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Abstract—Individuals (and their family members) share (partial) genomic data on public platforms. However, using special

characteristics of genomic data, background knowledge that can be obtained from the Web, and family relationship between the

individuals, it is possible to infer the hidden parts of shared (and unshared) genomes. Existing work in this field considers

simple correlations in the genome (as well as Mendel’s law and partial genomes of a victim and his family members). In this

paper, we improve the existing work on inference attacks on genomic privacy. We mainly consider complex correlations in the

genome by using an observable Markov model and recombination model between the haplotypes. We also utilize the

phenotype information about the victims. We propose an efficient message passing algorithm to consider all aforementioned

background information for the inference. We show that the proposed framework improves inference with significantly less

information compared to existing work.
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1 INTRODUCTION

SUBSTANTIAL progress has been achieved towards reduc-
ing the cost of DNA sequencing. As a consequence,

research in genomics has gained speed towards paving the
way to personalized (genomic) medicine, and geneticists
now need large collections of human genomes to further
increase this speed. Furthermore, individuals are using
their genomes to learn about their health, their origins,
and even their (genetic) compatibilities with potential
partners. This trend has led to the launch of health-
related websites and online social networks (OSNs), in
which individuals can share their genomic data (e.g.,
OpenSNP or 23andMe). There are, however, significant
risks in sharing this genomic data which carries a lot of
sensitive information about its owner. By analyzing the
DNA of an individual, it is now possible to learn about
his disease predispositions (e.g., for Alzheimer’s), ances-
tors, and physical attributes. This threat to genomic pri-
vacy is magnified by the fact that a person’s genome is
correlated to his family members’ genomes, thus leading
to interdependent privacy risks.

Individuals (either directly or indirectly) share vast
amount of personal information on the Web, and some of
this information can be used to infer their genomic data.
Hence, there is a need to clearly understand the nature and

extent of privacy risks on the genomic data of individuals
considering publicly available information on the Web. In
this paper, we propose to establish a unifying framework to
quantify the genomic privacy of individuals using all pub-
licly available resources.

Humbert et al. previously proposed a framework to
quantify genomic privacy of individuals considering (i) par-
tial genomic data that is publicly shared by the individual
and his family members, (ii) simple pairwise correlations
in the genome (i.e., linkage disequilibrium), and (iii) other
public genomic knowledge (e.g., minor allele frequen-
cies) [1]. In a recent study, Samani et al. showed that higher
order correlations in the genome actually enables stronger
inference power compared to the pairwise correlations [2].
However, in that work, authors did not study the implica-
tions of this result on kin genomic privacy.

Motivated by these recent studies, in this work, our two
main contributions are showing the extend of privacy risk
on the individuals and their family members due to (i)
complex correlations (i.e., high order correlations) in the
genome, and (ii) publicly available phenotype information
(e.g., physical traits or disease information) about the indi-
viduals. The main objective of this work is to develop a new
unifying framework for quantification of genomic privacy
of individuals. Similar to the previous work, we use a
graph-based, iterative algorithm to build this framework
efficiently. Our results show that the attacker’s inference
power (on the genomic data of individuals) significantly
improves by using complex correlations and phenotype
information (along with information about their family
bonds). We believe that this paper would be a significant
step towards establishing a greater understanding of the
privacy risks on the genomic data of individuals.
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The rest of the paper is organized as follows. In the next
section, we summarize the existing work on genomic pri-
vacy. In Section 3, we provide brief background information
about genomics and the belief propagation algorithm
(which is the core of the proposed framework). In Section 4,
we briefly summarize the work by Humbert et al., as we
build our framework on top of this previous work. In
Section 5, we describe the proposed scheme in detail. In
Section 6, we evaluate the proposed scheme using real geno-
mic data. Finally, in Section 7, we conclude the paper.

2 RELATED WORK

In the last few years, there have been several works address-
ing the security and privacy concerns on genomic data [3]. A
large part of the related work on genomic privacy focuses on
the problem of private pattern-matching and the comparison
of genomic sequences. For example, Troncoso-Pastoriza
et al. propose an algorithm for private string searching on
the DNA sequence by using a finite state machine [4]. Their
work is then revisited by Blanton et al., who develop an effi-
cient method for sequence comparison using garbled cir-
cuits [5]. Furthermore, Baldi et al. make use of private-set
intersection and present an effective algorithm for privacy-
preserving substring matching on DNA sequences [6]. Chen
et al. propose a privacy-preserving method to align short
sequences to a reference genome by outsourcing the compu-
tation to the cloud [7]. Jha et al. propose a privacy-preserving
implementation of fundamental genomic computations
for sequence alignment [8]. Furthermore, Naveed et al. pro-
posed a scheme based on functional encryption for privacy-
preserving similarity test on genomic data [9]. To hide access
patterns to genomic data that is stored at a cloud environ-
ment, Karvelas et al. proposed using the ORAM mecha-
nism [10]. Recently, Wang et al. proposed an efficient
privacy-preserving protocol to find genetically similar
patients in a distributed environment [11].

Another line of investigation is represented by works
focusing on private clinical genomics. De Cristofaro et al.
propose a secure protocol between two parties for testing
genomic sequences without the leaking of any private infor-
mation about the genomic sequence or the nature of the
test [12]. Wang et al. propose techniques for computing on
genomic data by distributing the task between a data pro-
vider and consumer through program specialization [11].
Ayday et al. proposed a scheme to protect the privacy of
users’ genomic data while enabling medical units to access
the genomic data in order to conduct medical tests or to
develop personalized medicine methods [13].

A third area of interest addresses the problem of protect-
ing genomic privacy, while still allowing for both basic and
translational medical research on the data. It has been
shown that deanonymization is a serious threat for genomic
data [14], [15]. Thus, many solutions have been proposed
for privacy-preserving genomic research either by using sta-
tistical techniques (such as differential privacy) [16] or cryp-
tographic techniques [17].

Independent of these categories, Ayday et al. proposed a
technique for privacy-preserving storage and retrieval of
raw-genomic data [18] and Huang et al. proposed an infor-
mation-theoretical technique for secure storage of genomic
data [19]. In this paper, building on top of the previous work

on kin genomic privacy [1], we develop a unifying frame-
work for quantification of genomic privacy of individuals
notably by using complex correlations in the genome, family
bonds, and publicly available phototype information.

3 BACKGROUND

In this section we give a brief background on genomics and
the belief propagation algorithm.

3.1 Genomics

Single nucleotide polymorphism (SNP). Around 99.9 percent of
an individual’s genome is identical to the reference human
genome and the rest is human genetic variation. The most
common genetic variations in humans are the SNPs. SNP is
a variation in the genome in which a single nucleotide (A,
C, G, or T) differs between members of the same species or
paired chromosomes of an individual. There are usually
two different alleles (nucleotides) that are observed at a
SNP position; one is called the minor allele and the other is
the major allele. Furthermore, each SNP carries two alleles in
total. Hence, the content of a SNP position can be in one of
the following states: (i) BB (homozygous-major genotype), if
an individual receives the same major allele from both
parents; (ii) Bb (heterozygous genotype), if he receives a dif-
ferent allele from each parent (one minor and one major); or
(iii) bb (homozygous-minor genotype), if he inherits the
same minor allele from both parents (this is also shown in
Fig. 1(a)). For simplicity, in the rest of the paper, we denote
the value (content) of a SNP as the number of minor alleles
it carries. Thus, we denote BB as 0, Bb as 1 and bb as 2.

Reproduction: The Mendel’s first law, the Law of Segrega-
tion, states that a child’s SNPs are independent from his
ancestors’, given the SNPs of his parents. Each child inherits
one allele (nucleotide) of a SNP from his mother and the
other one from his father, and each allele is inherited with a
probability of 0.5. In [1] authors model this law by a func-
tion (introduced in Section 4) that simply considers the
Mendelian inheritance probabilities as in Fig. 1b. We also
use this inheritance information in this work.

Correlations in the genome: It is shown that SNPs on the
DNA sequence are correlated. For example, pairwise corre-
lations between the SNPs in the genome are referred to as
linkage disequilibrium (LD) [20]. In [1], the authors use the
LD values between the SNPs as an input to their inference
algorithm. In this work, we show that more complex, higher
order correlations in the genome threaten kin genomic pri-
vacy more than the pairwise correlations.

Phenotypes: Phenotypes are observable characteristics of
individuals (e.g., physical traits or diseases) that may be
related to both their genotype and the environment. For
example, SNP Rs12821256 on chromosome 12 is associated
with having blonde hair. If an individual has (C,C) nucleo-
tide pair for this SNP, he is 4 times more likely to have
blonde hair compared to other individuals. We use pheno-
type information of individuals to improve the inference
power of the proposed algorithm.

3.2 Belief Propagation

Belief propagation [21] is a message-passing algorithm for
performing inference on graphical models (e.g., Bayesian net-
works or Markov random fields). It is typically used to
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compute marginal distributions of unobserved variables con-
ditioned on the observed ones. Computingmarginal distribu-
tions is hard in general as it might require summing over an
exponentially large number of terms. The belief propagation
algorithm can be described in terms of operations on a factor
graph, a graphical model that is represented as a bipartite
graph. One of the two disjoint sets of the factor graph’s verti-
ces represents the (random) variables of interest, and the sec-
ond set represents the functions that factor the joint
probability distribution (or global function) of the variables
based on the dependencies between them. An edge connects
a variable node to a factor node if and only if the variable is an
argument of the function corresponding to the factor node.
The marginal distribution of an unobserved variable can be
exactly computed by using the belief propagation algorithm
if the factor graph has no cycles. However, the algorithm is
still well defined and often gives good approximate results
for factor graphs with cycles (as it has been observed in
decoding of LDPC codes) [22]. Belief propagation is com-
monly used in artificial intelligence and information theory.

4 QUANTIFYING KIN GENOMIC PRIVACY [1]

In [1], authors evaluate the genomic privacy of an individual
threatened by his relatives revealing their genomes. Focusing
on the SNPs in the genome, they quantify the loss in genomic
privacy of individuals when one ormore of their familymem-
bers’ genomes are (either partially or fully) revealed. They
design a reconstruction attack, in which they formulate the
SNPs, family relationships, and the pairwise correlations
(LD) between SNPs on a factor graph anduse the belief propa-
gation algorithm for inference. Then, using various metrics,
they quantify the genomic privacy of individuals and reveal
the decrease in their level of genomic privacy caused by the
published genomes of their familymembers. In the following,
we briefly summarize the framework of [1] as we build the
proposed scheme on top of this framework.

The goal of the adversary is to infer some targeted SNPs of
a member (or multiple members) of a targeted family. Let F be
the set of family members in the targeted family (whose fam-
ily tree is GF) and S be the set of SNP IDs (on the DNA
sequence), where jFj ¼ n and jSj ¼ m. Let also xi

j be the value
of SNP j (j 2 S) for individual i (i 2 F), where xi

j 2 f0; 1; 2g
(as discussed in Section 3.1). Also, X is an n�m matrix that
stores the values of the SNPs of all family members. Among
the SNPs in X, the ones whose values are unknown are in set
XU, and the ones whose values are known (by the adversary)
are in setXK. FRðxM

j ; xF
j ; x

C
j Þ is the function representing the

Mendelian inheritance probabilities (as in Fig. 1b), where
ðM;F;CÞ represent mother, father, and child, respectively.
Finally, P ¼ fpbi : i 2 Sg represents the set of minor allele
probabilities (orMAF) of the SNPs in S.

The adversary carries out a reconstruction attack to infer
XU by relying on his background knowledge, FRðxMj ; xF

j ;

xCj Þ, L1, P, and on his observation XK. The authors formulate

this reconstruction attack as finding the marginal probability
distributions of unknown variablesXU, and to run this attack
in an efficient way, they formulate the problem on a factor
graph and use the belief propagation algorithm for inference.
In this work, we formulate the attack by also considering
complex correlations in the genome and publicly available
phenotype information. We show that the inference attack is
significantly stronger when these additional factors are also
considered. In the following, we provide the details of the
proposed framework emphasizing the differences from [1].

5 PROPOSED FRAMEWORK

Our main objective is to develop a unifying framework for
the quantification of the genomic privacy of individuals

Fig. 1. (a) Mendelian inheritance for a child. (b) Inheritance probabilities for a SNP, given different genotypes for the parents. The probabilities of the
child’s genotype are represented in parentheses. (c) Inheritance probabilities for a SNP, given different genotypes for the child and the mother. The
probabilities of the father’s genotype are represented in parentheses (given the child and the father, the probabilities for themother are also the same).

1. L is a m�m matrix representing the pairwise linkage disequilib-
rium between each pair of SNPs. Instead of the LD values, we use
higher order correlations in this work for inference.
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using all available public data on the Web and background
knowledge on genomics. We assume that the attacker has
access to the following resources about the target individu-
als: (i) the partial genomic data of individuals (from public
genomic databases and genome sharing websites), (ii) phe-
notype information (physical characteristics) of individuals
from OSNs, (iii) health related information of individuals
from OSNs and health related social networks, and (iv) fam-
ily bonds of individuals (e.g., their family trees) from OSNs
or genealogy websites. Our proposed framework is also
sketched in Fig. 2.

The objective is to infer the missing parts of the
genomes of individuals in the target individuals set. For
this, we use family bonds between the individuals in the
target set, probabilistic relationship between the pheno-
type and genotype, similar relationship between diseases
and the genotype, and some genomic tools for inference
such as high order correlations in the genome and the
recombination model. To run this inference attack effi-
ciently, similar to the previous work, we rely on the belief
propagation algorithm on a factor graph. Then, we quan-
tify genomic privacy of individuals and show the risk for
each individual.

Constructing the Factor Graph: A factor graph is a
bipartite graph containing two sets of nodes (correspond-
ing to variables and factors) and edges connecting these
two sets. We form a factor graph by setting a variable node
for each SNP xi

j (j 2 S and i 2 F). We use three types of fac-
tor nodes2: (i) familial factor node, representing the familial
relationships and reproduction, (ii) correlation factor node,
representing the higher order correlations between the
SNPs either by using a Markov chain or hidden Markov
model, and (iii) phenotype factor node, representing the cor-
relation between the SNPs and the phenotypes (e.g., physi-
cal traits or diseases) of individuals. The factor graph
representation of our proposed framework is shown in

Fig. 3. We summarize the connections between the vari-
able and factor nodes below:

� Each variable node xi
j has its familial factor node fij if

at least one parent of individual i is in the target fam-

ily. Furthermore, xkj (k 6¼ i) is also connected to the

familial factor node of xi
j if k is the mother or father of

i. If an individual i’s both parents are not present in
the target family, we do not assign familial factor
nodes corresponding to the variable nodes of that
individual. For example, in Fig. 3, all familial factor
nodes belong to the child as his parents are present in
the toy example.However, father’s andmother’s vari-
able nodes do not have separate familial factor nodes.

� Variable nodes in set C are connected to a correlation
factor node giC (of individual i) if SNPs in C have cor-
relation among each other. In particular, we consider
higher order correlations in the genome. We model
these correlations either using a Markov chain or a
hidden Markov model, HMM (i.e., recombination
model). When we use a Markov chainwith order of
k the correlation set of node i is Ci ¼ fnodei�k;
nodei�kþ1; nodei�kþ2; . . . ; nodei�1g if i > k, and Ci ¼
fnode1; node2; node3; . . . ; nodei�1g if i � k, and when
we use HMM, C includes all SNPs in a chromosome.

� Variable nodes of individual i in set Hi
a are con-

nected to a phenotype factor node phi
a if SNPs in Hi

a

are associated with the phenotype pha. Note that
more than one SNP can be associated with a given
phenotype. Similarly, a SNP may be associated with
more than one phenotype.

Messages between the Nodes: As shown in [23], following
the rules of belief propagation, the global probability distri-
bution of the variable nodes can be factorized into products
of local functions that are defined by the factor nodes fol-
lowing the rules of the belief propagation algorithm. The
iterative belief propagation algorithm is based on exchang-
ing messages between the variable and the factor nodes. We
represent these messages as in the following:

Fig. 2. Overview of the proposed framework for quantification of genomic privacy.

2. There are two types of factor nodes in [1] representing the family
relationships and the LD between the SNPs.
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� The message m
ðnÞ
i!kðxi

j
ðnÞÞ (from a variable node i to a

factor node k) denotes the probability of xi
j
ðnÞ ¼ ‘

(‘ 2 f0; 1; 2g), at the nth iteration.

� Themessage �
ðnÞ
k!iðxi

j
ðnÞÞ (from a familial factor node to

a variable node) denotes the probability that xi
j
ðnÞ ¼ ‘,

for ‘ 2 f0; 1; 2g, at the nth iteration given FRðxM
j ;

xF
j ; x

C
j Þ, P, and the values of SNP j for the other two

familymembers (other than individual i) that are con-
nected to the corresponding familial factor node.

� The message b
ðnÞ
k!iðC; xi

j
ðnÞÞ (from a correlation factor

node to a variable node) denotes the probability that

xi
j
ðnÞ ¼ ‘, for ‘ 2 f0; 1; 2g, at the nth iteration given

the high order correlation between the SNPs in set C.
� The message d

ðnÞ
k!iðxi

j
ðnÞÞ (from a phenotype factor

node to a variable node) denotes the probability that
xi
j
ðnÞ ¼ ‘, for ‘ 2 f0; 1; 2g, at the nth iteration given

the phenotype phk for individual i and the associa-
tion of the corresponding phenotype with SNP j.

Toy Example on a Trio: Following [1], we choose a sim-
ple family tree consisting of a trio (i.e., mother, father, and
child) and 3 SNPs (i.e., jFj ¼ 3 and jSj ¼ 3). In Fig. 3, we
show how the trio and the SNPs are represented on a
factor graph, where i ¼ m represents the mother, i ¼ f rep-
resents the father, and i ¼ c represents the child. Further-
more, the 3 SNPs are represented as j ¼ 1, j ¼ 2, and j ¼ 3,
respectively. We describe the message exchange between
the variable node representing the first SNP of the mother
(xm

1 ), the familial factor node of the child (fc
1), the correla-

tion factor node gmC , and the phenotype factor node phm
a

(representing the phenotype a for the mother). Here we
assume that variable nodes in set C are SNPs 1, 2, and 3.
We also assume that the phenotype a is associated with
SNPs 1 and 2 (that are in set Hm

a ). The belief propagation
algorithm iteratively exchanges messages between the fac-
tor and the variable nodes, updating the beliefs on the val-
ues of the targeted SNPs (in XU) at each iteration, until
convergence. For simplicity, we denote the variable and

factor nodes xm
1 , f

c
1, g

m
C , and phm

a with the letters i, k, z, and
s, respectively.

Messages from variable nodes: Variable node i forms

m
ðnÞ
i!kðxm

1
ðnÞÞ by multiplying all information it receives from

its neighbors excluding the familial factor node k.3 Hence,
the message from variable node i to the familial factor node
k at the nth iteration is given by

m
ðnÞ
i!kðxm

1
ðnÞÞ ¼ 1

Z
� b

ðn�1Þ
z!i ðC; xm

1
ðn�1ÞÞ � d

ðn�1Þ
s!i ðxm

1
ðn�1ÞÞ; (1)

where Z is a normalization constant. This computation is
repeated for every neighbor of each variable node. If
xm1 2 XK (i.e., it is one of the SNPs that is observed by the

attacker), then the message m
ðnÞ
i!kðxm

1
ðnÞÞ is constructed as a

constant, depending on the value of xm1 . Note that following
the rules of belief propagation, to prevent self-bias, the mes-

sage �
ðn�1Þ
k!i ðxm

1
ðn�1ÞÞ is not used while generating m

ðnÞ
i!kðxm1 ðnÞÞ.

Also, if the parents of the mother (m) were also in the graph,
xm1 would have its corresponding familial factor node fm

1 ,
and hence the � message generated from this factor node

would have been also used when generating m
ðnÞ
i!kðxm

1
ðnÞÞ.

Similarly, if SNP x1 is associated with other phenotypes, d
messages from those phenotype factor nodes are also used
while generating themessage.

Messages from familial factor nodes: The message from the
familial factor node k to the variable node i at the nth itera-
tion is formed using the principles of belief propagation as

�
ðnÞ
k!iðxm1 ðnÞÞ ¼

X

fxf
1
;xc
1
g
fc1ðxm

1 ; x
f
1 ; x

c
1;FRðxM

j ; xF
j ; x

C
j Þ;PÞ

�
Y

y2ff;cg
m
ðnÞ
x
y
1
!k

ðxy
1
ðnÞÞ;

(2)

Fig. 3. Factor graph representation of the proposed framework.

3. Other messages from the variable node i to the other factor nodes
(z and s) are also constructed similarly.
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where, fc1ðxm
1 ; x

f
1 ; x

c
1;FRðxM

j ; xF
j ; x

C
j Þ;PÞ is proportional to

pðxm
1 jxf

1 ; x
c
1;FRðxM

j ; xF
j ; x

C
j Þ;PÞ, and this probability is com-

puted using the table in Fig. 1b. This computation is per-
formed for every neighbor of each familial factor node.

Messages from correlation factor nodes: The message from
the correlation factor node z to the variable node i at the nth
iteration is formed as

b
ðnÞ
z!iðC; xm

1
ðnÞÞ ¼

X

xm
2
;xm
3

gmC ðxm1 ; xm
2 ; x

m
3 Þ

�
Y

y2f2;3g
m
ðnÞ
xmy !kðxmy ðnÞÞ:

(3)

bmessages are generated for every neighbor of each correla-
tion factor node. As mentioned, as opposed to [1], in this
work, we consider higher order correlations in the genome
to make the inference stronger, and hence the function
gmC ðxm

1 ; x
m
2 ; x

m
3 Þ depends on the correlation model we use.

We consider two different correlation models on the
genome: (i) Markov chain, in which we consider the genome
as a sequence of SNPs, where the value of each SNP
depends on the values of neighboring k SNPs. In this sce-
nario, gmC ðxm

1 ; x
m
2 ; x

m
3 Þ ¼ pðxm

1 jxm
2 ; x

m
3 Þ, for k ¼ 2 (note that

LD is a special case of this formalization when k ¼ 1). And,
(ii) hidden Markov model (HMM), in which the genome is
modeled as a Markov process with unobserved (hidden)
states. We realize the HMM model for the genome by using
the recombination model [24].

Messages from phenotype factor nodes: Finally, the message
from the phenotype factor node s to the variable node i at
the nth iteration is formed as

d
ðnÞ
s!iðxm

1
ðnÞÞ ¼

X

xm
2

phm
a ðxm1 ; xm

2 Þ � m
ðnÞ
xm
2
!sðxm

2
ðnÞÞ: (4)

Note that in this toy example, the phenotype a is associated
with SNPs x1 and x2 only. The function phm

a ðxm
1 ; x

m
2 Þ is com-

puted based on the association of both SNPs with the corre-
sponding phenotype. In some cases, it is observed that the
associations of the SNPs to a phenotype are independent
from each other. On the other hand, in some cases, we
observe that the association depends on the values of both
SNPs. Similarly, in some cases, the association is probabilis-
tic, while in some cases the association may be deterministic.
For example, having blonde hair color is associatedwith SNP
Rs12821256 [25]. If an individual has blonde hair, the proba-
bility distribution of the corresponding SNP is shown to be
(0.01,0.4,0.59),4 while if he does not have blonde hair, this dis-
tribution is shown to be (0.7,0.28,0.02). Thus, the attacker can
improve his inference power by obtaining phenotype infor-
mation about the individuals in the target family.

At each iteration of the algorithm, all variable and factor
nodes generate their messages and send to all of their neigh-
bors as described above. At the end of each iteration, we
compute the marginal probabilities of each variable nodes
(by multiplying all incoming messages), and we stop the
algorithm when the values of the marginal probabilities
stop changing. Note that the computational complexity of

this inference attack is linear with the number of variable or
factor nodes in the factor graph.

6 EVALUATION

Here, we summarize our methodology to evaluate the pro-
posed inference framework.

6.1 Datasets

In order to evaluate our method we used two datasets:

� CEPH/Utah Pedigree 1463
� Manuel Corpas Family Pedigree

6.1.1 CEPH/UTAH Pedigree 1463

To evaluate the proposed inference algorithm, we used the
CEPH/Utah Pedigree 1463 dataset [26]5. We obtained the
SNP data both in the genome variant (GVF) and variant call
(VCF) formats. Dataset contains partial DNA sequences of
17 family members and we used 11 of these 17 individuals
(to be consistent with the previous work). The family bonds
between these 11 individuals are illustrated in Fig. 4.

We focused on 100 neighboring SNPs (on the DNA
sequence) of the target family on the 22nd chromosome. We
also collected data for calculating MAF and to model the
higher order correlations in the genome. For this purpose,
we used data of the CEU population from the 1000
Genomes Project and HapMap.

6.1.2 Manuel Corpas Family Pedigree

Manuel Corpas is a scientist, who released his family DNA
dataset in variant call format on his website [27]. The dataset
consists DNA sequences of father, mother, son (Manuel
Corpas), daughter, and aunt. The family tree of the individ-
uals in this dataset is illustrated in Fig. 5. Similar to the
CEPH/UTAH Pedigree dataset setup, for this dataset, we
focused on the 22nd chromosome and selected 100 neigh-
boring SNPs of each family member.

6.2 Evaluation Metrics

Similar to [1], we evaluated the proposed framework in
terms of both attacker’s incorrectness and uncertainty. Incor-
rectness quantifies the adversary’s error in inferring the

Fig. 4. Family tree of CEPH/Utah pedigree 1463 consisting of the 11 fam-
ily members that were considered. The blue nodes (i.e., darker ones)
represent the male and the pink ones (i.e., lighter ones) represent the
female family members.

4. Each entry represents the probability that the value of the SNP is
0, 1, and 2, respectively. 5. The previous work by Humbert et al. also use the same dataset.
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SNPs of the individuals in the target set. This metric can be
expressed as follows:

Ei
j ¼

X

xi
j
2f0;1;2g

pðxi
jjCÞjjxi

j � x̂ijjj: (5)

where, x̂i
j is the true value of the inferred SNP, and C

includes all the information that is available to the attacker
(as in Fig. 2). The incorrectness metric quantifies how far the
adversary is away from the actual value of a SNP in his
inference. We also evaluated the proposed scheme based on
the attacker’s uncertainty. For this purpose, we used the fol-
lowing normalized entropy metric from [1],

Hi
j ¼

�P
xi
j
2f0;1;2g pðxi

jjCÞlog ðxijjCÞ
log ð3Þ : (6)

This can be described as the entropy of the adversary for an
unobserved SNP. This metric quantifies the confidence of the
adversary about his inference.Note that one needs the ground
truth data in order to evaluate the incorrectness of the
attacker. Here, by using both incorrectness and uncertainty
metrics, we show the correlation between two, as in practice,
it is not trivial to possess the ground truth data in order to
evaluate the incorrectness of the attacker. That is, we show
that one can also use the normalized entropy to quantify an
individual’s genomic privacy (and hence the strength of an
inference attack). In fact, a recent work about genomic privacy
metrics also reports that both incorrectness and uncertainty
(normalized entropy) are suitablemetrics to quantify genomic
privacy (and hence the inference attack power) [28]. We com-
pute the metrics in Equations (5) and (6) for each SNP and
then take the average for all the SNPs in the unknown setXU.

6.3 Results

Due to the nature of kinship and characteristics of genomic
data, we cannot avoid having cycles in our factor graph.
Although there is no theoretical proof that our solution (and
belief propagation algorithm in general) will converge to an
optimal result in the presence of cycles, according to several
runs of the algorithm on different SNPs, we observed that
belief propagation converges with a significantly low error.

6.3.1 CEPH/UTAH Pedigree 1463

We conducted experiments for both high order correlation
models (Markov chain and HMM). In the first experiment,

among the 100 SNPs we considered, we randomly hide 50
SNPs belonging to P5 in the CEPH/UTAH family (in Fig. 4)
and tried to infer them by gradually increasing the back-
ground information of the attacker. We also assumed that
the attacker knows the following 3 phenotypes of each family
member (that are associatedwith the considered SNPs) [25].

� Verbal declarative memory-associated to Rs5747035
� Neurofibromatosis-associated to Rs121434260
� Crohn’s disease-associated to Rs4820425
Because the information about these phenotypes in fam-

ily members are not publicly available, we probabilistically
simulated these phenotypes for the family members (using
real probabilities obtained from [25]) and used these simu-
lated phenotypes for the inference. Thus, the contribution of
the phenotype information to the inference attack will
remain the same if we use the real phenotype information
about the individuals as well.

We started revealing 50 random SNPs (out of 100) of
other family members (starting from the most distant one to
the P5 in terms of number of hops in Fig. 4) and observe
how the inference power of the attacker changes. We run
each experiment 50 times and take the average of each pri-
vacy metric. We modelled the high order correlations via
both the Markov chain model (for different orders-k) and
HMM. We show our results for the attacker’s incorrectness
and uncertainty in Figs. 6 and 7, respectively. Note that the
case when k ¼ 1 (with no phenotype information) repre-
sents the previous work by Humbert et al. We observed that
both the incorrectness and uncertainty of the attacker
decreases by revealing more data. More importantly, our
results show that high order correlations and phenotype
information contributes significantly to the inference power
of the attacker. In both figures, we see that for the Markov
chain model, attacker’s inference does not improve much
for orders of Markov chain (k) that is larger than 3. We fur-
ther discuss the relation between the amount of unobserved
(hidden) SNPs and this bottleneck (about the order of the
Markov chain) in Appendix B. We also observed that the
HMM increases the attacker’s inference power compared to
the Markov chain model. In all experiments, the accuracy of
the HMM is better than the Markov chain’s accuracy, which
is also consistent with the previous work [2].

Fig. 5. Family tree of manuel corpas consisting of the nine family mem-
bers that were considered. The blue nodes (i.e., darker ones) represent
the male and the pink ones (i.e., lighter ones) represent the female fam-
ily members. Genomic data for the grandparents (GP1, GP2, GP3, and
GP4) is missing in the original dataset.

Fig. 6. Decrease in genomic privacy of P5 (in Fig. 4) in terms of the incor-
rectness of the attacker. We reveal partial genomes of other family mem-
bers for different high order correlation models in the genome. MC
stands for the Markov chain model (with different orders) and HMM
stands for the hidden Markov model.
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Next, to observe the effect of number of hidden SNPs to
the high order correlation model, we run the same experi-
ment for the Markov chain model and HMM by hiding dif-
ferent number of SNPs from the victim (P5) and the other
family members. This time, we started revealing varying
number of random SNPs (out of 100) of other family mem-
bers (starting from the most distant one to the P5 as before)
and observe the inference power of the attacker. In Figs. 8
and 9, we show our results for the Markov chain model
when the order of the Markov chain (k) is 3. We observed
that the inference power of the Markov chain model
increases as more SNPs of the family members are observed.
We obtained similar results for the HMM model (as before,
we observed that HMM gives better accuracy compared to
Markov chain for varying number of hidden SNPs). In order
to show the standard deviations of the experiments, we also
show the results with error bars in Appendix A.

6.3.2 Manuel Corpas Family Pedigree

We also evaluated our proposed attack on the Manuel Cor-
pas Family Pedigree dataset. Here, we set our target as the
mother (M in Fig. 5) and try to infer her unobserved SNPs.

Unlike the previous experiment, here, we started revealing
from the closest family members to the farthest member to
show that the strength of the proposed inference attack is
independent of the dataset and evaluation methodology.
Similar to the previous experiment, we assumed that the
attacker knows the same set of three phenotypes about each
member of this family and we revealed 50 random SNPs
(out of 100) of other family members. We run each experi-
ment 50 times and take the average of each privacy metric.

The results for this experiment (in terms of normalized
error and normalized entropy) are given in Figs. 10 and 11.
Obtained results are consistent with our expectations (error
and entropy decrease with each revealed family member).
Similar to the previous results, it can be seen that high order
correlation and phenotype information contributes signifi-
cantly to inference power of the attacker. In general, we
observed that the results are consistent with CEPH/UTAH
pedigree experiments. However, since we changed the order
of revealing family members, unlike the previous results,
herewe observed a continuous decrease in error and entropy
for the genomic privacy of the victim. This is because each
familymember has a direct effect on our inference power.

Fig. 7. Decrease in genomic privacy of P5 (in Fig. 4) in terms of the
uncertainty of the attacker. We reveal partial genomes of other family
members for different high order correlation models in the genome. MC
stands for the Markov chain model (with different orders) and HMM
stands for the hidden Markov model.

Fig. 8. Decrease in genomic privacy of P5 (in Fig. 4) in terms of the incor-
rectness of the attacker. We reveal different number of random SNPs
from other family members and use the Markov chain model (with k ¼ 3)
to model the high order correlation in the genome.

Fig. 9. Decrease in genomic privacy of P5 (in Fig. 4) in terms of the
uncertainty of the attacker. We reveal different number of random SNPs
from other family members and use the Markov chain model (with k ¼ 3)
to model the high order correlation in the genome.

Fig. 10. Decrease in genomic privacy of M (in Fig. 5) in terms of the
incorrectness of the attacker. We reveal partial genomes of other family
members for different high order correlation models in the genome. MC
stands for the Markov chain model (with different orders) and HMM
stands for the hidden Markov model.
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7 CONCLUSION AND FUTURE WORK

In this work, we proposed an attack for inferring genomic
data of individuals from publicly available data about them-
selves, their family members, and about genomics. We
showed that the attacker can efficiently infer privacy-sensi-
tive point mutations of an individual with high accuracy.
We also showed that the proposed framework extends and
significantly improves the existing work in this area. Estab-
lishing a unifying framework to quantify the genomic pri-
vacy of individuals using all publicly available resources,
we believe that this work would be a significant step
towards establishing a greater understanding of the privacy
risks on the genomic data of individuals. As future work,
we will extend this work and study the balance between pri-
vacy and utility. Once the genomic privacy of an individual
is quantified, the proposed framework will provide recom-
mendations to the individual (about sharing his genomic-
related data) to reduce the risk on his genomic privacy. Fur-
thermore, we will study different models for high order cor-
relations, such as recurrent neural networks (which is
shown to be a powerful technique for classifying time series

data) to capture potential nonlinear relationships between
the SNPs. We will also extend our evaluation on different
chromosomes and other phenotypes.

APPENDIX A
STANDARD DEVIATION OF THE CONDUCTED

EXPERIMENTS

We computed and plotted the standard deviations of the
experiments. In Figs. 12 and 13 we show CEPH/UTAH ped-
igree results with error bars which represents the standard
deviation of 50 runs over uncertainty and incorrectness. As
shown, the results from the experiments do not have signifi-
cant deviations from the average.

APPENDIX B
BOTTLENECK OF THE MARKOV CHAIN ORDER

We have conducted two experiments on the UTAH family in
order to see the relation between bottleneck of the Markov
chain order and number of hidden SNPs. We hide 10 and 90
percent of SNPs of each familymember and then start to infer
the missing SNPs. In Figs. 14 and 15 we show the effect of

Fig. 11. Decrease in genomic privacy of M (in Fig. 5) in terms of the
uncertainty of the attacker. We reveal partial genomes of other family
members for different high order correlation models in the genome. MC
stands for the Markov chain model (with different orders) and HMM
stands for the hidden Markov model.

Fig. 12. Decrease in genomic privacy of P5 (in Fig. 4) in terms of the
incorrectness of the attacker. We reveal partial genomes of other family
members for different high order correlation models in the genome. MC
stands for the Markov chain model (with different orders) and HMM
stands for the hidden Markov model.

Fig. 13. Decrease in genomic privacy of P5 (in Fig. 4) in terms of the
uncertainty of the attacker. We reveal partial genomes of other family
members for different high order correlation models in the genome. MC
stands for the Markov chain model (with different orders) and HMM
stands for the hidden Markov model.

Fig. 14. Decrease in genomic privacy of P5 in terms of the incorrectness
of the attacker, when we reveal 90 percent of random SNPs from other
family members.
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number of hidden SNPs on error (uncertainty) while inferring
SNPs of P5. We conclude that the Markov chain bottleneck is
related to the number of SNPswe try to infer.When the num-
ber of observed SNPs (by the attacker) is a lot,Markovmodels
have more data to work with, and hence they converge to a
small error value even with low order models. Thus, higher
order models would not make the error any smaller. On the
other hand, when the attacker observes fewer SNPs, increas-
ing the order of the Markov chain model also increases the
chance of inferring an unobserved SNP. For instance, in
Fig. 14, when we reveal 90 percent of each family member’s
SNPs (i.e., when the attacker already observes a significant
amount of data), results obtained by Markov order 3 and 4
are totally overlapping. However, in Fig. 15, when we reveal
only 10 percent of each familymember’s SNPs, Markov order
4 does a significantly better job thanMarkov order 3.

ACKNOWLEDGMENTS

Iman Deznabi and Mohammad Mobayen contributed
equally. Erman Ayday is supported by funding from the
EuropeanUnion’sHorizon 2020 research and innovation pro-
gramme under the Marie Sk»odowska-Curie grant agreement
No. 707135 and by the Scientific and Technological Research
Council of Turkey, TUBITAK, under Grant No. 115C130.

REFERENCES

[1] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti, “Addressing
the concerns of the Lacks family: Quantification of kin genomic
privacy,” Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013,
pp. 1141–1152.

[2] S. S. Samani, et al., “Quantifying genomic privacy via inference
attack with high-order SNV correlations,” in Proc. Workshop.
Genome Privacy. Secur., 2015, pp. 32–40.

[3] M. Naveed, et al., “Privacy in the genomic era,” ACM Comput.
Surveys, vol. 48, no. 1, Sep. 2015, Art. no 6.

[4] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik, “Privacy
preserving error resilient DNA searching through oblivious
automata,” Proc. ACM ACM SIGSAC Conf. Comput. Commun.
Secur., 2007, pp. 519–528.

[5] M. Blanton and M. Aliasgari, “Secure outsourcing of DNA search-
ing via finite automata,” in Proc. 24th Annu. IFIP WG 11.3 Work.
Conf. Data Appl. Security Privacy, 2010, pp. 49–64.

[6] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik,
“Countering GATTACA: Efficient and secure testing of fully-
sequenced human genomes,” Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2011, pp. 691–702.

[7] Y. Chen, B. Peng, X. Wang, and H. Tang, “Large-scale privacy-
preserving mapping of human genomic sequences on hybrid
clouds,” in Proc. 19th Netw. Distrib. Syst. Secur. Symp., 2012.

[8] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy
for genomic computation,” in Proc. IEEE Symp. Secur. Privacy,
2008, pp. 216–230.

[9] M. Naveed, et al., “Controlled functional encryption,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2014, pp. 1280–1291.

[10] N. Karvelas, A. Peter, S. Katzenbeisser, E. Tews, and K. Hamacher,
“Privacy-preserving whole genome sequence processing through
proxy-aided ORAM,” in Proc. 13th Workshop Privacy Electron. Soc.,
2014, pp. 1–10.

[11] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong,
“Privacy-preserving genomic computation through program spe-
cialization,” Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2009, pp. 338–347.

[12] E. De Cristofaro, S. Faber, and G. Tsudik, “Secure genomic testing
with size- and position-hiding private substring matching,” in
Proc. 12th ACMWorkshop Privacy Electron. Soc., 2013, pp. 107–118.

[13] E. Ayday, J. L. Raisaro, J. Rougemont, and J.-P. Hubaux,
“Protecting and evaluating genomic privacy in medical tests and
personalized medicine,” in Proc. 12th ACM Workshop Privacy Elec-
tron. Soc., 2013, pp. 95–106.

[14] N. Homer, S. Szelinger, M. Redman, D. Duggan, and W. Tembe,
“Resolving individuals contributing trace amounts of DNA to
highly complex mixtures using high-density SNP genotyping
microarrays,” PLoS Genetics, vol. 4, Aug. 2008, Art. no. e1000167.

[15] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich,
“Identifying personal genomes by surname inference,” Sci.,
vol. 339, Jan. 2013, Art. no. 6117.

[16] A. Johnson and V. Shmatikov, “Privacy-preserving data explora-
tion in genome-wide association studies,” in Proc. 19th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013, pp. 1079–
1087.

[17] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin, “A cryptographic
approach to securely share and query genomic sequences,” IEEE
Trans. Inf. Technol. Biomedicine, vol. 12, no. 5, pp. 606–617,
Sep. 2008.

[18] E. Ayday, J. L. Raisaro, U. Hengartner, A. Molyneaux, and
J.-P. Hubaux, “Privacy-preserving processing of raw genomic
data,” in Data Privacy Management and Autonomous Spontaneous
Security. Berlin, Germany: Springer, 2013.

[19] Z. Huang, E. Ayday, J.-P. Hubaux, J. Fellay, and A. Juels,
“GenoGuard: Protecting genomic data against brute-force
attacks,” in Proc. IEEE Symp. Secur. Privacy, 2015, pp. 447–462.

[20] D. S. Falconer and T. F. Mackay, Introduction to Quantitative Genet-
ics, 4th Ed.. Harlow, Essex, U.K.: Addison Wesley Longman, 1996.

[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Burlington, MA, USA: Morgan Kaufmann Pub-
lishers, Inc., 1988.

[22] A. T. Ihler, W. F. John III, and A. S. Willsky, “Loopy belief propa-
gation: Convergence and effects of message errors,” J. Mach.
Learning Res., vol. 6, pp. 905–936, May 2005.

[23] F. Kschischang, B. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

[24] N. Li and M. Stephens, “Modeling linkage disequilibrium and
identifying recombination hotspots using single-nucleotide poly-
morphism data,” Genetics, vol. 165, 2003, Art. no. 1039.

[25] (2016, May 1). [Online]. Available: http://www.snpedia.com/
[26] R. Drmanac, et al., “Human genome sequencing using unchained

base reads on self-assembling DNA nanoarrays,” Sci., vol. 327,
no. 5961, pp. 78–81, 2010.

[27] (2016, Nov. 8). [Online]. Available: https://manuelcorpas.com/
2016/05/24/my-personal-exome-analysis-part-i-first-findings-2/

[28] I. Wagner, “Evaluating the strength of genomic privacy metrics,”
ACM Trans. Privacy Secur., vol. 20, no. 1, 2017, Art. no. 2.

Fig. 15. Decrease in genomic privacy of P5 in terms of the incorrectness
of the attacker, when we reveal 10 percent of random SNPs from other
family members.

1342 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 4, JULY/AUGUST 2018

http://www.snpedia.com/
https://manuelcorpas.com/2016/05/24/my-personal-exome-analysis-part-i-first-findings-2/
https://manuelcorpas.com/2016/05/24/my-personal-exome-analysis-part-i-first-findings-2/


Iman Deznabi is working toward the master’s
degree in the Department of Computer
Engineering, Bilkent University, Ankara, Turkey.
His research interests include bioinformatics and
machine learning. He is a student member of the
IEEE.

Mohammad Mobayen is working toward the
master’s degree in the Department of Computer
Engineering, Bilkent University, Ankara, Turkey.
His research interests include privacy-enhancing
technologies and machine learning. He is a
student member of the IEEE.

Nazanin Jafari is working toward the master’s
degree in the Department of Computer
Engineering, Bilkent University, Ankara, Turkey.
Her research interests include high performance
computing and big data analysis. She is a student
member of the IEEE.

Oznur Tastan received the BSc degree in biolog-
ical sciences and bioengineering from Sabanci
University and the PhD degree from Carnegie
Mellon University, School of Computer Science,
in 2011. Before joining Bilkent, she worked as a
post-doctoral researcher at Microsoft Research
New England Lab, Cambridge, Massachusetts.
Since 2012, she has been affiliated with the
Department of Computer Engineering at Bilkent
University. She has worked on diverse problems
in computational biology and machine learning.
She is a member of the IEEE.

Erman Ayday received the MS and PhD degrees
from Georgia Tech Information Processing, Com-
munications and Security Research Lab (IPCAS)
in the School of Electrical and Computer Engi-
neering (ECE), Georgia Institute of Technology,
Atlanta, Georgia, in 2007 and 2011, respectively,
under the supervision of Dr. Faramarz Fekri. He is
an assistant professor of computer science with
Bilkent University, Ankara, Turkey. Before that,
he was a post-doctoral researcher at EPFL,
Switzerland, in the Laboratory for Communica-

tions and Applications 1 (LCA1) led by Prof. Jean-Pierre Hubaux. His
research interests include privacy-enhancing technologies (including big
data and genomic privacy), wireless network security, trust and reputation
management, and applied cryptography. He is the recipient of the Distin-
guished Student Paper Award at IEEE S&P 2015, 2010 Outstanding
Research Award from the Center of Signal and Image Processing (CSIP)
at Georgia Tech, and 2011 ECE Graduate Research Assistant (GRA)
Excellence Award fromGeorgia Tech. Other various accomplishments of
his include several patents, research grants, and the H2020 Marie Curie
individual fellowship. He is amember of the IEEE and the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DEZNABI ET AL.: AN INFERENCE ATTACK ON GENOMIC DATA USING KINSHIP, COMPLEX CORRELATIONS, AND PHENOTYPE... 1343



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


