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Abstract. Affective analysis of physiological signals enables emotion
recognition in mobile wearable devices. In this paper, we present a deep
learning framework for arousal recognition from ECG (electrocardio-
gram) signals. Specifically, we design an end-to-end convolutional and
recurrent neural network architecture to (i) extract features from ECG;
(ii) analyse time-domain variation patterns; and (iii) non-linearly relate
those to the user’s arousal level. The key novelty is our use of a shared-
parameter siamese architecture to implement user-specific feature cali-
bration. At each forward and backward pass, we concatenate to the input
a user-dependent template that is processed by an identical copy of the
network. The siamese architecture makes feature calibration an integral
part of the training process, allowing modelling of general dependencies
between the user’s ECG at rest and those during emotion elicitation.
On leave-one-user-out cross validation, the proposed architecture obtains
+21.5% score increase compared to state-of-the-art techniques. Compari-
son with alternative network architectures demonstrates the effectiveness
of the siamese network in achieving user-specific feature calibration.

Keywords: Emotion Recognition, Electrocardiogram, Siamese Neural
Network, Convolutional and Recurrent Neural Network.

1 Introduction

Driven by applications in mobile mental health and human-computer interaction
[1], affective analysis of physiological signals has recently grown in popularity.
Since the pioneering use of electrodermal activity for arousal detection, the re-
search has evolved to cater for a range of physiological signals, such as electro-
cardiogram (ECG), electroencephalogram, electromyogram, breath rhythm and
skin temperature [1]. However, while much effort has focused on multi-modal
sensor fusion, model performance on single signal sources is still sub-optimal. At
the same time, achieving performance improvement for single sensors can push
accuracy boundaries for the overall model architecture even further, potentially
leading to increased wearability of emotion recognition systems.



The ECG signal, in particular, has become a focus of investigations because
of its unobtrusiveness, low cost and widespread availability of ECG sensors, as
well as sensitivity to both arousal and valence component of emotions [2]. Exist-
ing state-of-the-art machine learning pipelines for emotion recognition from ECG
signals usually proceed by extracting the HR (Heart Rate) signal and applying
sophisticated HRV (Heart Rate Variability) analysis techniques in a multi-step
process. This is mainly composed of: (i) HRV feature extraction; (ii) automatic
feature selection; (iii) user-specific feature calibration; (iv) hyper-parameter op-
timisation; and (v) model fitting. While steps (iv) and (v) are those actually
involved in model estimation, the overall performance of the resulting model
mainly depends upon the effectiveness of steps (i) to (iii), as testified by the ex-
tensive literature on feature extraction, selection and calibration for HRV anal-
ysis [2-6]. While the feature extraction and selection steps are focused on ex-
tracting the most informative features from the HR signal, user-specific feature
calibration crucially strives to enforce relative variation of feature values in the
model, rather than absolute variation, as the former are related to changes in
the user’s affective state. Furthermore, the features based on HRV are the only
type of features extracted from the ECG signal, and thus affective information
carried by most of the ECG signal is completely neglected [8-10].

In this work we pose the arousal recognition problem as a supervised classi-
fication problem and investigate the use of deep learning for arousal recognition
from ECG. For this purpose, we design a deep Convolutional and Recurrent Neu-
ral Network (CRNN) architecture that (through end-to-end training) automat-
ically extracts general non-linear and time-domain features from the time-series
ECG signal and non-linearly relates those to specific arousal classes based on
common variation patterns found. Inspired by state-of-the-art HRV-based ma-
chine learning pipelines, we propose the use of shared-parameter siamese neural
network architectures [16], called the Siamese CRNN (S-CRNN), as a system-
atic way to extend and generalise feature calibration techniques into the deep
learning framework. By making feature calibration an integral part of the end-
to-end learning process, we allow the neural network to model general nonlinear
dependencies between the user’s ECG signal at rest and that during emotion
elicitation experiments. Namely, at each forward and backward pass through
the network one branch of the S-CRNN processes a new data sample, while the
other S-CRNN branch analyses a template sample specific to the user’s neutral
affective state. We use truncated back-propagation through time and stochastic
gradient descent to train the network in the classification problem associated to
the user’s arousal level.

We compare the S-CRNN architecture against state-of-the-art HRV analysis
pipelines on the classification task associated to a dataset for arousal recognition
during a real-world driving task [15]. The results obtained empirically demon-
strate the advantages of the end-to-end approach for arousal recognition from
the ECG signal. Namely, on leave-one-user-out cross validation settings the S-
CRNN architecture obtains average AUCs percentage increase of +21.5% on the
best results obtained by HRV analysis (that is, from 0.659 to 0.801). We further



analyse the proposed S-CRNN against alternative architectures and approaches
for feature calibration and find that the approach based on shared parameter
siamese neural networks leads to a +7.5% performance increase compared to the
corresponding CRNN, at the cost of negligible increase in network parameters.

Contributions. The paper makes the following contributions.

— We propose an end-to-end classification framework for arousal recognition
from ECG. We design a CRNN that automatically extracts features from
ECG and analyses time patterns, among them, relating them to arousal
classes.

— We investigate the use of siamese neural networks as a systematic way to
implement feature calibration techniques into the deep learning framework.

— We empirically compare the S-CRNN architecture against state-of-the-art
HRV analysis methods, observing a +21.5% performance improvement.

— We compare S-CRNN, models based on HRV analyses and alternative net-
work architectures in terms of generalisation performance to new users when
very few users are included in the training set. We assess the advantages of
the siamese architecture in achieving personalised feature calibration.

Organisation. The remainder of the paper is organised as it follows. In Section
2 we analyse related work in emotion recognition from the ECG signal and the
use of deep learning in affective computing. In Section 3 we present the S-CRNN
architecture designed for arousal recognition from ECG. Empirical results eval-
uating the effectiveness of the S-CRNN architecture are discussed in Section 4.
Finally, Section 5 completes the paper with a discussion on the method pre-
sented, and outlines future work directions.

2 Related Work

In this section, we give a brief overview of machine learning methods developed
for HRV analysis and applications of deep learning for affective computing.

2.1 Heart Rate Variability Analysis for Arousal Recognition

Table 1 lists a collection of 31 features generally extracted from HR signal and
used for HRV analysis for arousal recognition [2-6]. Machine learning methods
based upon HRV analysis are multi-step, including feature selection and user-
dependent feature calibration as crucial steps of the model learning.

In fact, Ollander et al. [5] investigate extensive feature selection for emo-
tion recognition from biosignals. They extract a number of HRV features, which
are then calibrated using mean and standard deviation computed from a set
of user-specific neutral affective state measurements. Few of the selected HRV
features actually survive the feature selection step. Zhao et al. [2] extract several



Domain Name

Mean, Median, SDNN, pNN50
RMSSD, SDNNi, meanRate, sdRate.
Geometrical TINN, RRTI, HRVTi.
Welch PSD: LF/HF, (LF+MF)/HF , peakLF, peakHF.
Frequency Burg PSD: LF/HF, (LF+MF)/HF, peakLF, peakHF.
L-S PSD: LF/HF, (LF+MF)/HF, peakLF, peakHF.
Poincaré SD1, SD2, SD2/SD;.
Nonlinear SampEn,, SampEn,, DFA,;, DFA;, DFA,.

Time

Table 1: Type of HRV feature analysis employed for emotion recognition. Full
details, including feature extraction algorithms, can be found in [2-5].

features from participants’ HR signals and perform feature calibration on them.
An SVM model is then trained on the data by using /; regularisation for au-
tomatic feature selection. Reportedly, only 10 out of 26 extracted features were
actually used by the SVM model. Melillo et al. [4] extracted 13 HRV features,
and applied exhaustive feature selection procedure and linear discriminant anal-
ysis. Surprisingly, the resulting classifier relied only upon three of the extracted
features. In order to partially overcome the feature selection problem, Gjoreski
et al. [7] train a multi-layer perceptron to predict arousal level from a PSD of
the HR signal. They report improvements over models trained on top of HRV
features, albeit the neural network proposed is constrained to use only frequency
domain features, and no feature calibration procedure is implemented.

Finally, though most of the above works extract HR from ECG, HRV anal-
ysis is the only systematic method used to compute features. Thus, potentially
relevant information from most of the ECG signal is ignored [8-10].

2.2 Deep Learning for Affective Computing

Many works have investigated the use of deep learning for face expression clas-
sification from images, as well as sentiment analysis of text, with deep learning
approaches systematically outperforming other techniques [12].

Martinez et al. [11] were among the first to apply end-to-end deep learning for
physiological signals’ affective processing. They developed a CNN for preference
learning from galvanic skin response and blood volume pulse data, and empiri-
cally demonstrated the advantages of deep features over manually designed ones.
Tripathi et al. [17] applied CNNs for arousal recognition from EEG. Empirical
results show up to =~ 14% improvement against methods based on manual feature
extraction. Cho et al. [23] present a CNN architecture for stress recognition from
breathing patterns. Emphasising data augmentation as a crucial step for model
training, they obtain substantial improvements over competitive methods.

Our work is a continuation of the latter works that bring deep learning to
the field of emotion recognition from physiological signals. The key novelty is the
use of siamese networks as a systematic way to implement feature calibration,
which is usually overlooked in deep learning frameworks for emotion recognition.



3 Methods

This section discusses our design of the neural network architecture for arousal
recognition from ECG signal. First, we describe data pre-processing and aug-
mentation used. We then present the CRNN architecture we designed for feature
extraction, and describe the shared-parameter siamese version of the latter.

3.1 Preprocessing

As pre-processing steps we apply a baseline remover filter and standardisation
to each ECG signal. We thus segment the signals in fixed-size time windows with
50% overlap. Based on empirical results from ultra-short term HRV analysis [18],
we use time windows of 15 seconds, as these provide just enough information to
extract significant features from the ECG signal. Though windows of greater size
would increase model sensitivity to small feature variations, they would conflict
with the practical limitations of the back-propagation through time training
algorithm (i.e., increased training time and vanishing gradient problem).

3.2 Data Augmentation

Datasets for emotion recognition from physiological signals are typically of small
size, and thus deep models applied to them tend to overfit [7]. Furthermore,
real-world datasets related to health applications are notoriously unbalanced,
with the class associated to the absence of the disorder usually greatly over-
represented in the training data. This makes stochastic gradient descent some-
what challenging, as it will likely get stuck in a local optimum corresponding
to a trivial majority classifier. We thus heavily rely upon data augmentation
techniques in order to train our CRNN model.

First, we re-balance class labels of the training set by making multiple copies
of random representatives from the minorities class until the dataset is perfectly
balanced (that is, until each class is equally represented in the dataset). Then,
from each signal slice, we generate n training samples. Namely, we randomly
sub-sample n times the signal to a fixed size time window of m time points. In
doing so, we keep the time-stamps associated to the sub-sampled signal. Hence,
loss of information due to sub-sampling is mitigated, as the neural network is
potentially able to partially interpolate the missing pieces of the signal. Unless
otherwise specified, in the experiments of Section 4 we use n = 20 and m = 1024.

3.3 Convolutional Recurrent Neural Networks

The proposed model architecture is sketched in Figure 1 and summarised in
Table 2. Inspired by state-of-the-art HRV features, the CRNN employs a 3-layer
bidirectional RNN to summarise temporal patterns on top of a one-dimensional
6-layer CNN. The CRNN is designed to first extract non-linear features from the
ECG signal, and then to analyse temporal information of feature variations.
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Fig.1: Proposed CRNN architecture, consisting of 6 convolutional blocks and
three stacked bidirectional recurrent neural networks.

Each convolutional block consists of a convolutional layer and a non-linear
activation function layer. After every other block, we use a one-dimensional max-
pooling layer to extract salient points from feature maps and compress temporal
information. Crucially, we employ Parametric ReLU [19] activation functions in
between convolutional layers to avoid dead ReLU problems. Parametric ReLU
allows automatic learning of the activation slope for negative input, effectively
avoiding the issue of fast death of units slowing down the learning procedure.
Notice that, because of data augmentation applied to the training set, data
distributions for the training set and the test set are systematically different, and
hence we cannot rely on batch-normalisation layers (usually used to circumvent
dead ReLU problems).

HLayer 1‘Layer 2‘Layer 3‘Layer 4‘Layer 5‘Layer 6

1-D Conv. Filters 16 32 32 64 128 128
1-D Conv. Kernel 11 9 9 7 7 7
1-D Max-pooling v X v X v X
Bi-RNN Units 128 128 256 X X X
1-D Max-pooling X v X X X X

Table 2: Details of the architectures and hyper-parameters of the CRNNs de-
signed for arousal recognition from ECG. Ticks (respectively crosses) indicates
that the layer is included (not included) in the layer block.

We use vanilla RNN units, as we experimentally observe that gated recurrent
layers quickly lead to overfitting problems. We speculate that this is due to the
small size of the dataset used here compared to datasets usually employed to
train deep LSTM and GRU recurrent networks [20, 13]. We use a one-dimensional
global average pooling layer to summarise temporal patterns extracted by the
recurrent layers. Finally, we interleave dropout layers in between each pair of
layers, and only for the non-recurrent connections.



The final output of the CRNN is a vector of nonlinear and time domain
features extracted from each time window of the ECG signal. Next, we will
discuss how this is used to predict an arousal class from each signal window.

3.4 Siamese Neural Networks

We implement the CRNN inside a shared-parameter siamese architecture [16].
The outline of the siamese network is sketched in Figure 2. At each forward
and backward pass through the network, a user-specific template is fed into
the network along with the signal window currently analysed. The latter, and
the user-specific template, are independently processed by the CRNN, which
extracts two separate feature vectors from them. The resulting feature vectors
are concatenated into a unique feature map and altogether processed by a fully
connected layer. By relying on the fully connected layer, the siamese architec-
ture has the capabilities to use features extracted from the user’s template to
systematically calibrate those extracted from the current signal sample. Finally,
a soft-max layer estimates the probability of the user being in an arousal state.

Current
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Fig. 2: Shared-parameter siamese architecture for arousal recognition. The cur-
rent ECG window and the user-specific template are passed through the CRNN.
The two feature maps are then concatenated and used to estimate arousal level.

Analogously to methods based on HRV analysis, for the user-specific tem-
plate we employ a sample recorded from the user before the beginning of the
experiment, which is assumed to be representative of the user’s neutral affective
state. Notice that, in order to mitigate overfitting, we apply data augmentation
techniques outlined in Subsection 3.2 also to the users’ templates.

4 Results

In this section we describe experiments related to the following key points:

— Comparison of HRV and S-CRNN on arousal recognition.
— Evaluation of the siamese architecture capabilities to implement feature cal-
ibration, comparing the S-CRNN with alternative network architectures.



— Analysis of the number of users included in the training set (population size)
to asses the effect on the feature calibration layer.

— Sensitivity analysis of hyper-parameters included in our methodology, focus-
ing on data-augmentation and number of convolutional/recurrent layers.

4.1 Dataset

We perform comparisons on the classification task associated to a dataset for
arousal recognition made publicly available by Schneegass et al. [15]. Briefly,
a set of physiological signals were recorded from 10 users during a real-world
driving task. Data samples were then subjectively labelled by each user for
arousal/driving workload. Among the signals included in the dataset, we fo-
cus on ECG and use the arousal labels to define a binary classification problem
(low vs. high arousal).

4.2 HRV-based analyses

We train models based on HRV on the 31 features listed in Table 1 and provide
results for a selection of classification methods used in the literature [2-5], that
is, k-Nearest Neighbours (K-NN), Linear Discriminant Analysis (LDA), Support
Vector Machine with Iy regularisation (SVM-11) and Random Forest (RF). We
apply state-of-the-art feature selection algorithms and hyper-parameter optimi-
sation to all the techniques based on HRV analysis on a nested cross validation
setting. Namely, we use fitting and hyper-parameter optimisation routines im-
plemented in the Matlab machine learning toolbox, and apply forward search,
backward search and randomised search for feature selection. For space limita-
tion, for each model we include results only for the best performing combination
of parameters/features.

4.3 Experimental Setup

Because of strong class imbalance (only ~ 6% of samples are representative
of the arousal class) we compare the results based on AUC score. Results are
presented for leave-one-user-out cross validation. We use Keras [21] with Tensor-
Flow [22] backend for implementation and training of neural networks. We train
the networks using Adam optimiser [24] up to a maximum of 100 epochs, and
use early stopping on a validation set. We do not investigate exhaustive hyper-
parameter optimisation for the S-CRNN, as it is nested in a cross validation and
would thus lead to prohibitive computational times. Instead, we perform a local
hyper-parameter analysis on the most sensitive hyper-parameters (Section 4.6).
We train HRV analysis models on a 2 GHz Intel Core i5 processor with a RAM
of 8 GB @1867 MHz. Computational time for a full round of hyper-parameter
optimisation and cross validations for each HRV model varied between about
1 and 12 hours. We train deep learning models on NVIDIA Tesla K80 GPU.
Computational time for a full round of cross validation took about 60 hours.



4.4 Comparison of HRV and S-CRNN

In Figure 3a we compare average AUCs obtained by different classification mod-
els learnt on top of HRV features with the results obtained by the S-CRNN, for
an increasing number of users included in the training set. Results for popula-
tion sizes between 1 and 7 are averaged over 10 randomly chosen combinations
of users included in the training set (consistently among models).

As expected, we observe an overall trend for all the methods to perform
better as the number of users included in the training set increases. However,
the performance boost obtained for all the models when increasing the number
of training users from 1 to 5 seems to saturate for HRV-based methods, which
fail to take advantage of such increases. On the other hand, the S-CRNN obtains
additional AUC boosts when more users are included in the training set. For the
largest size of the training set allowed by the dataset used here (i.e. 9 users)
the S-CRNN obtains average AUCs percentage increase of +21.5% compared
to the best results obtained by HRV analysis (i.e. from 0.659 to 0.801 AUC).
Finally, notice that all the methods based on HRV analysis perform similarly to
each other. This suggests that the low AUC reached is not related to the actual
classification model used, but to the weak correlation between the HRV features
extracted and the user arousal level.
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(a) HRV based method and S-CRNN. (b) Variants of S-CRNN.

Fig.3: AUCs for increasing the number of users included in the training set.

4.5 Variations on the Architecture

In Figure 3b we compare the S-CRNN with variants of its architecture, namely,
with the CRNN model that does not benefit from the feature calibration layer,
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and with a M-CRNN (Merged-CRNN). Similarly to the S-CRNN, the latter is
based on two separate CRNN branches, but they do not share parameters.
Again, there is an overall trend of AUC increase as the number of training
users increases. Contrary to what happens for HRV based methods, here all the
models systematically get performance boost every time new users are included
in the training set. This is likely to be related to the greater capacity of neu-
ral networks to use information from more data compared to manual feature
extraction pipelines. Interestingly, the CRNN slightly outperforms the S-CRNN
for population sizes of 1, 3 and 5. We speculate that this is because, with small
population sizes, the feature calibration layer overfits to the specific training
users characteristics. However, as the number of users increases, the S-CRNN is
able to take full advantage of the information carried by new users’ data. In fact
with population size of 9, by proper calibration of the features extracted by the
CRNN, the S-CRNN obtains a +7.5% percentage increase on the corresponding
CRNN. Finally, notice that, even though the M-CRNN model is more general
than the S-CRNN, it completely fails to improve even on the score obtained by
the CRNN. This could be due to the almost double number of parameters of the
M-CRNN, which quickly results in the model overfitting to the training data.

4.6 Hyper-parameters’ Analysis

In Figure 4a we plot AUCs obtained for different numbers of recurrent and
convolutional layers included in the S-CRNN. We analyse the effect of changing
the number of layers of one type (either convolutional or recurrent), while keeping
the other type of layers fixed to its nominal value. Notice that the x and y axis
are normalised with respect to the S-CRNN architecture. The strongest effect
is given by the convolutional layers, with the fully recurrent network obtaining
only about 60% of the S-CRNN AUC. After an initial rapid increase, the AUC
score saturates around the nominal S-CRNN architecture.
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(a) Convolutional and recurrent layers.  (b) Data augmentation hyper-parameters.

Fig. 4: Hyper-parameter analysis for S-CRNN.
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Figure 4b shows the analysis results for the two hyper-parameters involved
in the data augmentation phase. As expected, there is an overall trend of AUC
increase as the number of copies made from each training sample is increased.
However, the benefit from having more copies saturates around 15. Analogously,
the more samples given as input to the S-CRNN, the higher is the AUC obtained.

5 Conclusions

We proposed a siamese CRNN architecture for arousal detection from ECG. The
CRNN is explicitly designed to extract non-linear features from the ECG signal
and analyse relevant time patterns using a 3-layer RNN stacked on top of a 6-
layer CNN. Relying on a shared-parameter siamese architecture, we implemented
feature calibration in the deep learning framework itself, which allows the neural
network to model non-linear relationship between users’ ECG at rest and that
during emotion elicitation. We demonstrated the advantages of our approach
compared to state-of-the-art HRV based methods, obtaining up to +21.5% per-
centage improvement on the AUC score. Further, we showed that the siamese
architecture obtains +7.5% score increase compared to the CRNN.

As future work we plan to extend the S-CRNN to long-term analysis settings,
and hence perform extensive comparison with techniques for medium and long-
term HRV analysis. We emphasise that, though the siamese architecture was
introduced for ECG, it can be generalised to most of the physiological signals
used for affective state recognition. As feature calibration has proven to be a
crucial step for manual feature extraction pipelines, future work will investigate
whether affective computing based on deep learning architectures can benefit
from the siamese network feature calibration paradigm proposed here.
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