the ANN-ECMS indicates its great promise for the development
of a time-efficient EMS for real-time vehicular applications.

As the city bus route considered in this paper is fixed with a
largely consistent traffic environment, future studies could extend
this method to passenger cars by mining trip/driving pattern
statistics.
This work was supported in part by the EU-funded Marie
Sklodowska-Curie Individual Fellowships (IF) Project under Grant



706253-pPHEV-H2020-MSCA-IF-2015, and in part by Fundamental [18] Yang C, Li L, You S, Yan B, Du X. Cloud computing-based energy optimization
control framework for plug-in hybrid electric bus. Energy 2017;125:11e26.

S. Xie et al. / Energy 163 (2018) 837e848848
Research Funds for Central Universities, China
(No.106112017CDJQJ338811 and No. 106112016CDJXZ338825).

References

[1] Martinez CM, Hu X, Cao D, Velenis E, Gao B, Wellers M. Energy management in
plug-in hybrid electric vehicles: recent progress and a connected vehicles
perspective. IEEE Trans Veh Technol 2017;66(6):4534e49.

[2] Hu X, Zou Y, Yang Y. Greener plug-in hybrid electric vehicles incorporating
renewable energy and rapid system optimization. Energy 2016;111:971e80.

[3] Yang C, Jiao X, Li L, Zhang Y, Zhang L, Song J. Robust coordinated control for
hybrid electric bus with single-shaft parallel hybrid powertrain. IET Control
Theory & Appl 2014;9(2):270e82.

[4] Schouten NJ, Salman MA, Kheir NA. Fuzzy logic control for parallel hybrid
vehicles. IEEE Trans Contr Syst Technol 2002;10(3):460e8.

[5] Sciarretta A, Back M, Guzzella L. Optimal control of parallel hybrid electric
vehicles. IEEE Trans Contr Syst Technol 2004;12(3):352e63.

[6] Serrao L, Onori S, Rizzoni G. ECMS as a realization of Pontryagin's minimum
principle for HEV control. In: Proc. Amer. Control conf. (ACC); 2009.
p. 3964e9.

[7] Li L, Yang C, Zhang Y, Song J. Correctional DP-based energy management
strategy of plug-in hybrid electric bus for city-bus route. IEEE Trans Veh
Technol 2015;64(7):2792e803.

[8] Murphey YL, Park J, Kiliaris L, Kuang ML, Masrur MA, Phillips AM, Wang Q.
Intelligent hybrid vehicle power control - part II: online intelligent energy
management. IEEE Trans Veh Technol 2013;62(1):69e79.

[9] Chen Z, Mi CC, Xu J, Gong X, You C. Energy management for a power-split
plug-in hybrid electric vehicle based on dynamic programming and neural
networks. IEEE Trans Veh Technol 2014;63(4):1567e80.

[10] Yu H, Tarsitano D, Hu X, Cheli F. Real time energy management strategy for a
fast charging electric urban bus powered by hybrid energy storage system.
Energy 2016;112:322e31.

[11] Lin CC, Peng H, Grizzle JW, Kang JM. Power management strategy for a parallel
hybrid electric truck. IEEE Trans Contr Syst Technol 2013;11(6):839e49.

[12] Johannesson L, Asbogard M, Egardt B. Assessing the potential of predictive
control for hybrid vehicle powertrains using stochastic dynamic program-
ming. IEEE Trans Intell Transport Syst 2007;8(1):71e83.

[13] Moura SJ, Fathy HK, Callaway DS, Stein JL. A stochastic optimal control
approach for power management in plug-in hybrid electric vehicles. IEEE
Trans Contr Syst Technol 2011;19(3):545e55.

[14] Xie S, Hu X, Xin Z, Li L. Time-efficient stochastic model predictive energy
management for a plug-in hybrid electric bus with adaptive reference state-
of-charge advisory. IEEE Trans Veh Technol 2018;67(7):5671e82.

[15] Kim N, Cha S, Peng H. Optimal control of hybrid electric vehicles based on
Pontryagin's minimum principle. IEEE Trans Contr Syst Technol 2011;19(5):
1279e87.

[16] Onori S, Tribioli L. Adaptive Pontryagin's Minimum Principle supervisory
controller design for the plug-in hybrid GM Chevrolet Volt. Appl Energy
2015;147:224e34.

[17] Xie S, Li H, Xin Z, Liu T, Wei LA. Pontryagin minimum principle-based adaptive
equivalent consumption minimum strategy for a plug-in hybrid electric bus
on a fixed route. Energies 2017;10(9):1379e99.
[19] Unger J, Kozek M, Jakubek S. Nonlinear model predictive energy management
controller with load and cycle prediction for non-road HEV. Contr Eng Pract
2015;36:120e32.

[20] Musardo C, Rizzoni G, Guezennec Y, Staccia B. A-ECMS: an adaptive algorithm
for hybrid electric vehicle energy management. Eur J Contr 2005;11(4):
509e24.

[21] Tulpule P, Marano V, Rizzoni G. Energy management for plug-in hybrid
electric vehicles using equivalent consumption minimization strategy. Int J
Electric and Hybrid Veh 2010;2(4):329e50.

[22] Sivertsson M, Eriksson L. Design and evaluation of energy management using
map-based ECMS for the PHEV benchmark. Oil Gas Sci Technol 2015;70(1):
195e211.

[23] Onori S, Serrao L. On Adaptive-ECMS strategies for hybrid electric vehicles. In:
Proceedings of the international scientific conference on hybrid and electric
vehicles; 2011. p. 6e7.

[24] Sivertsson M, Eriksson L. Design and evaluation of energy management using
map-based ECMS for the PHEV benchmark. Oil Gas Sci Technol 2015;70(1):
195e211.

[25] Feng T, Yang L, Gu Q, Hu Y, Yan T, Yan B. A supervisory control strategy for
plug-in hybrid electric vehicles based on energy demand prediction and route
preview. IEEE Trans Veh Technol 2015;64(5):1691e700.

[26] Sun C, Sun F, He H. Investigating adaptive-ECMS with velocity forecast ability
for hybrid electric vehicles. Appl Energy 2017;185:1644e53.

[27] Zhang Y, Chu L, Fu Z, Xu N, Guo C, Zhang X, Wang P. Optimal energy man-
agement strategy for parallel plug-in hybrid electric vehicle based on driving
behavior analysis and real time traffic information prediction. Mechatronics
2017;46:177e92.

[28] Yang C, Du S, Li L, You S, Yang Y, Zhao Y. Adaptive real-time optimal energy
management strategy based on equivalent factors optimization for plug-in
hybrid electric vehicle. Appl Energy 2017;203:883e96.

[29] Zhang F, Liu H, Hu Y, Xi J. A supervisory control algorithm of hybrid electric
vehicle based on adaptive equivalent consumption minimization strategy
with fuzzy PI. Energies 2016;9:919.

[30] Tian H, Li SE, Wang X, Huang Y, Tian G. Data-driven hierarchical control for
online energy management of plug-in hybrid electric city bus. Energy
2018;142:55e67.

[31] Wang J, Xie S, Liu X, Yuan Y, Li B, Li S, et al. Research and development of a
chassis for the extended-range and plug-in commercial vehicle. Shaanxi
automobile Group Research Report. 2015 [In Chinese].

[32] Johnson VH. Battery performance models in ADVISOR. J Power Sources
2002;110(2):321e9.

[33] Paganelli G, Delprat S, Guerra TM, Rimaux J, Santin JJ. Equivalent consumption
minimization strategy for parallel hybrid powertrains. Vehicular Technology
Conference, 2002. VTC Spring 2002. In: IEEE 55th. IEEE, vol. 4; 2002.
p. 2076e81.

[34] Serrao L, Onori S, Rizzoni G. A comparative analysis of energy management
strategies for hybrid electric vehicles. J Dyn Syst Meas Contr 2011;133(3):
031012.

[35] Wang X, Shi F, Yu L, Li Y. Case study of Matlab neural network. Beijing: Bei-
hang University Press; 2016 [In Chinese)].

[36] Haykin S. Neural networks: a comprehensive foundation. US: Pearson Edu-
cation Press; 1997.

http://refhub.elsevier.com/S0360-5442(18)31675-X/sref1
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref1
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref1
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref1
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref2
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref2
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref2
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref3
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref3
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref3
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref3
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref3
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref4
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref4
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref4
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref5
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref5
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref5
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref6
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref6
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref6
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref6
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref7
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref7
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref7
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref7
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref8
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref8
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref8
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref8
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref9
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref9
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref9
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref9
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref10
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref10
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref10
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref10
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref11
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref11
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref11
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref12
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref12
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref12
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref12
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref13
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref13
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref13
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref13
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref14
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref14
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref14
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref14
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref15
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref15
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref15
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref15
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref16
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref16
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref16
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref16
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref17
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref17
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref17
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref17
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref18
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref18
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref18
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref19
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref19
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref19
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref19
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref20
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref20
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref20
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref20
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref21
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref21
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref21
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref21
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref22
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref22
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref22
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref22
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref23
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref23
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref23
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref23
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref24
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref24
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref24
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref24
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref25
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref25
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref25
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref25
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref26
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref26
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref26
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref27
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref27
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref27
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref27
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref27
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref28
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref28
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref28
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref28
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref29
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref29
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref29
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref30
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref30
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref30
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref30
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref31
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref31
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref31
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref32
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref32
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref32
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref33
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref33
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref33
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref33
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref33
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref34
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref34
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref34
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref35
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref35
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref36
http://refhub.elsevier.com/S0360-5442(18)31675-X/sref36

	An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles
	1. Introduction
	2. PHEV modeling
	2.1. Battery model
	2.2. Vehicle dynamics

	3. Relationship between PMP and ECMS
	3.1. PMP
	3.2. ECMS
	3.3. Relationship between both methods

	4. Acquisition of network training data
	4.1. Samples of driving cycle
	4.2. Solution of PMP
	4.3. Results and analysis

	5. Neural network modeling
	5.1. Neural network structure
	5.2. Neural network training

	6. ANN-ECMS
	7. Results and discussion
	8. Conclusions
	Acknowledgements
	References


