There is a newer version of this record available.

Dataset Open Access

Medley-solos-DB: a cross-collection dataset for musical instrument recognition

Lostanlen, Vincent; Cella, Carmine-Emanuele; Bittner, Rachel; Essid, Slim


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/a7f13fbd-dfa5-4743-8521-5eb284c4562c/Medley-solos-DB_metadata.csv"
      }, 
      "checksum": "md5:5da9775d2b9bbcc351eccb9740031474", 
      "bucket": "a7f13fbd-dfa5-4743-8521-5eb284c4562c", 
      "key": "Medley-solos-DB_metadata.csv", 
      "type": "csv", 
      "size": 1276169
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/a7f13fbd-dfa5-4743-8521-5eb284c4562c/Medley-solos-DB.zip"
      }, 
      "checksum": "md5:4464cfa1fadfef441d370110932f46aa", 
      "bucket": "a7f13fbd-dfa5-4743-8521-5eb284c4562c", 
      "key": "Medley-solos-DB.zip", 
      "type": "zip", 
      "size": 6663778174
    }
  ], 
  "owners": [
    21149
  ], 
  "doi": "10.5281/zenodo.1344103", 
  "stats": {
    "version_unique_downloads": 1095.0, 
    "unique_views": 998.0, 
    "views": 1100.0, 
    "version_views": 1987.0, 
    "unique_downloads": 383.0, 
    "version_unique_views": 1664.0, 
    "volume": 2932278069121.0, 
    "version_downloads": 1833.0, 
    "downloads": 609.0, 
    "version_volume": 8303766562326.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1344103", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1344102", 
    "bucket": "https://zenodo.org/api/files/a7f13fbd-dfa5-4743-8521-5eb284c4562c", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1344102.svg", 
    "html": "https://zenodo.org/record/1344103", 
    "latest_html": "https://zenodo.org/record/3464194", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1344103.svg", 
    "latest": "https://zenodo.org/api/records/3464194"
  }, 
  "conceptdoi": "10.5281/zenodo.1344102", 
  "created": "2019-02-04T03:10:14.581534+00:00", 
  "updated": "2020-01-24T19:25:50.590906+00:00", 
  "conceptrecid": "1344102", 
  "revision": 8, 
  "id": 1344103, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1344103", 
    "version": "1.0", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Medley-solos-DB: a cross-collection dataset for musical instrument recognition", 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1344102", 
        "relation": "isVersionOf"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 4, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1344102"
          }, 
          "is_last": false, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3464194"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "320959", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::320959"
        }, 
        "title": "Invariant Representations for High-Dimensional Signal Classifications", 
        "acronym": "INVARIANTCLASS", 
        "program": "FP7", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "music", 
      "instrument", 
      "audio", 
      "machine listening", 
      "music information retrieval", 
      "timbre", 
      "machine learning", 
      "classification"
    ], 
    "publication_date": "2018-09-28", 
    "creators": [
      {
        "orcid": "0000-0003-0580-1651", 
        "affiliation": "New York University", 
        "name": "Lostanlen, Vincent"
      }, 
      {
        "affiliation": "Ircam", 
        "name": "Cella, Carmine-Emanuele"
      }, 
      {
        "orcid": "0000-0001-7757-2232", 
        "affiliation": "Spotify Inc.", 
        "name": "Bittner, Rachel"
      }, 
      {
        "affiliation": "T\u00e9l\u00e9com ParisTech", 
        "name": "Essid, Slim"
      }
    ], 
    "meeting": {
      "dates": "August 7-11, 2016", 
      "title": "International Society of Music Information Retrieval", 
      "acronym": "ISMIR", 
      "url": "https://wp.nyu.edu/ismir2016/", 
      "session": "PS3", 
      "place": "New York, NY, USA", 
      "session_part": "7"
    }, 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "description": "<p>Medley-solos-DB<br>\n=============<br>\nVersion 1.0, February 2019.<br>\n&nbsp;</p>\n\n<p>&nbsp;</p>\n\n<p>Created By<br>\n--------------</p>\n\n<p>Vincent Lostanlen (1), Carmine-Emanuele Cella (2), Rachel Bittner (3), Slim Essid&nbsp;(4).<br>\n<br>\n(1): New York University<br>\n(2): UC Berkeley<br>\n(3): Spotify, Inc.<br>\n(4): T&eacute;l&eacute;com ParisTech</p>\n\n<p>&nbsp;</p>\n\n<p><br>\nDescription<br>\n---------------</p>\n\n<p>&nbsp;</p>\n\n<p>Medley-solos-DB is a cross-collection dataset for automatic musical instrument recognition in solo recordings. It consists of a training set of 3-second audio clips, which are extracted from the MedleyDB dataset of Bittner et al. (ISMIR 2014) as well as a test set set of 3-second clips, which are extracted from the solosDB dataset of Essid et al. (IEEE TASLP 2009). Each of these clips contains a single instrument among a taxonomy of&nbsp;eight: clarinet, distorted electric guitar, female singer,&nbsp;flute,&nbsp;piano,&nbsp;tenor saxophone,&nbsp;trumpet,&nbsp;and&nbsp;violin.</p>\n\n<p>The Medley-solos-DB dataset is the dataset that is used in the benchmarks of musical instrument recognition in the publications of Lostanlen and Cella&nbsp;(ISMIR 2016) and And&eacute;n et al. (IEEE TSP 2019).</p>\n\n<p>&nbsp;</p>\n\n<p>[1] V. Lostanlen, C.E. Cella. Deep convolutional networks on the pitch spiral for musical instrument recognition. Proceedings of the International Society for Music Information Retrieval Conference&nbsp;(ISMIR), 2016.</p>\n\n<p>[2] J. And&eacute;n, V. Lostanlen S. Mallat. Joint time-frequency scattering. IEEE Transactions in Signal Processing. 2019, to appear.</p>\n\n<p>&nbsp;</p>\n\n<p><br>\nData Files<br>\n--------------</p>\n\n<p>The Medley-solos-DB&nbsp;contains 21572&nbsp;audio clips as WAV files, sampled at 44.1&nbsp;kHz, with a single channel (mono), at a bit depth of 32. Every audio clip has a fixed duration of&nbsp;2972 milliseconds, that is, 65536 discrete-time samples.</p>\n\n<p>Every audio file has a name of the form:</p>\n\n<p>Medley-solos-DB_SUBSET-INSTRUMENTID_UUID.wav</p>\n\n<p>&nbsp;</p>\n\n<p>For example:</p>\n\n<p>Medley-solos-DB_test-0_0a282672-c22c-59ff-faaa-ff9eb73fc8e6.wav</p>\n\n<p>corresponds to the snippet whose universally unique identifier (UUID) is&nbsp;0a282672-c22c-59ff-faaa-ff9eb73fc8e6, contains clarinet sounds (clarinet has instrument id equal to 0), and belongs to the test set.</p>\n\n<p>&nbsp;</p>\n\n<p><br>\nMetadata Files<br>\n-------------------</p>\n\n<p>The&nbsp;Medley-solos-DB_metadata is a CSV file containing 21572 rows (one for each audio clip) and five&nbsp;columns:</p>\n\n<p>1. subset: either &quot;training&quot;, &quot;validation&quot;, or &quot;test&quot;</p>\n\n<p>2. instrument: tag in Medley-DB taxonomy, such as&nbsp;&quot;clarinet&quot;, &quot;distorted electric guitar&quot;, etc.</p>\n\n<p>3. instrument id: integer from 0 to 7. There is a one-to-one&nbsp;between &quot;instrument&quot; (string format) and &quot;instrument id&quot; (integer). We provide both for convenience.</p>\n\n<p>4. track id: integer from 0 to 226. The track and artist names are anonymized.</p>\n\n<p>5. UUID: universally unique identifier. Assigned and random, and different for every row.</p>\n\n<p>&nbsp;</p>\n\n<p>The list of instrument classes is:</p>\n\n<p>0. clarinet</p>\n\n<p>1. distorted electric guitar</p>\n\n<p>2. female singer</p>\n\n<p>3. flute</p>\n\n<p>4. piano</p>\n\n<p>5. tenor saxophone</p>\n\n<p>6. trumpet</p>\n\n<p>7. violin</p>\n\n<p>&nbsp;</p>\n\n<p><br>\nPlease acknowledge Medley-solos-DB&nbsp;in academic research<br>\n---------------------------------------------------------------------------------</p>\n\n<p>When Medley-solos-DB&nbsp;is used for academic research, we would highly appreciate it if&nbsp; scientific publications of works partly based on this dataset cite the following publication:</p>\n\n<p>V. Lostanlen, C.E. Cella. Deep convolutional networks on the pitch spiral for musical instrument recognition. Proceedings of the International Society for Music Information Retrieval Conference&nbsp;(ISMIR), 2016.</p>\n\n<p>The creation of this dataset was supported by ERC InvariantClass grant&nbsp;320959.</p>\n\n<p>&nbsp;</p>\n\n<p><br>\nConditions of Use<br>\n------------------------</p>\n\n<p>Dataset created by Vincent Lostanlen, Rachel Bittner, and Slim Essid, as a derivative work of Medley-DB and solos-Db.</p>\n\n<p>The Medley-solos-DB&nbsp;dataset is offered free of charge under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license:<br>\nhttps://creativecommons.org/licenses/by/4.0/</p>\n\n<p>The dataset and its contents are made available on an &quot;as is&quot; basis and without warranties of any kind, including without limitation satisfactory quality and conformity, merchantability, fitness for a particular purpose, accuracy or&nbsp;completeness, or absence of errors. Subject to any liability that may not be excluded or limited by law, the authors are&nbsp;not liable for, and expressly exclude&nbsp;all liability for, loss or damage however and whenever caused to anyone by any use of the Medley-solos-DB&nbsp;dataset or any part of it.</p>\n\n<p>&nbsp;</p>\n\n<p><br>\nFeedback<br>\n-------------</p>\n\n<p>Please help us improve Medley-solos-DB&nbsp;by sending your feedback to:<br>\nvincent.lostanlen@nyu.edu</p>\n\n<p>In case of a problem, please include as many details as possible.</p>\n\n<p>&nbsp;</p>\n\n<p>&nbsp;</p>\n\n<p>Acknowledgement<br>\n-------------------------<br>\nWe thank all artists, recording engineers, curators, and annotators of both MedleyDB and solosDb.</p>"
  }
}
1,987
1,833
views
downloads
All versions This version
Views 1,9871,100
Downloads 1,833609
Data volume 8.3 TB2.9 TB
Unique views 1,664998
Unique downloads 1,095383

Share

Cite as