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Abstract This study demonstrates how cold-water coral

morphology and habitat distribution are shaped by local

hydrodynamics, using high-definition video from Tisler

Reef, an inshore reef in Norway. A total of 334 video

frames collected on the north-west (NW) and south-east

(SE) side of the reef were investigated for Lophelia pertusa

coral cover and morphology and for the cover of the

associated sponges Mycale lingua and Geodia sp. Our

results showed that the SE side was a better habitat for L.

pertusa (including live and dead colonies). Low cover of

Geodia sp. was found on both sides of Tisler Reef. In

contrast, Mycale lingua had higher percentage cover,

especially on the NW side of the reef. Bush-shaped colo-

nies of L. pertusa with elongated branches were the most

abundant coral morphology on Tisler Reef. The highest

abundance and density of this morphology were found on

the SE side of the reef, while a higher proportion of cau-

liflower-shaped corals with short branches were found on

the NW side. The proportion of very small L. pertusa

colonies was also significantly higher on the SE side of the

reef. The patterns in coral spatial distribution and mor-

phology were related to local hydrodynamics—there were

more frequent periods of downwelling currents on the SE

side—and to the availability of suitable settling substrates.

These factors make the SE region of Tisler Reef more

suitable for coral growth. Understanding the impact of

local hydrodynamics on the spatial extent and morphology

of coral, and their relation to associated organisms such as

sponges, is key to understanding the past and future

development of the reef.

Keywords Tisler Reef � Hydrodynamics � Cold-water
coral habitat � Morphology

Introduction

Cold-water coral (CWC) ecosystems are protected in

national and international waters. They are considered

vulnerable marine ecosystems (United Nations 2006) and

meet the criteria of ecologically or biologically significant

areas (EBSAs) (CBD Secretariat 2012). However, there is a

need to improve our understanding of what drives differ-

ences in the fine-scale spatial distribution of CWCs to

protect these ecosystems effectively in the future. CWC

reef distribution depends on the availability of hard sub-

strate for settlement as well as on food supply in a highly

dynamic environment (Wilson 1979; Frederiksen et al.

1992; White et al. 2005; Mienis et al. 2007; Davies et al.

2009; Roberts et al. 2009). Other environmental factors

such as temperature, salinity, density and oxygen avail-

ability also play important roles in controlling their dis-

tribution (Roberts et al. 2009; Purser et al. 2010; Flögel

et al. 2014).
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Over a period of 2 yr, Wagner et al. (2011) studied

hydrodynamic processes and how they affect food delivery

to the reef at Tisler CWC Reef (Hvaler area, Norway).

They found that Tisler Reef has a dynamic environment

with average high current speeds of 10–50 cm s-1 and a

peak current speed of 74 cm s-1. The flow direction on

Tisler Reef alternates between north-westward and south-

eastward. The hydrodynamics on Tisler Reef show simi-

larities to those described for the Mingulay Reef Complex,

offshore of Scotland, where downwelling occurs down-

stream of the reef (Duineveld et al. 2012), delivering

chlorophyll-rich, warmer water (5.6–13.9 �C) from the

surface to the bottom which can stimulate the growth of

CWCs (Davies et al. 2009; Findlay et al. 2013). Compared

to Mingulay Reef, the tidal flows in the Hvaler area are

weak (5–10 cm s-1) (Lavaleye et al. 2009). The residual

flow is wind and buoyancy driven, and its direction can

stay constant for several days to several weeks before

reversing (Lavaleye et al. 2009; Wagner et al. 2011). Since

current flow direction alternates and downwelling occurs

over downstream sill crests, this vertical flux occurs at both

ends of Tisler Reef where it supplies food to the seabed,

supporting benthic secondary productivity including coral

growth. Wagner et al. (2011) demonstrated this by ana-

lysing near-bed current direction and velocity over a period

of 2 yr and by measuring the temperature, chlorophyll

a concentration, and salinity across the water column using

acoustic Doppler current profiler (ADCP) and CTD casts

on both the SE and NW sides of Tisler Reef (see Fig. 2 in

Wagner et al. 2011).

Corals have different growth forms as they have a high

level of phenotypic variation (Foster 1979; Bell and Barnes

2001; Todd 2008; Gori et al. 2013; Vad et al. 2017). Local

hydrodynamics, which affect availability of food to the

corals and their ability to feed over short (Purser et al.

2010; Orejas et al. 2016) and longer timescales, are an

important determinant of coral morphology (Wainwright

and Dillon 1969; Mortensen and Buhl-Mortensen 2005;

Todd 2008). Branching corals, in particular, seem to

respond to changes in hydrodynamics, with their shape

becoming more compact in high current speeds, and more

asymmetrical when currents are unidirectional. More

symmetrical, open frameworks with thin branches form

when the current speeds are lower (Kaandorp 1999;

Chindapol et al. 2013). The morphology of a coral colony

will also affect the availability of food to the polyps by

altering small-scale turbulence and slowing current speeds

in the immediate proximity of living polyps. Coral colonies

that are less compact and have thinner branches are more

likely to capture food particles as water will flow through

them more easily than in compact colonies. When the

current speeds are too high, a more compact morphology

with thick branches creates more stability for the colony

(Chamberlain and Graus 1975). Aside from local hydro-

dynamics, genetic differences and other variables such as

the availability of food and sedimentation rates can cause

variation in the growth forms of corals (Barnes 1973;

Foster 1979; Willis and Ayre 1985; Smith et al. 2007).

The habitat that is created by the CWC framework is a

place for organisms such as crabs, fish and sharks to feed,

shelter and reproduce (Henry and Roberts 2007, 2017;

Baillon et al. 2012; Buhl-Mortensen et al. 2017). The live

and dead coral structures provide a substrate for benthic

filter feeders such as sponges and crinoids as well as other

cnidarians (Orejas and Jiménez 2017). The coral creates an

elevated feeding platform, exposing the filter feeders to

higher current speeds, increasing their chances of capturing

food (Roberts 2005; Mortensen and Fosså 2006; Henry and

Roberts 2007; Buhl-Mortensen et al. 2017). Sponges can

occur in especially large numbers forming a substantial

component of CWC reef biomass (Hogg et al. 2010). They

function as nutrient recyclers, substrate stabilizers, bio-

eroders, as a food source and as a habitat for other

organisms (Wulff 2001).

Wagner et al. (2011) found that particulate organic

matter (POM) composition in the benthic boundary layer

across Tisler Reef differed between the two sides of the

reef. Downstream POM was fresher in composition than

upstream samples. With the observation that downwelling

occurs on both sides of Tisler Reef, coral and sponge

growth are also expected to be supported on both sides of

the reef. To test this null hypothesis, we examined the

percentage cover of important ecosystem engineering

species (the coral L. pertusa and two dominant sponges M.

lingua and Geodia sp.) in relation to local hydrodynamics.

We also assessed the densities of different coral growth

morphologies on each side of the reef.

Materials and methods

Study area

CWCs at Tisler Reef were first discovered in 2002 (Lun-

dälv and Jonsson 2003). The reef lies in the north-eastern

part of the Skagerrak in the Hvaler area in Norway

(Lavaleye et al. 2009) (Fig. 1). The reef is located north of

Tisler Island, in a 48-km-long ocean channel through

which Atlantic water flows in the Ytre Hvaler (Fig. 1b)

(Guihen et al. 2012). The water temperature commonly

ranges around 8 �C (Wagner et al. 2011), and the reef is

thought to be between 8600 and 8700 yr old (Wisshak et al.

2005). The live part of the reef is approximately 70–160 m

deep, 1.2 km long, 200 m wide and is oriented in a NW–

SE direction (Fig. 1c) (Lavaleye et al. 2009). It extends

both on and off the mound structures visible in the reef area
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(Fig. 1c). Remotely operated vehicle (ROV) examinations

by T. Lundälv (HD video) indicated that the outcrops

inside and outside the live reef are made up of both live and

dead coral. Reefs that have developed after the last glacial

maximum are typically smaller, depend strongly on the

availability of settling substrates (strong substrate control)

and owe their overall morphology to the features they

colonized (e.g. Sula Ridge, Mingulay Reef Complex), and

are therefore classified by Wheeler et al. (2007) as having

an ‘‘inherited’’ morphology. To know whether the mound

structures inherited the morphology of the bedrock, seismic

data are necessary which is currently unavailable. In
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December 2003, Tisler Reef was protected against bottom-

impacting fishing techniques by Norwegian fishery regu-

lations (Fosså et al. 2010) (Fig. 1b).

Hydrodynamic data

An RDI Workhorse 300-kHz ADCP was deployed eleven

times to measure current speed and direction every 30 min,

from 2006 to 2010, in different locations on the reef

(Table 1; Fig. 1c). The ADCP deployments were all near

the reef sill and not at the NW and SE ends, except for the

first deployment ADCP1, which was close to dive 1

(Fig. 1c). The longest continuous logging, 8 months and 9

d, occurred during deployment ADCP10. ADPC11 only

recorded for 3 d and is therefore not included in the anal-

yses. The data were part of a larger environmental moni-

toring project at Tisler Reef (Lavaleye et al. 2009).

Water flow on Tisler Reef is channelled over a sill

through the sound, which has a NW–SE orientation. The

currents can flow in either direction, to the north-west or to

the south-east. The amount of time that the current flowed

in each direction was calculated using the data provided by

ten of the ADCP deployments. The average flow speed was

calculated per ADCP deployment; an annual average was

unreliable because the currents vary with the position of the

ADCP instrument (Fig. 1c). The ADCP data were binned

at 2-m intervals every 20 min. Since instruments posi-

tioned at the seabed experience higher turbulence caused

by friction with the sea floor and the reef itself, all ADCP

data used for the calculations were recorded at 86 m depth,

at least 20 m above the seafloor.

Multibeam data

Bathymetry data were collected with a shipboard multi-

beam echosounder (SeaBeam 1050) during ALKOR cruise

232 in 2003. Data were processed using Fledermaus soft-

ware resulting in a grid with pixel size of 8.22 9 8.22 m.

Video data collection

The R/V Lophelia from Tjärnö Marine Biological Labora-

tory (TMBL, University of Gothenburg) was used to

deploy the ROV Sperre SubFighter 7500 DC to record

high-definition video transects at Tisler Reef on 22 and 23

May 2014. Two video transects were collected on the SE

end (dive 1 and 2) with a length of 239 m and 203 m,

respectively. On the NW end, a single transect was col-

lected (dive 3) (Table 2) from which 57% of the data were

not useful due to limited visibility caused by increased

sediment resuspension and high variability in the vehicle’s

altitude above the seafloor (Fig. 1). These transects were

chosen as they were within the live reef area and closest to

the NW and SE stations where Wagner et al. (2011) con-

ducted their first two CTD, chlorophyll and POM

measurements.

A Sony FCBH11 HD camera with two Sperre 200-W

HMI lights was used to collect the video footage from an

altitude of * 1 m. Video signals were transmitted over an

optical fibre and recorded on compact flash cards using a

nanoFlash recorder (Convergent Design). The ROV moved

at an average speed of 0.7 knots. Two laser beams, spaced

by 5 cm, were used as a reference to calculate the transect

width as well as to measure the colony size. Navigation

data from a Kongsberg Simrad USBL system type HPR

410P, a Simrad dGPS instrument and a Furuno satellite

compass were integrated in the software package Olex to

provide ROV navigation and transect position data.

A video frame was extracted every 5 s from the video

footage using the software VLC7. This extraction fre-

quency is based on an average speed of 0.7 knots, meaning

that a frame is analysed every * 1.8 m along the tran-

sect. The average surface area covered per image for each

dive was calculated using the calibrating tool in Coral Point

Count (see below) (Kohler and Gill 2006). This tool cal-

culated the average maximum width and height for each

image. The calculation was based on the 5-cm separation

Table 1 The location,

deployment time and depth for

of acoustic Doppler current

profiler (ADCP) deployments

that were used to record

measurements of current speeds

and direction

Longitude Latitude Data name Deployed Recovered Depth (m) Days

10.97126 58.99413 LF ADCP 1 27/03/2006 27/04/2006 138 31

10.96785 58.99511 LF ADCP 2 04/05/2006 02/10/2006 111 181

10.96676 58.99573 LF ADCP 3 05/10/2006 29/04/2007 120 206

10.96670 58.99558 LF ADCP 4 30/04/2007 04/12/2007 121 218

10.96735 58.99510 LF ADCP 5 04/12/2007 15/04/2008 112 133

10.96785 58.99496 LF ADCP 6 15/04/2008 04/08/2008 117 111

10.96951 58.99448 LF ADCP 7 04/08/2008 23/02/2009 109 203

10.96776 58.99531 LF ADCP 8 25/02/2009 05/08/2009 119 161

10.96826 58.99518 LF ADCP 9 06/08/2009 11/11/2009 121 97

10.96813 58.99508 LF ADCP 10 12/11/2009 23/07/2010 113 253

10.96860 58.99471 LF ADCP 11 02/09/2010 05/09/2010 110 3
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between the two laser points. Each frame covered an

approximate area of 1.4 m (width) 9 0.80 m (height) with

a resolution of 1280 9 720 pixels. A total of 322 frames

were extracted for analysis (158 frames were extracted

from dive 1, 68 from dive 2 and 96 from dive 3; Table 3).

Spatial extent of the different substrate types:

Lophelia pertusa, Geodia sp. and Mycale lingua

The percentage cover of the substrate types (coral rubble,

soft substrate and hard substrate), the coral colonies (live

and dead L. pertusa) and sponges (Geodia sp., Mycale

lingua) (Fig. 2) was calculated with a 50-point quadrat

method using the software Coral Point Count with Excel

Extensions 4.1 (CPCe) (Kohler and Gill 2006). This CPCe

software is freely available, user-friendly, time efficient

and provides reliable results for the percentage cover cal-

culations of seabed organisms and substrates. The points

were randomly placed over each image, and the species

and substrate below each point were noted. In the CPCe

software, the percentage cover can be calculated for an

individual image or for a group of images.

Lophelia pertusa morphology

The morphology of coral colonies was described as a

function of their overall shape, branch length and colony

size. Past studies have identified two dominant morphology

classes of L. pertusa. The first is a compact ‘‘cauliflower’’

shape, which results from live coral branches growing

symmetrically in multiple directions (Freiwald et al. 1999;

Rogers 2004). The second morphology class has a ‘‘bush-

like’’ shape with colonies that grow in a more

unidirectional plane (Wilson 1979; Chindapol et al. 2013).

Here, these two morphotypes were used as a first category

distinguishing the colony’s shape as (1) cauliflower versus

(2) bush-like (Fig. 3). The colony’s overall branch mor-

phology was identified as (1) short (\ 5 cm) versus (2)

longer branching patterns ([ 5–10 cm) (Fig. 4). The cate-

gory size included very small (\ 5 cm), small (5–30 cm),

medium (30–100 cm) and large ([ 100 cm) coral colonies

(Fig. 5). In this study, an individual L. pertusa colony

refers to a distinctive visual colony. Skeletal fusion in L.

pertusa is common (Hennige et al. 2014), and therefore, a

‘‘colony’’ as termed here may represent multiple

genotypes.

Statistical analyses

For the statistical analyses, each dive was divided into

25 m sub-transects. This length was chosen as it gave the

best representation of the variability in the data. A pro-

portion of the frames were excluded from the analyses due

to overlap or low visibility. The number of frames that

were of good quality for analyses varied among dives

(Table 3), meaning that some of the 25 m sub-transects did

not contain enough analysed frames to produce reliable and

representable results. Only 25 m sub-transects with a

minimum of nine good frames were retained in the

analyses.

A 0.5 log10 (1 ? x) transformation was applied to the

percentage cover data of the substrate classes L. pertusa

(live and dead) and the sponges (Geodia sp. andM. lingua).

This transformation decreases the relative importance of

high percentage coral cover values (Guinan et al. 2009).

This transformed dataset was also used to investigate the

Table 2 High-definition video transects recorded on the SE and NW sides of Tisler Reef in 2014

Dive Side Start Lat Start Lon End Lat End Lon Depth range (m) Average depth (m) Length (m) Time (min)

1 SE 58.99397 10.97252 58.99458 10.97224 124–142 135 239 41

2 SE 58.99455 10.97200 58.99487 10.97169 129–147 139 203 28

3 NW 58.99683 10.96219 58.99625 10.96381 77–130 110 622 50

Side side of the reef, Lat latitude, Lon longitude

Table 3 Overview of the number of frames extracted and used for statistical analyses

Dive Number of extracted frames Number of 25-m samples with[ 9 frames Total number of frames used for analyses

1 158 7 148

2 68 3 53

3 96 6 60
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co-occurrence of the sponges (Geodia sp. and M. lingua)

and L. pertusa (live and dead), for which the Pearson

product-moment correlation coefficient (r) was calculated

in R. Since different morphology classes (shape, branch

length, size) were attributed to every coral colony, density

was used instead of percentage cover. The densities of L.

pertusa morphology classes were calculated by dividing

the number of colonies by the average surface area per sub-

transect.

Statistical analyses used the PRIMER 6 software pack-

age (Clarke and Warwick 2001). The aim was to establish

whether there was a difference in CWC distribution and

morphology between the 25-m samples from the transects

according to their location on the reef (SE vs. the NW

Fig. 2 Overview of the habitats documented in the video transects on

Tisler Reef. a Live Lophelia pertusa thickets on top of the dead L.

pertusa base layer. b Coral rubble. c Mycale lingua growing within L.

pertusa branches. d Geodia sp. e hard substrate colonized by several

Geodia sp. specimens. f Soft sediment with a starfish

258 Coral Reefs (2018) 37:253–266
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side). In PRIMER, a Bray–Curtis resemblance matrix was

used in analyses of similarity (ANOSIM) to test whether

there were significant differences between the samples

from the SE and NW side of the reef. SIMPER analyses

were then carried out to identify how the percentage cover

(L. pertusa, M. lingua, Geodia sp. and the different sub-

strates) and L. pertusa morphology classes differed

between the different locations.

Fig. 3 a Lophelia pertusa large ‘‘cauliflower’’ morphotype. b Medium-sized L. pertusa ‘‘bush-like’’ coral colonies. Laser scale: 5 cm

Fig. 4 a Lophelia pertusa with ‘‘long’’ branches. b L. pertusa with ‘‘short’’ branches. Laser scale: 5 cm

Fig. 5 The different size classes defined for Lophelia pertusa in this study: a very small (\ 5 cm); b small (5–30 cm); c medium (30–100 cm);

and d large ([ 100 cm). Laser scale: 5 cm. The yellow arrows indicate the very small (a) and small (b) coral colonies

Coral Reefs (2018) 37:253–266 259
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Results

Hydrodynamic data: current direction and speed

The current flowed towards the SE for 57% of the time and

to the NW for 43% of the time in the 4-yr period (Fig. 6).

The direction of the flow over the reef typically lasted for

several days, sometimes up to two weeks, before reversing.

The highest current speed recorded in our dataset was

99.8 cm s-1, in the NW direction. Higher current speeds

were more frequent when the flow was in the NW direction

(Fig. 7). Current speed also varied with the position of the

deployments (Fig. 7). For example, ADCP3 (at the NW of

the group) had stronger currents towards the NW, while

ADCP7 (positioned to the SE) recorded stronger currents

flowing SE. This acceleration of near-bed currents down-

slope, downstream of a sill is characteristic of stratified

flow over sills (Farmer and Denton 1985).

Spatial extent of substrate types

The average percentage of rubble and soft substrates was

significantly higher on the NW side, while hard substrates

were significantly more prominent on the SE side of Tisler

Reef (R = 0.384, p\ 0.01) (Fig. 6). The average per-

centage of both live and dead L. pertusa per 25-m sample

was significantly higher on the SE side than the NW side

(R = 0.57, p\ 0.01; Fig. 6). This was reflected in the ratio

of live:dead L. pertusa, which was 2.15 on the SE side and

7.17 on the NW side. This indicates that the percentage

cover of live and dead L. pertusa on the SE is closer to

equal, while on the NW side there is a high percentage

cover of live but a low percentage cover of dead L. pertusa.

The percentage cover of the sponge M. lingua was signif-

icantly higher on the NW side, while, conversely, the

sponge Geodia sp. had a higher percentage cover on the SE

side (R = 0.31, p = 0.02; Fig. 6).

Live cover of L. pertusa was weakly correlated

(r = 0.33, p = 0.213) with Geodia sp. A stronger positive

correlation (r = 0.67, p = 0.004) was found between dead

L. pertusa and Geodia sp. Cover of both live and dead L.

pertusa was strongly positively correlated with cover of M.

lingua (r = 0.69, p = 0.003 and r = 0.70, p = 0.002,

respectively).

Lophelia pertusa morphology

In total, 1708 coral colonies were counted. The density of

corals was significantly lower on the NW side (0.64 corals

m-2) than on the SE side (3.77 corals m-2) (Fig. 6). Very

small (n = 544) and small (n = 463) colonies had on

average between 1 and 50 branches which were not large

enough to visually assign a morphology class. Therefore,

only the medium (n = 527) and large (n = 174) colonies

NW density
0.64 colonies/m-2

Hard substrate 
Soft substrate 
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Mycale lingua 
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Dead L. pertusa
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Fig. 6 Diagram of Tisler Reef based on Fig. 2 in Wagner et al.

(2011); red line shows the approximate extent of the live reef, and

swirls show location of downwelling. The values along the x-axis

represent the distance from the NW end towards the SE end of the

reef. The location of the video transects is indicated by the coloured

lines on the bottom of the figure. The black arrows in the top of the

figure represent the percentage of the current direction. The pie

diagrams contain the average percentage cover of live Lophelia

pertusa, dead L. pertusa, Geodia sp., Mycale lingua, rubble, soft and

hard substrate for the NW and SE side. The density of live corals

colonies is given for both sides (m2) just above the location of the

video transects
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Fig. 7 The speed (cm s-1) and

direction of the main current

axis for current meter

deployments at 86 m depth
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were described as a function of shape and branch length.

There were significant differences in coral morphology

between the NW and SE side of the reef (shapes: R = 0.63,

p\ 0.01; branch length: R = 0.58, p\ 0.01; size classes:

R = 0.54, p\ 0.01) (Fig. 8). All morphology classes were

more abundant on the SE side of the reef, but the propor-

tion of the different morphologies differed. The NW side

had a higher proportion of cauliflower-shaped colonies than

bush-like colonies (SE: 0.02 vs. NW: 0.43). The NW side

also had a larger proportion of short branches versus long

branches (SE: 0.12 vs. NW: 0.43). The proportion of very

small colonies was much higher on the SE side (0.52) than

the NW (0.14).

Discussion

Percentage cover of Lophelia pertusa

On Tisler Reef, CWC growth and development takes place

on both sides of the sill, due to downwelling occurring on

both sides (Fig. 1c; Wagner et al. 2011). However, there

was significantly lower coral cover on the NW side of the

reef. Firstly, the higher percentage cover of soft substrates

on the NW side is likely to decrease the availability of hard

substrates that corals need for settlement (Wilson 1979).

Secondly, the dominant current flows to the SE 57% of the

time and to the NW 43% of the time, which broadly con-

firmed the pattern observed over a 2-yr period by Wagner

et al. (2011). This implies that the SE side of Tisler Reef is

exposed more frequently and for longer periods of time to

downwelling, where warmer and more chlorophyll-rich

water is transported to the corals from surface waters,

creating more favourable growing conditions for L. pertusa

and sponges, similar to other areas (Duineveld et al. 2007).

These two factors could explain why the SE side had a

higher percentage of coral habitat.

Tisler Reef is a highly dynamic environment. Current

speeds as high as 99.8 cm s-1 were recorded during

2006–2010, higher than previously reported (Wagner et al.

2011). Suspension- and filter-feeding organisms, like corals

and sponges, thrive in high-current-speed environments, as

it increases their food encounter rates (Best 1988; Hunter

1989; Fabricius et al. 1995; Sebens et al. 1998). Fast cur-

rents also help prevent polyps from becoming clogged with

sediments (Brooke et al. 2009; Larsson and Purser 2011).

Zooplankton capture rates can vary among coral species

and can depend on flow speed, water temperature and prey

size (Purser et al. 2010; Gori et al. 2015; Orejas et al.

2016). For L. pertusa, the zooplankton capture rate is

optimal at slower speeds of 2.5 cm s-1 (Purser et al. 2010).

When the current exceeds this speed, the polyps could bend

backwards which reduces the feeding surface (e.g. gor-

gonians: Fabricius et al. 1995; tropical scleractinians:

Sebens and Johnson 1991). At higher current speeds, prey

could also escape from the polyps as the higher flow

velocities may give them sufficient momentum to break

free (Purser et al. 2010). Optimal conditions for coral

feeding, and therefore growth, can change constantly

within a reef as the local current speed and direction

change not only at large timescales but also on a daily

basis. For instance, at Mingulay Reef, where L. pertusa is

also the dominant reef-forming coral, current speed varies

from * 2 to * 30 cm s-1 in a single day (Davies et al.

2009). On coral reefs, dense coral thickets slow down

current speeds due to friction with their framework

(Roberts et al. 2009). Therefore, in highly dynamic envi-

ronments, like Tisler Reef, the optimal conditions for coral

feeding will vary over time for different individual coral

colonies, i.e. many corals will experience ‘‘optimum’’

conditions at some point during a day. It is likely that,

depending on the current direction, the SE and NW sides

are exposed to different current speeds that could affect

CWCs’ ability to feed and grow. Unfortunately, our data

could not be used to compare current speeds between the

NW and SE sides of the reef since differences in the

measured current speed were observed even though the

ADCP deployments were relatively close to each other.

a b c

Fig. 8 Density (colonies m-2) of colonies with different shape

categories, branch length and the different size classes on the SE and

NW sides of the reef. a Cauliflower-shaped versus bush-shaped

colonies. b Short versus long coral colony branches. c Proportion of

size classes. VS very small, S small, M medium and L large
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The measured current speeds tended to be stronger in sites

further towards the NW (Fig. 6). This is because, close to

the seabed, flow over a sill will tend to decelerate upstream

and accelerate downstream.

Lophelia pertusa morphology

Corals on a reef are frequently subjected to different flow

directions and changes in environmental variables that

affect their growth morphology (Wainwright and Dillon

1969; Mortensen and Buhl-Mortensen 2005; Todd 2008;

Chindapol et al. 2013). When corals occur in an area with

strong unidirectional currents, colonies develop a more

bush-like shape with their branches growing in the

upstream direction (Chindapol et al. 2013). At Tisler Reef,

the water currents are forced through the sound between

the Tisler and Hvaler Islands. Consequently, the currents

are relatively unidirectional resulting in the observed

higher density of asymmetrical, bush-like coral colonies.

Cauliflower-shaped colonies were less abundant on Tisler

Reef. This symmetrical shape is more likely to develop

under low current speeds (Chindapol et al. 2013). Areas

where this shape was observed could therefore indicate

more sheltered conditions within the reef.

The proportion and abundance of very small colonies

were significantly higher on the SE side of Tisler Reef,

which indicates recruitment. This could be a consequence

of the more optimal feeding conditions due to more fre-

quent periods of downwelling, allowing coral larvae to

survive and grow. Alternatively, the higher percentage

cover of live and dead coral structures may increase the

settlement of larvae. The structure of the live and dead

corals increases turbulence (Chamberlain and Grauss 1975;

Hennige 2016), which could allow L. pertusa larvae to

enter the bottom boundary layer to access rubble and other

hard substrates for attachment. The planula larvae of L.

pertusa seems to prefer settling on protruding bodies such

as in between coral rubble or even on oil rigs (Wilson

1979; Bell and Smith 1999; Gass and Roberts 2006). Live

L. pertusa is not a suitable settling substrate as the per-

manent mucus layer (coenosarc) on their skeleton prevents

attachment of sessile epibiotic species (Freiwald 2002;

Buhl-Mortensen et al. 2010). However, diverse microhab-

itats are provided by dead coral skeletons which facilitate

the high biodiversity associated with reef-forming CWCs

(Mortensen and Fosså 2006; Buhl-Mortensen et al. 2010).

The NW side of the reef has coral rubble present, but lacks

large amounts of dead L. pertusa framework. Together with

the higher percentage cover of soft substrates on the NW

side, insufficient settling substrates, less turbulence and

elevation out of the bottom boundary layer could explain

why fewer small colonies were observed on the NW side of

Tisler Reef (Masson et al. 2003; Strömberg 2016)

(Fig. 2b). Thus, the presence of the structure formed by

coral colonies, in this case on the SE side of Tisler Reef,

may have a positive effect on the suitability of the area for

the larvae.

Percentage cover of sponges

Geodia sp. had lower percentage cover than M. lingua. The

low presence of this sponge at Tisler Reef could be a

consequence of interspecific competition between Geodia

sp. and L. pertusa for settling substrate and food. This was

also indicated by the positive correlation between the cover

of dead L. pertusa and Geodia sp. Purser et al. (2013)

posited that competition for substrate may be one of the

reasons for the low co-occurrence of L. pertusa and Geodia

baretti. The low percentage cover of Geodia sp. on Tisler

Reef could also be caused by periods where the maximum

temperature was 1.5–3 �C higher than the normal maxima

(* 9 �C). These high temperatures recorded at shallow

depths between 90 and 120 m have resulted in mass mor-

tality events (HERMES 2008; Guihen et al. 2012). The

depths at which the high temperatures were recorded fall

within the depth range at which the transect on the NW side

was collected. Interspecific competition, exposure to high

temperatures and the slow growth rate of Geodia sp. could

therefore explain the low presence of this sponge at Tisler

Reef.

A positive correlation between the cover of live and

dead L. pertusa and the occurrence of M. lingua was found

at Tisler Reef. This relationship varies at different reefs; a

positive correlation was documented at Røst Reef (Nor-

way), whereas a negative correlation occured at Sotbakken

and Traena reefs (Purser et al. 2013). In contrast to Geodia

sp, M. lingua can use living L. pertusa as a substrate; they

can grow within a colony (Lavaleye et al. 2009; Purser

et al. 2013) and are therefore not in direct competition for

hard substrate for settlement (Figs. 2c, 3a, 4b, 5c, d). This

could explain why the percentage cover of M. lingua is

much higher than that of Geodia sp. Interestingly, a higher

percentage cover ofM. lingua was found on the NW side of

Tisler Reef. This finding seems surprising, as a higher

percentage of L. pertusa, on which M. lingua can grow,

was recorded on the SE side (Figs. 2c, 3a, 4b, 5c, d). It is

possible that the corals occurring on the NW side were

exposed to higher rates of stress, giving M. lingua a

competitive advantage (Rützler and Muzik 1993). Tisler

Reef is a shallow, nearshore reef; it is likely to be exposed

to seasonal temperature fluctuations, terrestrial and human-

induced influences and more eutrophic conditions caused

by river outflow and agricultural activity (van Soest and De

Voogd 2015). Studies on intraspecific interactions and

environmental stressors could provide insight into what

drives this difference.
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Importance of this study

This study highlights differences in the spatial distribution

of live versus dead coral framework and morphology

within a reef, which are mostly related to variations in the

substrate and local hydrodynamics. Buhl-Mortensen et al.

(2010) and Wheeler et al. (2007) provided illustrations and

acoustic data that gave an indication of the distribution and

abundance of live versus dead L. pertusa in a CWC reef or

on a CWC carbonate mound. De Clippele et al. (2016)

showed the presence of live and dead coral framework on

small reefs in Mingulay Reef by using microbathymetry

(35 9 35 cm cell size). These studies showed that live

coral grow into the dominant current to optimize food

capture. On Tisler Reef, the dominant current direction

reverses, and therefore, Wagner et al. (2011) observed live

coral growth on both ends of the reef. Even though live

coral was present at both ends, clear differences in the

percentage cover of live and dead coral were observed in

this study. Wheeler et al. (2007) highlight that environ-

mental controls such as current dynamics, temperature,

salinity, pH, food supply and sediment supply affect the

growth and thus the morphology of CWC carbonate

mounds. Wheeler et al. (2007) indicated that the mor-

phology of mounds can provide clues to the environment.

The difference between CWC mounds and reefs is the

shallow nature and relatively young age of reefs, which

creates a more dynamic and unpredictable environment

compared to CWC mounds. Our study indicates that the

local hydrodynamics and food supply affect the reef’s

growth. Studies describing the morphology and fine-scale

distribution of the different habitats provided by corals,

help to understand how CWC reefs grow. Dead coral

framework and coral rubble provide a large variety of

microhabitats that can be used by, for example, crus-

taceans, crinoids, other corals, fish and microorganisms

(Costello et al. 2005; Buhl-Mortensen et al. 2010; Henry

and Roberts 2017). This study showed that understanding

the variation in the amount of live versus dead coral

framework is complex but likely related to differences in

fine-scale hydrodynamic processes and food supply. Map-

ping differences in live versus dead coral framework and

rubble can shed light on coral recruitment success within a

reef and the distribution of associated organisms.
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