
Computation Offloading and Resource Allocation
for Low-power IoT Edge Devices

Farzad Samie1 , Vasileios Tsoutsouras2 , Lars Bauer1 , Sotirios Xydis2 , Dimitrios Soudris2 , Jörg Henkel1

1 Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany
2 Microprocessors and Digital Systems Laboratory, ECE, National Technical University of Athens, Greece

Abstract—With the proliferation of portable and mobile IoT
devices and their increasing processing capability, we witness
that the edge of network is moving to the IoT gateways and
smart devices. To avoid Big Data issues (e.g. high latency of
cloud based IoT), the processing of the captured data is starting
from the IoT edge node. However, the available processing
capabilities and energy resources are still limited and do not
allow to fully process the data on-board. It calls for offloading
some portions of computation to the gateway or servers. Due
to the limited bandwidth of the IoT gateways, choosing the
offloading levels of connected devices and allocating bandwidth
to them is a challenging problem.

This paper proposes a technique for managing computation
offloading in a local IoT network under bandwidth constraints.
The existing bandwidth allocation and computation offloading
management techniques underutilize the gateway’s resources
(e.g. bandwidth) due to the fragmentation issue. This issue
stems from the discrete coarse-grained choices (i.e. offloading
levels) on the IoT end nodes. Our proposed technique addresses
this issue, and utilizes the available resources of the gateway
effectively. The experimental results show on average 1 hour
(up to 1.5 hour) improvement in battery life of edge devices.
The utilization of gateway’s bandwidth increased by 40%. 1

Keywords-Internet of Things, IoT, Edge Computing, Re-
source Allocation, Computation Offloading

I. INTRODUCTION

Recent advances in technologies of sensors, wireless

communication and embedded processors have enabled the

design of small-size low-power and low cost devices that

can be networked or connected to the Internet. These are

the key components of the emerging paradigm of Internet-

of-things (IoT) [1, 2]. IoT is covering an ever increasing

range of applications, such as healthcare monitoring, smart

home, smart building, smart city, etc.

One of the challenges in IoT is to process and analyze

a huge amount of data from heterogeneous devices. The

massive number of IoT devices will lead to a rapid explosion

of the scale of collected data. This challenge has two aspects:

1) Big Data [3], and 2) diverse application requirements

of IoT [4]. Handling all these collected data with central

cloud servers is inefficient, and even sometime is unfeasible,

because of:

• the limitation of computing, communication, and storage

resources,

• the overall energy and cost,

1This research has been partially supported by the E.C. funded program
AEGLE under H2020 Grant Agreement No: 644906

 L
at

en
cy

(c
om

m
un

ic
at

io
n

+
co

m
pu

ta
tio

n)

Io
T

 E
d

g
e

d
ev

ic
es

g
at

ew
ay

s

F
o

g
s

&
cl

o
u

d
le

ts

C
lo

u
d

s

Pr
oc

es
si

ng
 C

ap
ab

ili
ty

 Predictability

Q
uantity

Figure 1: Computation layers in IoT systems and their
properties [1]

• and unreliable latency [5, 6].

To deal with these issues, the task of processing the data

is pushed to the network edges introducing concepts of Fog

computing, cloudlet, and Mobile Edge Computing (MEC)

[6, 7, 8, 9]. According to a report by IDC Futurescape,

around 40% of IoT-generated data will be processed, stored,

and acted upon close to the edge of network [10]. Edge

computing (EC) enables analysis of information processing

at the source of the data which sometimes is also referred

to as in-network or on-board processing.

EC not only reduces the huge workload of central com-

puting servers (e.g. clouds), but also decreases the latency

of data processing which includes the network latency for

sending/receiving the required data plus the response time

for performing the task on the cloud server. Figure 1 shows

the hierarchical layers of computation in an IoT system [1].

As we move to the higher levels (i.e. from edge devices

to the cloud servers), the processing capability increases.

However, the latency would increase due to two factors:

1) network delay and 2) more workload on the servers.

Therefore, the predictability for the real-time properties

would decrease.

With the proliferation of portable and mobile devices,

and increasing processing capabilities of endpoints in IoT,

978-1-5090-4130-5/16/$31.00 c©2016 IEEE

we envision that the edge of the network is moving to the

gateways and smart devices [11, 12]. We are witnessing a

trend towards processing the captured data at the IoT edge

nodes, even when data acquisition rate is relatively high,

such as in healthcare monitoring applications which involve

biomedical signals [13, 14], or structural health monitoring

applications [15].

Many IoT devices are battery-operated or have limited

energy sources due to either their portability requirements, or

the lower cost of installation, deployment and maintenance.

This limitation imposes the following two constraints on the

edge devices: 1) processing capability, 2) communication

bandwidth. Due to the first constraint, some of the IoT

applications are not able to autonomously process the whole

collected data at the edge devices. Hence, a portion of the

processing task must be offloaded to the more powerful lay-

ers (e.g. gateways, Fogs or cloudlets) [14, 13]. However, to

offload the computation, the raw data or partially-processed

data must be transmitted to the gateway, and this is where

the bandwidth constraint comes into play.

Bandwidth Constraint: Limited energy resources on IoT

edge nodes mandate low-power wireless technologies. One

of the main limitations of low power wireless technologies

is their low data rate and throughput. Despite the recent

and rapid enhancements in these wireless technologies and

protocols, the throughput is still low. Table I summarizes

the throughput of the most popular low-power IoT wireless

technologies including Bluetooth low energy (BLE), ANT+,

ZigBee, low power WiFi (also known as HaLow), Low

Power Wide Area (LPWAN) technologies which include

LoRa, SigFox, etc. [16]. It is worth mentioning that the

throughput may decrease further in case of interference with

other surrounding wireless radios [1].

Table I: Throughput of IoT wireless technologies [17, 18]

Wireless BLE ANT+ ZigBee HaLow LoRa SigFox
Throughput
[Kbps] 270 20 120 150 50 <10

IoT envisions a model in which IoT edge nodes are

connected to the Internet through gateways, as illustrated

in Figure 1. A gateway (i) enables seamless integration of

low-power wireless networks of IoT edge nodes with other

networks (e.g. cellular network, LAN, etc. [19]) and (ii)

provides local data processing service at the edge of the

network [20] in the EC paradigm. Although the gateway

might exploit a high-bandwidth connection to the Internet

(i.e. cellular or WiFi), its interface with IoT edge nodes is

still a low-power wireless connection such as LoRa, BLE

or ZigBee, which have a low bandwidth (see Figure 1 and

Table I).

The limited bandwidth of the gateway is usually shared

among multiple IoT edge nodes, which introduces the band-

width allocation as a challenge in IoT, especially when

video, sound, or some bio-medical signals are involved. The

bandwidth demand of IoT edge nodes can be reduced by

novel compression techniques [14, 21] or service quality

adaptation [22]. However, the most effective approach would

be processing the data partially on the IoT devices and

offload the rest of computation to the gateway or a more

resourceful device (e.g. Fogs, cloudlets, could servers).

Although there are several approaches for computation

offloading and bandwidth allocation on the gateway in the

domain of IoT and MEC [22, 23], they have not addressed

the fragmentation issue: Since the offloading levels on

the IoT edge nodes are discrete and coarse-grained, the

resources on the gateway (e.g. bandwidth) will be underuti-

lized. The reason is that the remaining amount of resources

may not be enough for the IoT devices to change their

offloading level, which would result in unused resources on

the gateway. We refer to this phenomena as fragmentation

issue.

In this paper we study the problem of computation

offloading (as an essential part of edge computing) from

IoT edge nodes under communication bandwidth constraints.

We address the fragmentation issue by presenting a tech-

nique that allows IoT edge nodes to utilize the available

resources on the gateway to their full potential, even if

the offloading levels are coarse-grained. Depending on the

desired optimization goal, this technique makes the system

more efficient.

Paper structure: in Section II, we briefly review related

work and background. Section III presents the problem

formulation. After that, we provide a detailed presentation

of our novel solution in Section IV. Experimental results

and evaluations are presented and discussed in Section V ,

while we conclude the paper in Section VI.

II. RELATED WORK

In [23], a decentralized game theoretic approach for

computation offloading is presented. The wireless channel

is considered as the scarce and shared resource. In this

approach the decision is between fully offloading the compu-

tation or fully processing on-board. The proposed approach

cannot address the fragmentation issue.

Samie et al. [22] have proposed a service quality and

computation offloading technique for the resource-constraint

IoT edge nodes and gateways. However, in their proposed

solution, the gateway might be underutilized due to frag-

mentation.

A joint optimization of bandwidth and computational

resources for computation offloading in a dense deployment

scenario is presented in [24], which considers the presence

of radio interference. The proposed solution is however

unaware of fragmentation issues.

Several other research works have been conducted to

address the problems of edge computing [25], but none

of them has addressed the fragmentation issue in shared

resources.

III. SYSTEM MODEL

We consider a local network of N IoT edge nodes

I = {I1, · · · , IN} connected to a gateway. IoT device Id
is described by several parameters including:

Id =
(
Qd, Rd

)
, d = 1, · · · , N (1)

• Qd denotes the number of different computation off-
loading levels that the IoT device offers. Some of the ap-

plications can be partitioned into several pipeline stages,

each of which processes the data received from the

previous stage and feeds the results to the next stage

(if any). As an example, consider an IoT-based heart

monitoring device. In its first stage, it can perform some

pre-processing on the data, e.g. applying a filter on it. In

the second stage, it can apply a transform operation, e.g.

Digital Wavelet Transform (DWT). And in the last stage,

it extracts the crucial complexes and features [22].

Even if the application does not support such a pipeline

structure, it has at least two computation offloading levels:

(i) Level 1 submits the raw data without on-board process-

ing, (ii) Level 2 indicates ‘no computation offloading’,

thus fully processes the data and only transmits the

results.

• Rd denotes the set of possible transmission data rates of

device d for the offloading levels. They depend on the

input data rate and data resolution of fixed value, as well

as the computation offloading strategy of the device.

The transmission data rate rdi
, which is associated with

the offloading level i, corresponds to the share of captured

data that is offloaded plus the (intermediate) results from

the partial on-board processed data.

Rd =
{
rdi

| i ∈ [1, Qd]
}

(2)

The gateway connects these devices to the Internet. It

receives data from IoT edge devices, then either processes

it and transmits the final results to the Internet or directly

relays the data to another processing unit (e.g. cloudlets,

Fogs, cloud servers [20, 1, 6]). RG is the total available

bandwidth of the gateway to receive data from IoT devices.

The effect of environment and surrounding devices (e.g.

external interference) on the transmission can be modeled

in RG, Rd and other parameters (e.g. energy consumption).

However, this is beyond the scope of this work.

Generally, the IoT local network (i.e. gateway and edge

nodes) has an objective and optimization goal depending on

the application. It introduces an optimization problem such

as minimizing the overall energy consumption, maximizing

the overall service quality [22], maximizing the battery life

of edge nodes, etc. subject to resource constraints such as

bandwidth, processing power, etc. [22].

These problems can be formulated as Eq. (3) to (4). The

offloading level i for each IoT device d must be determined

at run-time, such that the constraints are fulfilled (Eq. (4))

and the desired objective is maximized/minimized (Eq. (3)).

Optimization goal:

maximize (objective)

or

minimize (objective)

(3)

Constraints:

∑
∀d rdi

≤ RG

other contraints (if any)
(4)

These problems belong to the class of generalized as-
signment problems. Particularly, they can be formulated as

a multiple choice knapsack problem (MCKP), where the

gateway corresponds to the ‘knapsack’, the bandwidth or

other constraints correspond to the ‘weight’ or ‘volume’, and

the offloading levels of each IoT edge node correspond to

the class of items from which one and only one item must

be picked. Even though MCKP is known to be NP-hard,

pseudo-polynomial solutions exist. One of the shortcomings

of the solutions to the current setup is the underutilized

resources of the gateway due to the fragmentation issue (see

Section I).
For the proof-of-concept, we consider a problem in this

work with the optimization goal to maximize the battery

life among devices (Eq. (5)), and its constraint is the

gateway’s bandwidth (Eq. (6)). It should be emphasized
that our proposed solution is not restricted to this problem
formulation, and it is applicable to any problem that can be
modeled as Eq. (3) and (4). For our considered problem, we

need to use these parameters on the IoT edge nodes:
• Ed is the remaining energy in the battery of device d.

• pdi
is the overall power consumption of device d operat-

ing at offloading level i. It includes the power consump-

tion for on-board processing as well as data transmission

(at the rate rdi
).

• bdi
denotes the estimated battery lifetime of IoT device

d at offloading level i. This parameter depends on (i)

its remaining energy and (ii) its total power consumption

rate: bdi =
Ed

pdi
.

Optimization goal: maximize(min
∀d

bdi
) (5)

Bandwidth constraint:
∑

∀d rdi
≤ RG (6)

By selecting the computation offloading level on each IoT

edge node, not only its bandwidth demand but also its power

consumption is changed and consequently, its expected

battery life will change. Figure 2 shows the problem model

that we consider in this work. Figure 2a shows different

offloading levels of one IoT edge node (level 1 being to

offload all data, level Qd being to process all data on-

board), while Figure 2b illustrates the bandwidth allocation

and offloading management with respect to the gateway’s

constraint.

IV. OUR PROPOSED SOLUTION

In order to address the fragmentation problem and under-

utilization of gateway’s resources, we suggest a solution to

extend the on-board processing model. It’s worth to note that

this solution does not need any modification or extension in

(a) Offloading levels of an IoT device
and their power consumption

(b) Problem model: choosing offloading level for each device, meeting the bandwidth
constraint of the gateway

Figure 2: The offloading levels of a device, and the problem model of the local network

the pipeline structure of the software application. As men-

tioned, the fragmentation issue stems from the discreteness

of choices. This issue is more severe when the number of

offloading levels is small and the difference between data

transmission rate of offloading levels is high (e.g. when the

IoT application only supports two offloading levels: raw data

transmission and fully process the data).

A. Offloading Levels: discrete to continuous transform

The key idea is to regularly switch between different

offloading levels at IoT devices such that it appears to the

gateway as if the IoT device would operate at an intermediate

(practically not existing) offloading level.

Property 1: Let us consider two offloading levels i and j
with data transmission rates of rdi and rdj where rdi ≤rdj .

For any r′d, rdi
≤ r′d ≤ rdj

, the device d can operate in

a way such that its data transmission rate equals r′d from

gateway’s and high-level (e.g. cloud) perspective.

Proof: Consider a time frame of T . If the device oper-

ates at the offloading level j for t1 time, then changes the

level and operates at the offloading level i for (T − t1) time,

then the average transmission rate, and power consumption

are respectively:

r′d =
t1×rdj

+ (T−t1)×rdi

T
p′d =

t1×pdj
+ (T−t1)×pdi

T
(7)

By choosing the proportion of t1 and (T−t1), the IoT device

can imitate any intermediate data rate r′d, or intermediate

offloading level with (r′d, p
′
d).

The detailed scheme for the IoT device is as follows: It

starts operating at j-th level (which has higher transmission

rate compared to i-th level). It keeps working at this con-

figuration for t1 time. However, it transmits its data to the

gateway at the rate of r′d (r′d ≤ rdj
). It buffers the rest of

produced data (i.e. rdj − r′d) on the memory. Then after t1,

it switches to the i-th level whose data-generation rate is rdi

(rdi
≤ r′d). It still transmits the data to the gateway at the

rate of r′, which consists of previously buffered data and

newly generated data. Therefore, while the device is only

operating on i-th and j-th offloading levels, the gateway

sees the device operating at an intermediate configuration

mode with (r′d, p
′
d).

T
t1

Figure 3: Switching between offloading levels 2 and 3

Example 1: Figure 3 illustrates an example for our

proposed mechanism. Let us assume the IoT device is

switching between these two offloading levels: (i) Level 2

indicates data transmission at the rate of 0.8 Kbps, (ii) Level

3 indicates data transmission at the rate of 0.3 Kbps. By

spending 0.6 s at level 1 and 0.4 s at level 2, the device

can deliver data rate at (0.8 [Kbps]×0.6 + 0.3 [Kbps] ×
0.4)/(0.6 + 0.4) = 0.6 [Kbps].

Given r′d as the desired data transmission rate of device

d, the device calculates the proportion of t1 and (T−t1) as

follows:
t1

T − t1
=

r′d − rdi

rdj
− r′d

(8)

where rdi
and rdj

are the closest data transmission rates

among offloading levels such that rdi < r′d < rdj .

Buffer Size: The size of required memory to buffer the

data depends on 1) the time spent in higher offloading level

(i.e. t1), and 2) its surpassed data. It can be calculated as

follows by substituting the value of r′d from Eq. (7):

F = t1×(rdj
− r′d) =

t1.(T − t1)

T
× (rdj

− rdi
) (9)

Given a fixed time interval T , the maximum size of buffer

De
vi

ce
’s

Po
w

er

Figure 4: Piecewise-linear function to select the contin-
uous allocated bandwidth of an IoT edge node

happens when the desired data transmission rate is r′d =
1
2 (rdi + rdj) which corresponds to t1 = T

2 . In this case, the

buffer size equals F = T
4 × (rdj

− rdi
).

B. Bandwidth Allocation & Offloading Management

Although the required information about offloading op-

tions, power consumption and remaining energy is dis-

tributed across the IoT devices, the final decision on band-

width allocation is made on the gateway. Each device sends

the following parameter values to the gateway and updates

them once they are changed: Ed and {(rdi
, pdi

)}1≤i≤Qd
.

In most application scenarios (if not all of them), the rdi

parameter is a fixed value as it depends on the application’s

pipeline structure, which is also fixed. However pdi
may

change over time due to several reasons: the effect of

interference on the data transmission cost is one of them.

Finally, Ed changes due to energy consumption or battery

recharge.

Once the gateway receives these parameters from the

devices, it forms a piecewise-linear continuous function

using (r, p) pairs for each device, as shown in Figure 4. For

each device, d, the gateway selects a transmission rate r′d in

the range [rQd
r1]. It corresponds to a power consumption

p′d, which is found using the piecewise-linear function (see

Figure 4). The selection of r′d is toward maximizing the

battery lifetime. A simple implementation for finding the

optimal allocation is inspired by the gradient projection
method, used in optimization algorithms. It starts from an

initial solution and converges to the optimum solution after

a limited number of iterations.

The iterative bandwidth allocation algorithm, executed on

the gateway, is presented in Algorithm 1. In the initial solu-

tion, the gateway gives each device its minimum bandwidth

demand (i.e. min(rdi
), 1 ≤ i ≤ Qd), as shown in Line 1.

Then it calculates the battery life of each device under

this configuration (i.e. bdi
= Ei/pdi

). The gateway also

calculates its remaining bandwidth, R′ = RG − ∑
∀d(rdi)

(Line 3). The remaining bandwidth must be allocated to the

devices, step by step, while prioritizing the devices with

lower battery life.

At each iteration, the gateway finds the devices with the

lowest and the second lowest battery life (let us denote

them respectively by d∗, d+, as shown in Lines 5-6). Then

gateway checks if the battery life of d∗ can be extended by

Algorithm 1: Iterative BW Allocation on the Gateway

Procedure Initialize()
1 for all device: allocate minimum bandwidth
2 for all device: calculate bdi
3 Calculate R′ = RG−∑

∀d(allocted BW) // the remaining BW
end
Procedure Iterate()

4 while R′ > 0 do // gateway still has BW to allocate
5 d∗ ← device with minimum battery
6 d+ ← device with second minimum battery
7 if d∗ benefits from more BW then
8 if batt. life of d∗ != batt. life of d+ then
9 p∗ = E∗

b+

10 r′d ← corresponding BW to p∗
11 R′ ← R′ − r′d
12

else
13 Increase allocated BW of d∗ by Δ
14 R′ ← R′ −Δ

end
else

15 exclude it in the next iteration
end

end
end

allocating more bandwidth to it (Line 7). If not, gateway

excludes this device at next iterations (Line 15). Otherwise,

it calculates the power consumption for d∗ which makes its

battery life equal to battery life of d+ (i.e. p∗ = E∗/b+, see

Line 9). It allocates the bandwidth which would result to

closest power consumption to p∗ (Line 10). In cases that b∗

and b+ are close, the gateway increases the allocated band-

width of d∗ by Δ, which represents the minimum amount

of bandwidth that can be given to or taken away from

an IoT device (Lines 13-14). It iteratively keeps repeating

this procedure until the remaining bandwidth, R′ is totally

consumed.

V. EVALUATION AND RESULTS

To demonstrate the effectiveness of our proposed tech-

nique, we conducted some experiments based on a personal

health monitoring case-study. It includes real world mea-

surements on an actual IoT node and trace driven network

simulation to investigate the behavior of the whole system.

Setup: We consider the Intel Quark SoC as the core of

our IoT devices, which has been proposed and used for

wearable IoT devices. The gateway is assumed to exploit an

ARM Cortex-M3 processor. We assume BLE as the wire-

less connection between gateway and IoT devices. Power

consumption and throughput values of data transmission are

according to [17]. We choose a rechargeable Lithium-Ion

coin cell battery for IoT devices with nominal capacity of

420 mAh. Moreover, we consider a realistic discharge model

for the battery as [26] to evaluate the remaining energy at

runtime (i.e. Ed).

Application Scenario: We consider a health monitoring

application for ECG analysis. The captured signal from heart

activity is processed to detect abnormality or arrhythmia.

The analysis flow contains four main stages: (i) Filtering, (ii)

Segmentation & heart beat detection, (iii) Feature extraction,

Figure 5: Minimum battery life of IoT edge nodes with
our technique compared to the discrete configurations

Figure 6: Utilization of gateway’s bandwidth in our
technique compared to the discrete configurations
and (iv) Diagnosis & classification. We use real-world ECG

data recordings from MIT-BIH Arrhythmia Database [27]

which also provides annotations for the signals.

Results We implement our technique in a local IoT

network with varying number of edge nodes (i.e. from

2 to 10). We investigate the minimum battery life as

well as the utilization of bandwidth on gateway. Figure 5

shows the minimum battery life of our technique compared

to a technique with discrete configuration. Our technique

achieves on average 1 hour (up to 1.5 hour) improvement

in minimum battery lifetime which is attributed to complete

use of all available bandwidth of the Gateway in contrast to

the fragmented utilization of the discrete resource allocation

scheme (Figure 6).

VI. CONCLUSION

With the increasing processing capabilities of IoT edge

nodes, and proliferation of portable devices, we have wit-

nessed that computation is pushed to the smart devices and

gateways. This paper studies the computation offloading and

bandwidth allocation in local networks of IoT edge nodes.

We present a novel technique that allows the devices to uti-

lized the limited resources (e.g. gateway’s bandwidth) fully

and efficiently. Experimental results for a health monitoring

case study show up to 40% improvement in utilization of

gateway’s bandwidth. We achieve up to 1.5 hour improve-

ment in battery life of IoT edge devices.

REFERENCES

[1] F. Samie and L. Bauer and J. Henkel. IoT Technologies for Embedded
Computing: A Survey. In CODES+ISSS, 2016.

[2] L. Atzori and A. Iera and G. Morabito. The Internet of Things: A
survey. Computer networks, 54(15):2787–2805, 2010.

[3] I. Lee and K. Lee. The Internet of Things (IoT): Applications,
investments, and challenges for enterprises. Business Horizons, 2015.

[4] B. Zhang, N. Mor, J. Kolb, et al. The cloud is not enough: saving
IoT from the cloud. In USENIX Conference on Hot Topics in Cloud
Computing, pp. 21–21, 2015.

[5] R. Want and B. N. Schilit and S. Jenson. Enabling the internet of
things. IEEE Computer, 48(1):28–35, 2015.

[6] O. Salman and I. Elhajj and A. Kayssi et al. Edge computing enabling
the Internet of Things. In WF-IoT, pp. 603–608, 2015.

[7] A. Ahmed and E. Ahmed. A survey on mobile edge computing. In
Int’l Conference on Intelligent Systems and Control (ISCO), 2016.

[8] N. Fernando and S. W. Loke and W. Rahayu. Mobile cloud comput-
ing: A survey. Future Generation Computer Systems, 29(1):84–106,
2013.

[9] W. Shi, J. Cao, and Q. Zhang, et al. Edge computing: Vision and
challenges. IEEE Internet of Things Journal, 2016.

[10] C. Raphael. Why edge computing is crucial
for the IoT. Online: http://www.rtinsights.com/
why-edge-computing-and-analytics-is-crucial-for-the-iot/, 2016.

[11] T. Zachariah, N. Klugman, B. Campbell, et al. The Internet of
Things has a gateway problem. In Mobile Computing Systems and
Applications (HotMobile), pp. 27–32, 2015.

[12] L. Catarinucci, D. De Donno, L. Mainetti, et al. An IoT-aware
architecture for smart healthcare systems. IEEE Internet of Things
Journal, 2012.

[13] R. Braojos, I. Beretta, and J. Constantin, et al. A wireless body sensor
network for activity monitoring with low transmission overhead.
In IEEE International Conference on Embedded and Ubiquitous
Computing (EUC), pp. 265–272, 2014.

[14] D. Bortolotti, M. Mangia, A. Bartolini, et al. Energy-aware bio-signal
compressed sensing reconstruction on the WBSN-gateway. IEEE
Transactions on Emerging Topics in Computing, 2016.

[15] Sensors to Support the IoT for Infrastructure Monitoring: Technology
and Applications for Smart Transport/Smart Buildings, 2015.

[16] M. S. Mahmoud and A. A. Mohamad et al. A study of efficient power
consumption wireless communication techniques/modules for internet
of things (IoT) applications. Advances in Internet of Things, 2016.

[17] P. Smith. Comparing low-power wireless technologies. Tech Zone,
Digikey Online Magazine, Digi-Key Corporation, 2011.

[18] Multitech. Introduction to LoRa. Online: http://www.multitech.net/
developer/software/lora/introduction-to-lora/.

[19] Q. Zhu, R. Wang, and Q. Chen, et al. IoT gateway: Bridging
wireless sensor networks into internet of things. In Int’l Conference
on Embedded and Ubiquitous Computing (EUC), pp. 347–352, 2010.

[20] T. N. Gia, M. J. A.-M. Rahmani, and T. Westerlund, et al. Fog
computing in healthcare Internet-of-Things: A case study on ECG
feature extraction. In Int’l Conf. on Computer and Information
Technology (CIT), pp. 356–363, 2015.

[21] F. Samie and L. Bauer and J. Henkel. An approximate com-
pressor for wearable biomedical healthcare monitoring systems. In
CODES+ISSS, pp. 133–142, 2015.

[22] F. Samie, V. Tsoutsouras, S. Xydis, et al. Distributed QoS Man-
agement for Internet of Things under Resource Constraints. In
CODES+ISSS, 2016.

[23] X. Chen. Decentralized computation offloading game for mobile cloud
computing. IEEE Transactions on Parallel and Distributed Systems,
26(4):974–983, 2015.

[24] S. Sardellitti and G. Scutari and S. Barbarossa. Joint optimization of
radio and computational resources for multicell mobile-edge comput-
ing. IEEE Transactions on Signal and Information Processing over
Networks, 1(2):89–103, 2015.

[25] Y. Mao and J. Zhang. Dynamic computation offloading for mobile-
edge computing with energy harvesting devices. IEEE Journal of
Solid-State Circuits, 51(3):712–723, 2016.

[26] C. Zhu and X. Li and L. Song et al. Development of a theoretically
based thermal model for lithium ion battery pack. Journal of Power
Sources, 223:155–164, 2013.

[27] A. L. Goldberger, L. A. Amaral, L. Glass, et al. Physiobank,
physiotoolkit, and physionet components of a new research resource
for complex physiologic signals. Circulation, 101(23), 2000.

