
Modelling and Correcting Duplication in Evolving Software
Product Lines

Amal Khtira1, Anissa Benlarabi2 and Bouchra El Asri3

IMS Team, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University
Rabat, Morocco

Abstract
Software Product Lines (SPLs) are long-living systems that

require inevitably continuous changes to product line models.

Many studies in the literature have dealt with different challenges

related to the evolution of software product lines. Among these

challenges, the detection and correction of model defects have

received a great interest. In this vein, our work addresses this

challenge and focuses on a specific model defect, which is

feature duplication. The main objectives of this paper are to

propose a formal definition of feature duplication, to provide a

meta-model that describes the dependencies between duplication-

related concepts, and finally to present in details our solution to

detect this defect in evolving software product lines. In order to

illustrate our approach, we use an open source SPL called

FeatureAMP.

Keywords: Software Product Line, Feature Models, Software

Evolution, Duplication, Natural Language Processing.

1. Introduction

Software Product Line Engineering is an approach that

aims at creating specific products for different customers

while reducing development cost and enhancing product

quality [1]. Feature-Oriented SPLs are centered on the

notion of Feature. Indeed, the behavior and the functions

of a system are described through the definition of features,

then these features are used to determine the variability

and commonality of the system, which enables the

generation of a panoply of specific products that responds

to different customers’ needs.

Software Product Lines are long-living systems that

require inevitably permanent evolution. This evolution is

generally caused by new technologies, new customer

requirements or new business strategies. Researchers have

carried out many studies that deal with evolution-related

issues in software product lines. These studies can be

classified into four main categories: Evolution traceability

[2][3][4], evolution modelling [5][6][7], co-evolution

analysis [8][9][10], and finally change impact analysis

[11][12][13]. In the context of the last category, we deal

particularly with model defects caused by SPL evolution.

A literature review about model defects in software

product lines has shown that some defects such as

ambiguity and inconsistency have generated considerable

interest [7][11][12][15][20][27][28], while other defects

such as obsolescence, omission and duplication have not

been thoroughly treated. In our work, we focus on Feature

duplication which occurs when two or more features of the

same semantics co-exist in a feature model of a software

product line.

Thus, the objective of this paper is to provide definition

and modelling for all the concepts related to feature

duplication and to describe in details our framework

proposed to optimize the evolution of SPLs through the

correction of feature duplication.

The remainder of the paper is structured as follows.

Section 2 gives an overview of the background of our

work, namely software product line evolution, model

defects in SPLs and feature duplication. Section 3

proposes a definition of feature duplication and all the

underlying concepts, and provides a meta-model that

relates these concepts. In Section 4, we present the details

of the framework proposed to detect and correct feature

duplication when evolving software product lines. The

different processes of the framework are illustrated

through the FeatureAMP product line. Section 5 presents

some studies in the literature that address model defects in

software product lines. Finally, Section 6 concludes the

paper and describes future work.

2. Background and Objective

In this section, we present the background of our work.

First, we address the software product line evolution and

discuss the challenges related to this issue. Then, we list

the different model defects discussed in the literature, and

finally we highlight the concept of duplication in software

product lines.

2.1. Software Product Line Evolution

Software evolution has always been one of the issues most

addressed in literature. Software product lines are no

exception, since they are long lived systems that incur

significant evolution throughout their service life due to

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 29

2018 International Journal of Computer Science Issues

new business strategies, new customers’ requirements or

new technology challenges. Many studies in the literature

have dealt with issues related to SPL evolution. These

issues can be classified into four categories: Evolution

traceability, evolution modelling, co-evolution analysis,

change impact analysis.

Evolution Traceability [2][3][4]: The traceability is a

mechanism that helps identify and trace links between the

artefacts of a SPL or between its different versions. The

approaches dealing with traceability address in general the

evaluation of change history, the analysis of relationships

between interrelated artefacts and the detection of potential

inconsistencies, which enables the anticipation of future

decisions and the estimation of evolution cost.

Evolution Modelling [5][6][7][16]: In the case of

software product lines, the evolution impacts different

types of assets, namely requirements, architecture and

code. In order to preserve the integrity of these assets,

several works have proposed strategies for change

management and defined systematic and controlled stages

of evolution, which simplifies the evolution process.

Co-evolution Analysis [8][9][10]: In software product

lines, two kinds of co-evolution are discussed. The first

type concerns co-evolution between artefacts like in [8]

where co-evolution is captured between the variability

model, the makefiles and the source code in a specific

Linux kernel release, or in [9] that analyzed the co-

evolution between feature models and code. The second

type is the co-evolution between the core platform and the

derived products, which was discussed in [10]. According

to this study, the products of a software product line could

evolve independently of the domain, which leads to a set

of single applications instead of applications belonging to

the same platform. Thus, an approach is proposed in this

paper as a solution to this problem.

Change Impact Analysis [11][12][13][17][40]: The

evolution of complex and large scale systems is a difficult

task since any change can have adverse effects on all parts

of a system. The analysis of change impact helps estimate

the maintenance effort, define evolution-related tasks and

take the right decisions concerning the change

implementation. It also enhances the product quality and

ensures the system integrity by detecting potential defects.

Within this context, our work aims at the verification of

SPL models during evolution through the detection and

correction of model defects.

2.2. Model Defects in SPLs

As a result of software product lines evolution, some

defects can be introduced in the different artefacts of the

product line (i.e. requirements, features, design and code).

Based on a systematic review on model defects in software

product lines, we could identify the different defects

addressed in the literature and determine the different

solutions dealing with these defects. Table 1 contains the

definitions of these defects.

Table 1: Definitions of Model Defects

Model Defect Definition Source

Ambiguity

Some Information from the feature

model is not clear, allowing multiple

interpretations for the specified

domain.

[14]

Duplication

To have the same thing expressed in

two or more places; duplication can

happen in specifications, processes

and programs.

[18]

Erosion

Erosion means that realization

artifacts become overly complex due

to unforeseeable changes.

[21]

Non-attainable

domains

A non-attainable value of a domain

is the value of an element that never

appears in any product of the product

line.

[19]

Uncertainty

Requirements uncertainty refers to

changes that occur to requirements

during the development of software.

[22]

Incompleteness
The lack of necessary information

related to a feature or requirement.
[23]

Inconsistency

Some feature model element is not

consistent with another element from

the same feature model.

[14]

Incorrectness

Some information or behavior from

the feature model contradicts its

domain specification.

[14]

Extraneous

information

Some Information in the feature

model is outside the domain scope.
[14]

Unsafety

This happens when the behavior of

existing products is affected by a

new evolution.

[17]

Redundancy

Redundancy in a PLM is the

presence of reusable elements and

variability constraints among them

that can be omitted from the PLM

without loss of semantic on the

PLM.

[19]

Non-

conformance

Given a feature f, and a (FSMd,

FSMr) pair corresponding to f, we

say that the design of f conforms to

the requirements of f, if every variant

of the FSMd has a corresponding

FSMr variant.

[25]

Obsolescence

An obsolete software requirement is

a software requirement, implemented

or not, that is no longer required for

the current release or future releases.

[26]

Omission

Some information from the domain

was not properly included in the

feature model.

[14]

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 30

2018 International Journal of Computer Science Issues

An analysis of the different papers concerned by the

systematic review has shown that the model defect most

discussed in the literature is inconsistency

[7][12][13][14][20][27][28], while other defects are not

thoroughly treated, especially duplication.

2.2. The Notion of Duplication

Duplication as described by [18] is the fact of having the

same thing expressed in two or more places and can

happen in specifications, processes and programs. Based

on the systematic review of model defects in SPLs and a

complementary review of duplication in software, we

found out that the majority of approaches dealing with

duplication focus on code cloning [29][46][47]. However,

software product line evolution includes also a change in

functional specifications and in system models due to the

addition of new requirements and the modification or the

removal of existing ones. This change may cause

duplications both in the SPL domain and the derived

applications.

Studies working on code cloning overlook the fact that the

detection of defects in the implementation phase could be

an expensive and time-consuming task. Hence, the activity

of feature deduplication must always be carried out in an

early stage of the development lifecycle in order to avoid

the propagation of duplication in the next steps of the

project, to achieve a satisfactory level of quality and to

reduce the implementation cost.

In this vein, we decided to deal with the problem of

duplication in the feature level. Our objective is to detect

and correct potential duplications introduced in feature

models during the evolution of software product lines.

3. Duplication Modelling

In this section, we provide definition and modelling for all

the concepts related to duplication in feature-oriented

software product lines.

3.1. SPL-Related Concepts

In feature-oriented SPLs, domain and application models

are expressed in feature models that represent the SPL

variability, while the requirements of new evolutions are

generally expressed in natural language specifications. A

definition of all these concepts is provided bellow.

Definition 1: Variation Point [30]

A variation point 𝑝𝑖 represents one or more locations at

which variation occurs.

Definition 2: Variant [31]

A variant 𝑣𝑖𝑗 is a unique option of a variation point that

represents a possible realisation of variability.

Definition 3: Feature

A Feature 𝑭 is a tuple (𝑹, 𝑪, 𝑨, 𝑽) where:

 𝑹 is the root element

 𝑪 is the cardinality of the feature

 𝑨 is a finite set of annotations

 𝑽 is the feature type

A feature is the main constituent of the feature model and

represents an indivisible function of the system. A feature

has two cardinalities, a minimal and a maximal and could

be related to a set of annotations that clarifies its

semantics. According to the mapping proposed in [1], we

consider that a feature can be either a variation point or a

variant.

Definition 4: Domain Model

A domain is a family of related products, and the domain

model 𝑫 is the representation of all the different and

common features of these products.

𝑷𝑫 is the set of variation points of D and 𝑽𝑫 is the set of

variants of D.

 𝑃𝐷 = {𝑝𝑑𝑖 | 𝑖 ≤ 𝑚 𝑎𝑛𝑑 𝑖 ∈ ℕ }

 ∀𝑝𝑑𝑖 ∈ 𝑃𝐷 ∃𝑉𝐷𝑖 𝑤ℎ𝑒𝑟𝑒 𝑉𝐷𝑖 = {𝑣𝑑𝑖𝑗 | 𝑗 ∈ ℕ}

 𝑉𝐷 = ⋃ 𝑉𝐷𝑖
𝑚
𝑖=1

This definition involves two assumptions:

 A variation point 𝒑𝒅𝒊 from the set 𝑷𝑫 is

associated with a set 𝑽𝑫𝒊 that contains the

variants 𝒗𝒅𝒊𝒋.

 𝑽𝑫 is the union of all the sets 𝑽𝑫𝒊. It represents

the set of all the variants of the domain model.

Definition 5: Application Model

An application model 𝑨 is the model corresponding to an

individual application. It is generated by binding the

variability of the domain model in a way that satisfies the

needs of a specific customer.

𝑷𝑨 is the set of variation points of 𝑨 and 𝑽𝑨 is the set of

variants of 𝐀.

 𝑃𝐴 = {𝑝𝑎𝑖 | 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 ∈ ℕ }

 ∀𝑝𝑎𝑖 ∈ 𝑃𝐴 ∃𝑉𝐴𝑖 𝑤ℎ𝑒𝑟𝑒 𝑉𝐴𝑖 = {𝑣𝑎𝑖𝑗 | 𝑗 ∈ ℕ}

 𝑉𝐴 = ⋃ 𝑉𝐴𝑖
𝑚
𝑖=1

The association between the domain model and the

application model can be expressed as follows:

 𝑃𝐴 ⊆ 𝑃𝐷 : The set of variation points of an

application is a subset of the set of variation

points of the SPL domain.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 31

2018 International Journal of Computer Science Issues

 𝑉𝐴 ⊆ 𝑉𝐷 : The set of variants of an application

is a subset of the set of variants of the SPL

domain.

Definition 6: Specification

A Specification S is a description of the intended behavior

of a software product. 𝑷𝑺 is the set of variation points of 𝑺

and 𝑽𝑺 is the set of variants of 𝑺.

 𝑃𝑆 = {𝑝𝑠𝑖 | 𝑖 ≤ 𝑞 𝑎𝑛𝑑 𝑖 ∈ ℕ }
 ∀𝑝𝑠𝑖 ∈ 𝑃𝑆 ∃𝑉𝑆𝑖 𝑤ℎ𝑒𝑟𝑒 𝑉𝑆𝑖 = {𝑣𝑠𝑖𝑗 | 𝑗 ∈ ℕ}

 𝑉𝑆 = ⋃ 𝑉𝑆𝑖
𝑚
𝑖=1

In our case, a specification contains the details of all the

features that have to be implemented during an evolution

of the system and it’s expressed in natural language.

3.2. Formalizing Duplication

After defining the concepts related to the evolution of

feature-oriented software product lines, we propose a

definition for the notion of equivalence and duplication.

Definition 7: Equivalence

Two elements E1 and E2 are said to be equivalents if they

have the same semantics and represents the same function:

𝐸1 ≡ 𝐸2

In our work, this notion is applied both to variation points

and variants. Based on equivalence, we introduce the

notion of feature duplication. Duplication occurs when we

implement independently two requirements that seem to be

different when in fact they refer to the same business need.

Definition 8: Duplication

Let 𝑝𝑖 be a variation point and 𝑣𝑖𝑗 one of its variants:

∃𝑝 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∃𝑣 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝑗 ≡ 𝑣

⇒ 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

We distinguish two types of duplication, internal

duplication and external duplication.

Definition 8.1: Internal Duplication

Internal duplication is detected between the features of the

model or between the features of the specification.

For models: Let (𝑝𝑖 , 𝑣𝑖𝑗) ∈ 𝑃𝐷 × 𝑉𝐷𝑖

∃𝑝 ∈ 𝑃𝐷 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∃𝑣 ∈ 𝑉𝐷 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝑗 ≡ 𝑣

⇒ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

For specifications: Let (𝑝𝑖 , 𝑣𝑖𝑗) ∈ 𝑃𝑆 × 𝑉𝑆𝑖

∃𝑝 ∈ 𝑃𝑆 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∃𝑣 ∈ 𝑉𝑆 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝑗 ≡ 𝑣

⇒ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Definition 8.2: External Duplication

External duplication is detected between the features of the

model and those of the specification.

Let (𝑝𝑖 , 𝑣𝑖𝑗) ∈ 𝑃𝑆 × 𝑉𝑆𝑖

∃𝑝 ∈ 𝑃𝐷 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∃𝑣 ∈ 𝑉𝐷 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝑗 ≡ 𝑣

⇒ 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

3.3. Meta-Modelling

In order to present the relations between the different

concepts defined previously, we propose the meta-model

depicted in Fig. 1.

Feature

Feature Model Product Line

Annotation

Variant VariationPointSet of

Internally
Duplicated Feature

Externally
Duplicated Feature

Duplicated Feature

Equivalent Variant Equivalent
Variation Point

Variation

Specification

Variability
Dependancy

MandatoryOptional

require

exlude

Alternative
Choice

 min
 max

part of

Fig. 1 Meta-model of Duplication in FO-SPL

According to Fig. 1, a feature is either a component of a

feature model or associated to a specification. To add more

semantics to a feature, annotations can be defined. The

variability of features is defined using variation points and

variants. The dependency between these two classes is

represented with an abstract class, and we distinguish two

types of dependencies, mandatory and optional. The

dependency is mandatory when a variant of a variation

point must be selected in every derived application. The

dependency is optional when a variant of a variation point

may or may not be selected in an application. In addition

to dependencies, transversal constraints can be added to

features, such as « Require » et « Exclude ». The constraint

« Require » means that the selection of a feature requires

the selection of the other. As for « Exclude », it means that

two features can’t co-exist in the same application.

In the meta-model, the notion of equivalence is presented

using two classes « Equivalent Variant » and « Equivalent

Variation Point » that inherit respectively from the classes

« Variant » and « Variation Point ».

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 32

2018 International Journal of Computer Science Issues

Deduplication Framework

Specfications of a
new evolution

SPL Feature
Model

Duplicated
features

Customer

Duplication Detection

Transformation

- Modify the new feature
- Delete the new/old feature
- Replace the old feature

Formal
representation

Transformation

Formal
representation

Decisions

Repository

Algorithm

Algorithm

Algorithm

Inputs Transformation Duplication Correction

Duplication Free
Specification

Algorithm

Duplication Free
Models

Fig. 2 The overview of the proposed framework.

Similarly, the notion of duplication is expressed via the

class « Duplicated Feature » that inherits from the class «

Feature ». We distinguish the two types of duplication via

the classes « Internally Duplicated Feature » and

« Externally Duplicated Feature » that inherit both from

« Duplicated Feature ».

4. A Framework for Feature Deduplication in

SPLs

This section presents the details of the framework

proposed in [32] as a solution for detecting and correcting

feature duplication in evolving SPLs. As depicted in Fig. 2,

this framework is based on three main processes: Inputs

Transformation, duplication detection and duplication

correction.

Fig. 3 The Domain Model of FeatureAMP

The first process consists of transforming the framework

inputs into a more formal representation. These inputs are:

the domain model of the SPL, the application model of a

derived product and the specification of a specific

evolution. In the second process, a set of algorithms are

applied do detect internal and external duplications. The

last process is responsible for analyzing the potential

duplications in order to take the rights decisions

concerning their correction.

In the rest of this section, we present the different

processes in details and we illustrate them through an open

source SPL called FeatureAMP [33] whose domain model

is presented in Fig. 3.

4.1. Model Transformation

In order to model the domain and application models of

the proposed SPL, we use FeatureIDE [34]. FeatureIDE is

an open source framework based on Eclipse that supports

all steps of the SPL development cycle, especially domain

analysis and feature modeling. Indeed, it provides the

possibility to present graphically the SPL features and the

dependencies between them, to configure the application

models from a domain model and to generate

automatically an XML file for the feature models. This file

is structured using the following tags:

 <and> with the option « Mandatory »: for mandatory

features.

 <and> without the option « Mandatory »: for optional

features.

 <or> : For features related by the OR-relation.

 <alt> : For features related by the XOR-relation.

 <feature> : For the features existing in the bottom of

the tree.

This representation of models is centered on dependencies

and doesn’t take into account the notion of variability.

Consequently, we need a supplementary step to transform

this tree into a new representation that focuses both on

variability and semantics. For this, we propose the

following mapping rules:

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 33

2018 International Journal of Computer Science Issues

 The tags <and>, <or> and <alt> correspond to

variation points.

 The tag <feature> correspond to variants.

In the case of different levels of variation points, we take

the lowest level because we consider the higher levels as

abstract. By applying the mapping rules on the

FeatureAMP domain model, we obtain the arborescence

illustrated in Fig. 4.

ModelFeature

VariationPoint

Variant

Variant

VariationPoint

Variant

Variant

Variant

VariationPoint

Variant

Variant

SupportedFormat

MP3

WAV

Playlist

Skins

LoadFolder

SaveAndLoadPlaylist

QueueTrack

Light

Dark

VariationPoint

Variant

Variant

Variant

Variant

GUI

Resizable

OpenFile

ShowCover

ID3Information

Time

Variant ShowTime

Variant ProgressBar

VariationPoint

Variant

VolumeControl

Mute

VariationPoint

Variant

Variant

Variant

Control

SkipTrack

ShuffleRepeat

ReorderPlaylist

VariationPoint

Variant

RemoveTrack

ClearPlaylist

VariationPoint

Fig. 4 The new representation of FeatureAMP domain model

4.2. Specification Transformation

The objective of this section is to transform specifications

into a simple representation that allows the detection of

duplications inside the specifications and duplications

against feature models. In Section 4.1., we explained the

method followed to transform a feature model to a new

arborescence that contains two tags "Variation Point" et

"Variant". In order to unify the framework inputs and

facilitate the comparison between then, we chose to

transform the specification into the same structure.

The transformation of textual specifications consists of

analyzing syntactically and semantically the sentences of

the specification at the aim of understanding the

requirements described by the client and extracting the

potential variation points and variants. So that the

detection of entities from a specification is performed

automatically, the machine needs a repository of entities

built upon the SPL domain. The management of this

repository is presented in Section 4.3. The proposed

approach is based essentially on the notion of Machine

Learning [35]. Thus, to enhance the activity of entity

recognition, the repository must be updated constantly by

following the SPL evolutions.

In the rest of this section, we describe in details the

different steps of the specification transformation, namely

syntactic and semantic analysis. To illustrate this activity,

we consider the specification depicted in Fig. 5 that

represents an evolution of FeatureAMP.

The new version of the application supports the WAV and OGG formats. The user can
play a track, stop it, pause it, skip forward or skip rewind. He can also add and remove
tracks from the playlist. In addition, the application must give the possibility to repeat
the playlist in the order set by the user.

The new version of the application supports the WAV and OGG formats .

The user can play a track , stop it , pause it , skip forward or skip rewind .

He can also add and remove tracks from the playlist .

In addition , the application must give the possibility to repeat the playlist in the order set by the user .

Fig. 5 The Evolution Specification

 Syntactic Analysis

The activity of syntactic analysis is composed of three

main actions: The detection of sentences, the tokenization

and the parsing.

- Detection of sentences: Since the input specification

is a textual document composed of sentences, this

first operation consists of detecting the punctuation

marks that indicate the end of a sentence then write

each sentence in a separate line. The result of this

step is a document that contains one sentence per line.

- Tokenization: This action is responsible for

segmenting sentences into tokens. A token can be a

word, a punctuation, a number, etc. At the end of this

action, all of the tokens of the specification are

separated using whitespace characters, such as a

space or line break, or by punctuation characters.

- Parsing: The objective of this action is to analyze

each word in the specification and determine its role

in the sentence to which it belongs, based on the rules

of a specific language grammar. In our case, the

language used in the specifications is English. A

parser marks all the words of a sentence using a POS

tagger (part-of-speech tagger) and converts the

sentence into a tree that represents the syntactic

structure of the sentence. This action enables us to

verify for example whether a sentence is affirmative

or negative or whether a requirement is mandatory or

optional, etc.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 34

2018 International Journal of Computer Science Issues

 Semantic Analysis

This activity consists of extracting semantic information

from a sentence. In our approach, we are interested

especially in the parts of sentences considered as variation

points or variants. In order to accomplish this task, we

must feed the base model of the repository with tagged

variants from the domain model. The variants are not

necessarily named entities; they can also be a part of a

sentence.

During this activity, the content of each sentence is

compared against the repository of entities (variation

points, variants) already created, in order to detect the

variants that potentially exist in the specification. This

operation is performed automatically.

Once all of the variants are tagged, the corresponding tree

is generated. Since we follow a machine learning approach,

the initial model is updated continuously to improve the

operation of variants detection. Indeed, the more the model

is full with tagged variants, the more the recognition of

variants from the specification is accurate.

At the end, the result of the specification transformation is

a tree whose nodes are tagged either with <VariationPoint>

or <Variant>. For the example of FeatureAMP, the tree

corresponding to the specification is illustrated in Fig. 6.

Specification

VariationPoint

Variant

Variant

VariationPoint

Variant

Variant

Variant

VariationPoint

Variant

Variant

Variant

Variant

SupportedFormat

OGG

WAV

Playlist

Unbound Variants

Remove tracks

Add tracks

Repeat playlist

Play a track

Stop a track

Pause a track

Skip forward

Variant Skip rewind

Fig. 6 The Specification Tree

4.3. Repository Management

The repository is a central element in the proposed

framework, because it is used by both the first and the

second processes. It consists of two main components, the

model and the dictionary.

 The model

The model (or the glossary) is used basically in the

transformation of natural language specifications. Indeed,

the model stores the general specifications of the SPL

domain previously annotated in a way that distinguishes

specific entities. In our work, we are interested especially

in variation points and variants. The construction of the

model is an up-front investment that must be performed in

the phase of requirements engineering of a software

product line. Hence, the activity of specification tagging

has to be done in parallel with the conception of the

domain model.

So that the model can detect entities in a specification with

a satisfying level of precision, it must keep up with the

evolution of the SPL platform and its derived products.

Thus, our approach is based on machine learning, because

during each new evolution, the specification is verified

based on the model, and when the analysis is done, the

new generated specification is annotated and added to the

initial model in order to enrich it and enhance the precision

of entity recognition.

 The dictionary

Since the proposed approach is based on a semantic

comparison, a dictionary is thus necessary to compare the

new features against the new ones and to detect the

potential duplications. The dictionary, as its name suggests,

contains the definition of all the features of the product

line, their description and their synonyms, which helps

detect both internal and external duplications. A dictionary

is initially built based on the domain features, but should

be constantly updated and refined to improve the activity

of detecting duplications.

4.4. Duplication Detection

The second process of the framework consists of detecting

duplications introduced into a SPL during a new evolution.

This process includes two main activities [32]: i) Detection

of Internal Duplication and ii) Detection of External

Duplication.

 Detection of Internal Duplication

Internal duplication corresponds to duplication in one of

the framework inputs, the feature models or the

specification. Since both inputs are transformed to a

unified representation, the algorithm used to detect

duplication is the same and is composed of the following

steps:

- Define a key synonym for each set of synonyms

based on the dictionary.
- Update of all the variation points and variants by

their synonyms in the specification or in the model in

question.

- Put in alphabetical order the variation points and the

variants.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 35

2018 International Journal of Computer Science Issues

- For every variation point, delete the duplicated

variants (For every variation point, compare the first

variant with the second. If the two variants are

equivalents, delete the first, else move to the next

comparison and repeat the same action until all the

variants of a variation point are deleted).

- Detect the duplicated pairs (variation point, variant).

 Detection of External Duplication

External duplication corresponds to duplication between

the feature models and the specification. We distinguish

six possible cases of a new pair (variation point, variant)

or (𝑝𝑖, 𝑣𝑖𝑗) [36].

Case 1. The variation point 𝑝𝑖 has an equivalent in 𝑷𝑨 and

the variant 𝒗𝒊𝒋 has an equivalent in 𝑽𝑨𝒊 . In this case,

duplication occurs against the application model.

Consequently, the two elements must be removed from the

specification, but the domain model and the application

model do not change.

∃𝑝 ∈ 𝑃𝐴 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∃𝑣 ∈ 𝑉𝐴𝑖 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝑗 ≡ 𝑣

⇒ 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Case 2. The variation point 𝑝𝑖 has an equivalent in 𝑷𝑨 and

the variant 𝒗𝒊𝒋 has an equivalent in 𝑽𝑫𝒊 . In this case,

duplication occurs against the domain model. Thus, a

derivation of the variant from the domain model is

sufficient.

∃𝑝 ∈ 𝑃𝐴 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∃𝑣 ∈ 𝑉𝐷𝑖\𝑉𝐴𝑖 𝑤ℎ𝑒𝑟𝑒
 𝑣𝑖𝑗 ≡ 𝑣 ⇒ 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Case 3. The variation point 𝑝𝑖 has an equivalent in 𝑷𝑨 and

the variant 𝒗𝒊𝒋 has no equivalents in 𝑽𝑫𝒊 . In this case,

there is no duplication; the pair is thus new and must be

implemented.

∃𝑝 ∈ 𝑃𝐴 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∄𝑣 ∈ 𝑉𝐷𝑖 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝑗 ≡ 𝑣

⇏ 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Case 4. The variation point 𝑝𝑖 has an equivalent in 𝑷𝑫 but

not in 𝑷𝑨 and the variant 𝒗𝒊𝒋 has an equivalent in 𝑽𝑫𝒊 but

not in 𝑽𝑨𝒊 . In this case, duplication occurs against the

domain model. Thus, a derivation of the variant from the

domain model is sufficient.

∃𝑝 ∈ 𝑃𝐷\𝑃𝐴 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∃𝑣 ∈ 𝑉𝐷𝑖\𝑉𝐴𝑖

𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝑗 ≡ 𝑣 ⇒ 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Case 5. The variation point 𝑝𝑖 has an equivalent in 𝑷𝑫 but

not in 𝑷𝑨 and the variant 𝒗𝒊𝒋 has no equivalents in 𝑽𝑫𝒊. In

this case, there is no duplication; the pair is thus new and

must be implemented.

∃𝑝 ∈ 𝑃𝐷\𝑃𝐴 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∄𝑣 ∈ 𝑉𝐷𝑖 𝑤ℎ𝑒𝑟𝑒
𝑣𝑖𝑗 ≡ 𝑣 ⇏ 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Case 6. The variation point 𝑝𝑖 has no equivalents in 𝑷𝑫

and the variant 𝒗𝒊𝒋 has no equivalents in 𝑽𝑫𝒊. Dans ce cas,

on conclut qu’il n’y pas de duplication ni par rapport au

domaine ni par rapport à l’application. In this case, there is

no duplication; the pair is thus new and must be

implemented.

∄𝑝 ∈ 𝑃𝐷 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝑝 𝑎𝑛𝑑 ∄𝑣 ∈ 𝑉𝐷𝑖 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝑗 ≡ 𝑣

⇏ 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Based on the identified cases, two algorithms were

proposed for the detection of external duplication, one for

the comparison between specifications and domain models,

and the second for the comparison between specifications

and application models. Even if the two algorithms are

similar, we chose to separate the two verifications, because

the decision taken in each case is different.

In order to implement the two algorithms, we are working

on a tool support that we introduced in [37]. By verifying

the specification against the corresponding application

model of FeatureAMP, we found the results presented in

Table 2.

Table 2: Cases Detected in the Specification

(VariationPoint, Variant) Case

(SupportedFormat, OGG) Case 3

(SupportedFormat, WAV) Case 1

(Playlist, RemoveTracks) Case 3

(Playlist, AddTracks) Case 3

(Playlist, RepeatPlaylist) Case 3

(UnboundVariants, PlayATrack) Case 6

(UnboundVariants, StopATrack) Case 6

(UnboundVariants, PauseATrack) Case 6

(UnboundVariants, SkipForward) Case 6

(UnboundVariants, SkipRewind) Case 6

4.5. Feature Deduplication

As depicted in Fig. 7, the process of feature deduplication

involves two main activities, the analysis of detected

duplications and the generation of a correct specification

(or a feature model).

The principal inputs of the first activity are: i) the feature

model and ii) the log containing the potential duplications

generated in the duplication detection process. The analyst,

with the help of the customer, analyses the duplications to

assess their relevance and validate or not their removal.

A number of decisions may be taken:

- The removal of the new feature: If the analyst

chooses this decision, the sentences containing the

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 36

2018 International Journal of Computer Science Issues

duplications are deleted automatically from the

specification and a new correct specification is

generated.

- The modification of the new feature: A demanded

feature may be badly expressed and must be modified

to respond exactly to the client’s need. In this case,

after the addition of the new feature, a new

verification can be carried out to verify that a new

duplication wasn’t introduced.

- The replacement of the old feature: The analyst can

decide to delete an old feature and replace it by a new

feature. In this case, the specification doesn’t change,

but work must be done to delete the old feature.

Domain
Model

Duplicated
features

Analyst

Initial Specification

Duplication-free
Specification

Duplications
Analysis

Deduplication
Analyst Decisions

Fig. 7 The Process of specification deduplication

The second activity takes as inputs the decisions of the

analyst and the initial specification of the evolution. In the

output, it provides a duplication-free specification that can

be used to implement the demanded evolution. It should be

noted that the first activity can’t be performed

automatically because the analyst’s intervention is

mandatory. In contrast, the second activity is automatic.

5. Related Work

A plethora of papers have dealt with model defects in

software product lines. In this section, we present these

papers according to the artefact they address

(Requirements, models, architecture and code).

5.1. Requirement Verification

In the studies dealing with requirements, many papers

followed an approach based on natural language

processing (NLP) to verify the textual specifications of a

software product line. For instance, [38] carried out a

systematic literature review to investigate the applications

of NLP in the context of Software Requirements

Engineering (SRE) between 2002 and 2016. Hajri et al.

[27] propose an NLP-based tool for the verification of use

cases and the associated models, whose variability is

defined with the method PUM (Product line Use case

modeling Method). Ali et al. [39] intend to verify the

Software Requirement Specification (SRS) document by

proposing a methodology of four processes i.e. Parsing

Requirement (PR), Requirement Mapping using Matrix

(RMM), Addition of Requirements in SRS template and

Third Party Inspection. The objective of this paper is

basically to minimize ambiguities and incorrectness inside

the SRS. In addition, many tools of requirements

verification have been proposed, such as RSLingo [40],

TRIC [4] and Marama [41].

5.2. Model Verification

The majority of papers addressing the verification of

domain models focus on feature models [12][15][20][28]

[41], which is logical given that software product lines in

literature are most of the time feature-oriented. Several

solutions have been proposed in this sense, namely tools

such as VML4RE [42], VCC [20][28] and SPLEnD [25],

extensions of the DOPLER tool [16][43], frameworks such

as SPLEMMA [7][47] and techniques such as FMCheck

[14].

5.3. Architecture Verification

The studies concerning architecture in software product

lines deal with architecture documents or UML models

such as class diagrams or components diagrams. Dam et al.

[24] focus on the merging of artifacts in software product

lines. For this, it presents an approach to automatically

merge consistent artifacts, inform users of the potential

inconsistent/conflicting artifacts and propose ways to

resolve them. Shumaiev and Bhat [44] retrieved different

types of uncertainties based on the analysis of three real-

world software architecture documents. Then discussed

how existing NLP techniques could help authors of

software architecture documents to detect various kinds of

uncertainty. Farias et al. [45] present an exploratory study

that evaluates empirically the impact of stability on the

effort of model composition. In this study, some

composition heuristics were applied to 18 versions of

design models related to three product lines. The main

finding was that stable models tend to reduce the

inconsistency rate and to lower the model composition

effort.

5.4. Code Verification

A review of the papers addressing code verification has

shown that the defect that has received most attention is

code cloning. For example, [46] proposes a conceptual

framework based on machine learning to detect code

clones. The authors use summaries generated by deep

neural networks as metrics to measure similarities between

code snippets. Schmorleiz and Lämmel [29] describe a

process for similarity management of cloned variants

during software evolution. This process uses annotations

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 37

2018 International Journal of Computer Science Issues

to record developers’ intentions and to anticipate

automatic change propagation. Hellebrand et al. [9]

address the coevolution between feature models and code.

More specifically, it proposes metrics that allow the

detection of variability erosion between the two artefacts

during SPL evolution. Rubin et al. [47] focus on the

management of software product variants realized via

cloning. For this purpose, the authors present a framework

that consists of seven conceptual operators and validate

their efficiency through three case studies from the

automotive industry.

6. Conclusion and Future Work

Many studies in the literature proposed solutions to

optimize the evolution of software product lines. The

challenges addressed in these studies concern in particular

the evolution traceability, evolution modelling, co-

evolution and change impact. In our work, we focused on

the last category and especially on the model defects

caused by the SPL evolution. Based on a systematic

review, we found out that the problem of feature

duplication hasn’t been given a big interest in the literature.

Thus, in this paper, we proposed a formal definition of all

the duplication-related concepts and a meta-model that

describes the relations between them. Then, we described

a solution to detect duplication in feature-oriented software

product lines. The different processes of the proposed

framework were illustrated through the SPL FeatureAMP.

Currently, we are working on a tool support for feature

deduplication based on the proposed framework. In future

work, we intend to provide the details of this tool and to

describe the results of the application of our approach on

an industrial product line.

References

[1] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product

Line Engineering Foundations, Principles, and Techniques,

Berlin, Germany: Springer-Verlag, 2005.

[2] D. Yu, P. Geng, and W. Wu, "Constructing traceability

between features and requirements for software product line

engineering", in 19th Asia-Pacific Software Engineering

Conference (APSEC), IEEE, 2012, pp. 27-34.

[3] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J. C.

Royer, A. Rummler, and A. Sousa, "A model-driven

traceability framework for software product lines", Software

and Systems Modeling, Vol. 9, No. 4, 2010, pp. 427-451.

[4] A. Goknil, I. Kurtev, K. van den Berg, and J. Veldhuis,

"Semantics of trace relations in requirements models for

consistency checking and inferencing, Software Systems

Modeling", Springer, Vol. 10, No. 1, 2011, pp. 31-54.

[5] S. Lity, S. Nahrendorf, T. Thüm, et al., "175% Modeling for

Product-Line Evolution of Domain Artifacts", in 12th

International Workshop on Variability Modelling of

Software-Intensive Systems, ACM, 2018, pp. 27-34.

[6] A. Pleuss, G. Botterweck, D. Dhungana, et al., "Model-driven

support for product line evolution on feature level", Journal

of Systems and Software, Vol. 85, No. 10, 2012, pp. 2261-

2274.

[7] D. Romero, S. Urli, C. Quinton, et al., "SPLEMMA: A

generic framework for controlled-evolution of software

product lines", in 17th International Software Product Line

Conference, 2013, pp. 59-66.

[8] L. Passos, K. Czarnecki, S. Apel, et al., "Feature-oriented

software evolution", in 7th International Workshop on

Variability Modelling of Software-intensive Systems, ACM,

2013, p. 17.

[9] R. Hellebrand, A. Silva, M. Becker, et al., "Coevolution of

variability models and code: an industrial case study", in 18th

International Software Product Line Conference, ACM, Sept.

2014, Vol. 1, pp. 274-283.

[10] A. Benlarabi, A. Khtira, and B. El Asri, "A Co-Evolution

Analysis for Software Product Lines: An Approach based on

Evolutionary Trees", International Journal of Applied

Evolutionary Computation (IJAEC), Vol. 6, No. 3, 2015, pp.

9-32.

[11] M. Bhushan, S. Goel, and K. Kaur, "Analyzing

inconsistencies in software product lines using an ontological

rule-based approach", Journal of Systems and Software, 2017.

[12] A. O. Elfaki, "A rule‐based approach to detect and prevent

inconsistency in the domain‐engineering process", Expert

Systems, Vol. 33, No. 1, 2016, pp. 3-13.

[13] A. Goknil, I. Kurtev, K. Van Den Berg, et al., "Change

impact analysis for requirements: A metamodeling approach",

Information and Software Technology, Vol. 56, No. 8, 2014,

pp. 950-972.

[14] R. M. de Mello, E. Nogueira, M. Schots, et al., "Verification

of Software Product Line Artefacts: A Checklist to Support

Feature Model Inspections", Journal of Universal Computer

Science, Vol. 20, No. 5, 2014, pp. 720-745.

[15] L. Neves, P. Borba, V. Alves, et al., "Safe evolution

templates for software product lines", Journal of Systems and

Software, Vol. 106, 2015, pp. 42-58.

[16] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer,

"Structuring the modeling space and supporting evolution in

software product line engineering", Journal of Systems and

Software, Vol. 83, No. 7, 2010, pp. 1108-1122.

[17] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa, and P.

Borba, "Investigating the safe evolution of software product

lines", ACM SIGPLAN Notices, Vol. 47, No. 3, 2012, pp.

33-42.

[18] A. Hunt, and D.Thomas, "The pragmatic programmer: from

journeyman to master", Addison-Wesley Professional, 2000.

[19] C. Salinesi and R. Mazo, Defects in Product Line Models

and how to Identify them, InTech editions, 2012, p. 50.

[20] S. Apel, D. Batory, C. Kästner, and G. Saake, "Analysis of

Software Product Lines", in Feature-Oriented Software

Product Lines, Berlin: Springer, 2013, pp. 243-282.

[21] B. Zhang, M. Becker, T. Patzke, et al., "Variability

evolution and erosion in industrial product lines: a case

study", in 17th International Software Product Line

Conference, ACM, 2013, pp. 168-177.

[22] Z. Stephenson, K. Attwood, and J. McDermid, "Product-

Line Models to Address Requirements Uncertainty,

Volatility and Risk", in Relating Software Requirements and

Architectures, Springer Berlin Heidelberg, 2011, pp. 111-131.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 38

2018 International Journal of Computer Science Issues

[23] G. Lami, S. Gnesi, F. Fabbrini, et al., "An automatic tool for

the analysis of natural language requirements", Informe

técnico, CNR Information Science and Technology Institute,

Pisa, Italia, Sept. 2004.

[24] H. K. Dam, A. Egyed, M. Winikoff, et al., "Consistent

merging of model versions", Journal of Systems and

Software, Vol. 112, 2016, pp. 137-155.

[25] J. V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane,

"Compositional verification of software product lines", in:

Johnsen E.B., Petre L. (eds) Integrated Formal Methods (IFM

2013), Lecture Notes in Computer Science, Springer Berlin

Heidelberg, Vol. 7940, June 2013, pp 109-123.

[26] K. Wnuk, T. Gorschek, and S. Zahda, "Obsolete software

requirements", Information and Software Technology, Vol.

55, No. 6, 2013, pp. 921-940.

[27] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany,

"Applying product line use case modeling in an industrial

automotive embedded system: Lessons learned and a refined

approach", in 18th International Conference on Model Driven

Engineering Languages and Systems (MODELS), IEEE, Sept.

2015, pp. 338-347.

[28] M. Alférez, R. E. Lopez-Herrejon, A. Moreira, et al.,

"Consistency Checking in Early Software Product Line

Specifications-The VCC Approach", Journal of Universal

Computer Science, Vol. 20, No. 5, 2014, pp. 640-665.

[29] T. Schmorleiz and R. Lämmel, "Similarity management of

'cloned and owned' variants", in 31st Annual ACM

Symposium on Applied Computing, ACM, Apr. 2016, pp.

1466-1471.

[30] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse.

Architecture, Process and Organization for Business Success,

Addison-Wesley, ISBN: 0-201-92476-5, 1997.

[31] S. Creff, "Une modélisation de la variabilité

multidimensionnelle pour une évolution incrémentale des

lignes de produits", Doctoral dissertation, University of

Rennes 1, 2003.

[32] A. Khtira, A. Benlarabi, and B. El Asri, "Duplication

Detection when evolving Feature Models of Software

Product Lines", Information Science Journal (ISJ), Vol. 6, No.

4, Oct. 2015, pp. 592-612,

[33] SPL2go, "FeatureAMP", spl2go.cs.ovgu.de/projects/59

[retrieved: December, 2016].

[34] C. Kästner, T. Thüm, G. Saake, et al., "Featureide: A tool

framework for feature- oriented software development", in

31st International Conference on Software Engineering

(ICSE’09), IEEE, Washington, DC, USA, 2009, pp. 611–614.

[35] E. Alpaydin, Introduction to Machine Learning, London:

The MIT Press, 2010. ISBN 978-0-262-01243-0.

[36] A. Khtira, A. Benlarabi, and B. El Asri, "Towards

Duplication-Free Feature Models when Evolving Software

Product Lines", in 9th International Conference on Software

Engineering Advances (ICSEA’14), Oct. 2014, pp. 107-113.

[37] A. Khtira, A. Benlarabi, and B. El Asri, "A Tool Support for

Automatic Detection of Duplicate Features during Software

Product Lines Evolution", IJCSI International Journal of

Computer Science Issues, Vol. 12, No. 4, July 2015, pp. 1-10.

[38] F. Nazir, W. H. Butt, M. W. Anwar, and M. A. K. Khattak,

"The applications of natural language processing (NLP) for

software requirement engineering-a systematic literature

review", in International Conference on Information Science

and Applications, Springer, Singapore. March 2017, pp. 485-

493.

[39] S. W. Ali, Q. A. Ahmed, I. Shafi,. "Process to enhance the

quality of software requirement specification document”, in

International Conference on Engineering and Emerging

Technologies (ICEET), Feb. 2018, pp. 1-7.

[40] D. A. Ferreira and A. R. da Silva, "RSLingo: An

information extraction approach toward formal requirements

specifications", in Model-Driven Requirements Engineering

Workshop (MoDRE), IEEE, Sept. 2012, pp. 39-48.

[41] M. Kamalrudin, J. Grundy, and J. Hosking, "Managing

consistency between textual requirements, abstract

interactions and Essential Use Cases", in 34th Computer

Software and Applications Conference (COMPSAC), IEEE,

July 2010, pp. 327-336.

[42] M. Alférez, R. E. Lopez-Herrejon, A. Moreira, et al.,

"Supporting consistency checking between features and

software product line use scenarios", in: Schmid K. (eds) Top

Productivity through Software Reuse (ICSR 2011), Lecture

Notes in Computer Science, Springer Berlin Heidelberg, Vol.

6727, June 2011, pp. 20-35.

[43] M. Vierhauser, P. Grünbacher, W. Heider, et al., "Applying

a consistency checking framework for heterogeneous models

and artifacts in industrial product lines", in: France R.B.,

Kazmeier J., Breu R., Atkinson C. (eds) Model Driven

Engineering Languages and Systems (MODELS 2012),

Lecture Notes in Computer Science, Springer Berlin

Heidelberg, Vol. 7590, 2012, pp. 531-545.

[44] K. Shumaiev and M. Bhat, "Automatic Uncertainty

Detection in Software Architecture Documentation", in

International Conference on Software Architecture

Workshops (ICSAW), April 2017, pp. 216-219.

[45] K. Farias, A. Garcia, and C. Lucena, "Effects of stability on

model composition effort: an exploratory study", Software &

Systems Modeling, Vol. 13, No. 4, 2014, pp. 1473-1494.

[46] J. Ghofrani, M. Mohseni, A. Bozorgmehr, "A conceptual

framework for clone detection using machine learning", in

4th International Conference on Knowledge-Based

Engineering and Innovation (KBEI), Dec. 2017, pp. 0810-

0817.

[47] J. Rubin, K. Czarnecki, and M. Chechik, "Cloned product

variants: from ad-hoc to managed software product lines",

International Journal on Software Tools for Technology

Transfer, Vol. 17, No. 5, 2015, pp. 627-646.

Amal Khtira received a degree in software engineering from
National High School of Computer Science and Systems Analysis
(ENSIAS), Mohamed V University, Rabat, in 2008. She is currently
a PhD student in the IMS (Models and Systems Engineering)
Team of ADMIR Laboratory at ENSIAS. Her research interests
include Software Product Line Engineering, Requirements
Engineering, Feature Modeling and Software Evolution.

Anissa Benlarabi has a Phd in Software product line evolution
issues. She worked with the IMS Team, ADMIR Laboratory at
ENSIAS, Mohamed V University, Rabat on many challenges
related to software product lines.

Bouchra El Asri is a Professor in the Software Engineering
Department and a member of the IMS Team of ADMIR Laboratory
at ENSIAS, Mohamed V University, Rabat. Her research interests
include Service-Oriented Computing, Model-Driven Engineering,
Cloud Computing, Component-Based Systems and Software
Product Line Engineering.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346035 39

2018 International Journal of Computer Science Issues

