
BIOLOGICAL SEQUENCEINDEXING

USING PERSISTENTJAVA

PhD Thesis

El_zbieta Katarzyna Pustułka-Hunt

December 2001

University of Glasgow

Department of Computing Science

Abstract

This thesis makes three contributions in the area of computing science.
Our first contribution is the recognition that new data types produced by large-scale

biological research techiques lead to a flood of data which creates new challenges in the
areas of data indexing, integration, manipulation and visualisation.

The second contribution is a new research methodology which combines orthogonal
persistence with an empirical evaluation of disk-resident suffix indexes. This methodology
allowed us to develop a practical algorithm for the construction of suffix trees on disk up to
any size supported by the available file and addressing space, which has hitherto not been
possible.

The third contribution is a new experimental methodology for examining the usefulness
of suffix indexes, and the use of this methodology in an empirical investigation of the in-
dexing gain achieved by combining an approximate matching algorithm with a large suffix
index.

Those results are presented against the background of the changing technological land-
scape affecting life sciences and bioinformatics research and the resulting need for new
computing solutions.

Thesis statement

We postulate that it is feasible and efficient to use persistent indexing in large repositories
of biological sequence data. We will test our hypothesis by performing experiments on
persistent suffix trees and measuring the advantages of using such indexes over the use of
sequence comparison tools based on sequential data scanning.

ii

Acknowledgements

I would like to thank my family for their support, and in particular my parents who volun-
teered to spend a long time in Glasgow in order to help me concentrate on research.

I would like to thank my supervisors, Malcolm Atkinson and Rob Irving, and all my col-
leagues, both in Computing Science Department and in the area of life sciences for helping
me to engage in this exciting research.

iii

Publications and important
presentations forming part of this
research

� unpublished paper, Physical Map Integration Using a Relational Database: the Exam-
ple of the Human Chromosome 21 DB, Ela Pustułka-Hunt, Hans Lehrach and Marie-
Laure Yaspo, produced in November 1999 and updated in April 2000, reproduced as
Appendix A.

� technical report, E. Pustułka-Hunt and D. Jack,Case study: Use of computer tools
in locating a human disease gene, University of Glasgow, Department of Computing
Science, TR-1999-28, http://www.dcs.gla.ac.uk/�ela/case.ps, 1999.

� technical report, E. Pustułka-Hunt, D, Jack, G. F. Hogg, and D. G. Monckton,Case
study: CGT repeat expansion modeling using a Java applet and its PJama extension
providing persistent storage for genetics data, University of Glasgow, Department of
Computing Science, TR-1999-31, http://www.dcs.gla.ac.uk/�ela/CTGcase.ps, 1999.

� refereed paper, E. Hunt,PJama Stores and Suffix Tree Indexing for Bioinformatics
Applications, 10th PhD Workshop at ECOOP’00, http://www.inf.elte.hu/�phdws/-
timetable.html, 2000.

� refereed paper, E. Hunt, M. P. Atkinson and R. W. Irving,A database index to large
biological sequences, Proc. 27th Conf. on Very Large Databases, pages 139–148,
Morgan Kaufmann, 2001.

� refereed presentation, E. Hunt, M. P. Atkinson and R. Irving,Indexing the whole
genome, oral presentation at Workshop 9 (Genome Informatics) at Human Genome
Meeting 2001 (HGM2001), April 19-22, 2001, Edinburgh.

� invited paper submitted to VLDB Journal in November 2001, E. Hunt, M. P. Atkinson
and R. Irving,Database Indexing for Large DNA and Protein Sequence Collections,
reproduced as Appendix C.

iv

Contents

1 Introduction 1
1.1 Terminology used to describe biological sequences 2
1.2 Motivation . 3
1.3 Thesis overview . 4

2 Research methodology 5
2.1 Collecting evidence . 6
2.2 The role of theory . 8
2.3 Empirical work . 10
2.4 Software engineering methods .. 10
2.5 Research planning . 11
2.6 Interdisciplinary aspects . 12
2.7 Reflection . 12

3 Large-scale data processing in biology 14
3.1 New technologies . .. 15

3.1.1 Large-scale gel electrophoresis 15
3.1.2 Sequencing . 16
3.1.3 Large-scale array experiments . 17
3.1.4 Proteomic techniques . 19
3.1.5 Common features of new biotechnologies 20

3.2 The delivery of the human genome sequence 22
3.2.1 Two sequencing projects . 22
3.2.2 A computational comparison . 24

3.3 Research paradigms . 28
3.3.1 Hypothesis-driven research. 29
3.3.2 Data-driven research . 30

3.4 The challenges of bioinformatics . 32
3.4.1 Data management . 32
3.4.2 Data integration . 33
3.4.3 Data flow and automation . 35
3.4.4 Visualisation and representation of data relationships 36
3.4.5 Data interpretation and inference 39

3.5 Summary . 40

v

4 Theoretical foundations 41
4.1 Theoretical foundations of persistence 42

4.1.1 Motivation for persistence . 42
4.1.2 Available persistence mechanisms 43
4.1.3 PJama and orthogonal persistence. 44

4.2 Data structures for string indexing. 48
4.2.1 Suffix based indexes . 50
4.2.2 Data structures for database use 55
4.2.3 Compact suffix trees . 59
4.2.4 Reflection on data structures . 68

4.3 Exact matching algorithms 68
4.4 Approximate matching algorithms. 69

4.4.1 Dynamic programming . 70
4.4.2 Automata for approximate matching 72
4.4.3 Bit-parallelism . 72
4.4.4 Filtering . 73

4.5 Closing . 74

5 Experimental work with data structures and exact matching 75
5.1 Methods and materials. 76

5.1.1 Possible biological tests . 76
5.1.2 Biological sequence analysis . 78
5.1.3 Data sources . 80
5.1.4 Computing methods . .. 81

5.2 Building of suffix index structures . 82
5.2.1 Ukkonen’s suffix tree - original version 83
5.2.2 Leaner Ukkonen’s suffix tree . 84
5.2.3 Naive tree . 85
5.2.4 Suffix Binary Search Tree . 86
5.2.5 Tree building in memory . 87

5.3 Small persistent trees . 96
5.3.1 PersistentSTLtests . 97
5.3.2 PersistentSBSTtests . 97

5.4 Naive suffix tree for an arbitrarily large index. 98
5.4.1 The memory bottleneck. 98
5.4.2 Tree construction . 98
5.4.3 Space requirement of the thin naive tree 101
5.4.4 Persistent indexes for large data sets 102

5.5 Exact matching with indexes . 102
5.5.1 Exact matching using a suffix tree 102
5.5.2 Exact queries over a large DNA tree 107
5.5.3 Discussion of the exact matching tests 109

5.6 Summary . 110

vi

6 Approximate string matching using a naive suffix tree 111
6.1 Dynamic Programming benchmark . 112

6.1.1 Approximate matching using a suffix tree 115
6.2 Suffix-link based methods 115
6.3 Depth-first search . 116

6.3.1 Suffix trie simulation . .. 116
6.3.2 Filtering . 118
6.3.3 The NDFA simulation . 118

6.4 Our results . 119
6.4.1 Matching in the protein tree . 119
6.4.2 DP evaluation using a suffix tree 120
6.4.3 Our contribution . 121
6.4.4 Summary of implementation . 123
6.4.5 Correctness of implementation . 127
6.4.6 Approximate searching - test overview 128
6.4.7 A transient tree for 36 Mb of protein 131
6.4.8 Approximate matching using a large persistent tree 131
6.4.9 Performance and practicality of this approach. 131
6.4.10 Performance - number of matches reported 133
6.4.11 Performance - timing . 133

6.5 BLAST benchmark . 138
6.5.1 BLAST . 138

6.6 Evaluation of results with respect to benchmarks 141
6.7 Summary . 141

7 Conclusions and further work 142
7.1 Developing the scope of our research . 142
7.2 The biological data processing scene . 144
7.3 Construction of large suffix trees . 146
7.4 Approximate string matching using a suffix tree index. 147
7.5 Further work . 148

7.5.1 A conceptual view . 148
7.5.2 A practical view . 149
7.5.3 Priorities . .. 153

7.6 Limitations of our work . 153
7.6.1 Data related limitations . 153
7.6.2 Persistence limitations . 154
7.6.3 Lack of biological evaluation . 154
7.6.4 Statistical refinement . 154

7.7 Our contribution to methodology of computing science research. 154
7.8 Closing . 155

A Physical map integration using a relational database: the example of the Hu-
man Chromosome 21 DB 156

B Computing resources and software used in the Human Genome Project 168

vii

C VLBD Journal invited paper — Database Indexing for Large DNA and Protein
Sequence Collections 173

D Approximate Matching Test Log and Analysis 199

viii

Chapter 1

Introduction

The life sciences are a very exciting and important area

Figure 1.1: Yeast YCC588, by
Carsten Kettner, http://genome-
www.stanford.edu

for research. With the aid of computing technologies, they
have the potential to bring about an understanding of life,
disease and drug interventions which are so far known only
at certain levels of abstraction but not in their entirety. For
instance, the chemical activity of aspirin is well understood,
but a full understanding of its molecular activity is still be-
yond our reach. Like aspirin, other drugs are prescribed,
but the complex effects of those interventions on all living organisms and their environment
are not appreciated. Such knowledge will become available when further research into the
molecular mechanisms of disease and treatment explains the complex metabolic pathways
involved. Such research will have human, economic, and safety benefits. It will allow the
doctors of the future to use a drug only if it is not likely to cause an adverse reaction, or will
let the farmer use safer pest and disease control agents. But to understand the complexity
of life, new approaches to the management of biological knowledge are required, and our
research explores some of the challenges.

The amount of data produced by biological laboratories is constantly increasing, and
this data cannot be efficiently organised and accessed just by using simple office packages
such as spreadsheets or word processing tools. Current data-storage techniques in biolog-
ical laboratories rely on filing systems and do not use database management tools. In this
situation, consistent data annotation does not exist on disk and access to data is slow. With-
out easy access to all types of data produced in distributed laboratories, efficient genomic
research is not possible. Our research centres on database support for sequence searching,
an activity which underpins many new technologies which attempt to analyse molecular
interactions. Currently, every new protein or DNA sequence that is isolated in the lab is
compared with known sequences. This comparison serves two purposes: first, establishing
if this is a novel sequence, and second, finding similar sequences, so that a rough idea of
the possible function and structure of this sequence can be gained. As the amount of known
sequence is growing rapidly (November 2001 - 18 GB in Genbank1, compared to 14 GB
at the end of 2000), and several organisms are being sequenced currently, better and faster
tools for sequence analysis are needed. Our research makes a contribution in this area.

1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide

1

1.1 Terminology used to describe biological sequences

We briefly introduce the relevant biological terminology and the abbreviations used through-
out this thesis. An excellent introduction to those issues, aimed at mathematicians and com-
puting scientists, is available in Waterman [230]. An interested reader may want to consult
one of the web information resources, for instance at the Virtual Library of Genetics2 or the
online Dictionary of Cell and Molecular Biology3.

Deoxyribonucleic acid (DNA) is the genetic material of all cells and many viruses. It
can be abstractly represented as strings over the alphabet ofA, C, G andT. Ribonucleic
acid (RNA) found in all living cells, and serving as the genome of some viruses, also has a
four-letter code, withU replacingT. Human nuclear DNA is divided into 23 pairs of chro-
mosomes of different length. The total length of human DNA is around 3 Gbp (3 billion
base pairs) as read in one direction from one of the chromosomes in each pair, and com-
plementary strands (A complements T, and C complements G) can be computed from this
base sequence. DNA can be cut into smaller fragments using enzymes, and those fragments
can be inserted into self-replicating DNAs of other microorganisms to give rise to clones.
Clones reproduce by division and dutifully carry and pass on the human sequence along
with their own DNA. Such clones can accept from a few Kbp (thousands of base pairs) for
small microorganisms, to 2 Mbp (millions of base pairs) for yeast artificial chromosomes
(YACs). In the cloning procedure, complementary DNA (cDNA)4 can also be used. A
cDNA clone can then be employed as a probe to locate the gene in the genomic DNA. Once
DNA fragments are cloned into small unicellular organisms, reconstruction of the original
sequence requires cutting the host including the insert with enzymes, sequencing of all frag-
ments, and reassembly. Assembly of sequence for an individual clone is done by measuring
the lengths of fragments produced by digesting those clones with different enzymes, and by
comparing the sequence fragments. Once a full clone sequence is available, STS sequences
(sequence tagged sites) help in further assembly. An STS should be a unique short sequence
in a given genome, and is often isolated from a clone end. Using the polymerase chain re-
action (PCR), the presence of an STS within a cloned fragment can be confirmed, and if the
clone sequence is known, as is the case for most of the human genome now, electronic PCR
can be used [195].

Cells use DNA as a blueprint for the production of enzymes and other proteins. In this
process, there are intermediate messenger RNAs (mRNAs), and not all DNA is translated to
protein. Genes are the parts of DNA that give rise to proteins and enzymes. In eukaryotes
the part of DNA that contributes to the final product is called an exon, while the DNA that is
dropped out during the gene processing is called an intron. A gene consists of exons, introns,
and some regulatory regions, and the resultant protein will be a translation of connected
exons where each triplet of DNA letters (bases) gives rise to one amino acid (AA) of the
end product (AA alphabet has 20 letters). It is believed that humans have around 40,000
genes [226, 57], which amounts to around 1% of the human genome. During the process
of protein synthesis this may lead to as many as 500,000 human proteins, as different exons
within each gene can be selected for a particular gene in different cellular contexts, and
later, protein structure modification will also contribute to protein diversity.

2http://www.ornl.gov/TechResources/HumanGenome/genetics.html
3http://on.to/dictionary
4Strong, cloned copies of otherwise fragile mRNA - the essential messenger element of the genes in the

DNA which help in the coding of proteins, http://www.pbs.org/faithandreason/biogloss/cdna-body.html

2

1.2 Motivation

The initial motivation for this research arose from our work in the Chromosome 21 Tran-
scriptional Mapping Project at the Max-Planck-Institute for Molecular Genetics in Berlin5.
Our main contribution to that project was the creation of a database integrating known data
sources of human chromosome 21 information, and the building of an integrated map of that
chromosome [236, 122, 121] which was later used in sequencing, leading to the publication
of the chromosome sequence last year [103]. An unpublished report concerning this work
can be found in Appendix A. Part of the map integration exercise was to find possible se-
quence matches for all of the complementary DNA sequences (cDNAs) which were isolated
during the mapping project. Such matches might help in drawing inter-species maps, and
in annotating possible gene functions. If such matches were found in external databases,
they could be added as map annotations, and provided as links. Matches to known clones
or genes could also help us to position the cDNAs on the chromosome before sequencing,
and help in the sequencing task itself, by providing anchors of known sequence [121]. The
Chromosome 21 database was developed using object-relational technology, and sequence
matching could not be performed in this context. An external service was used, and this
task was performed by submitting 2,000 queries, each containing a cDNA sequence, to
the BLAST server at NCBI6. Query sending was automated using a script, but the anal-
ysis of data returned from BLAST was performed manually by an expert biologist who
knew how to distinguish between significant and insignificant matches. The chore of sifting
through thousands of returned BLAST results was quite a considerable overhead and this
task was performed several times during the project, so that new sequencing results could
be included.

The second motivating experience came from the collaboration with Professor Tim
Mitchell7 of the Division of Infection and Immunity at Glasgow University. The prob-
lem set there was to investigate small protein motifs which might be responsible for the
virulence ofStreptoccocus pneumoniae. The underlying assumption in this analysis was
that some repeated motifs in the protein sequence of this bacterium might give it special
power to attack humans. If such motifs were found, they might provide a clue as to how this
bacterium attacks human cells, and help in designing a vaccine which would produce an-
tibodies recognising those protein motifs. Our initial investigation of this problem showed
that BLAST sequence comparison tools [7, 8] are not designed to search for short motifs,
and return no matches. The ACeDB system8 [70] was also found not to possess sequence
query capabilities.

With the protein motif problem in mind, two years ago, we switched attention from
looking at automation of data processing in bioinformatics [183, 184] to sequence compar-
ison methods which support genome-scale querying. In the meantime we discovered other
possible application areas in which an efficient sequence searching solution is required. In
particular, we know of two projects investigating human disease which require powerful
sequence searching capabilities. Both involve using the published human DNA sequence

5http://chr21.molgen.mpg.de
6http://www.ncbi.nlm.nih.gov/BLAST/
7http://www.gla.ac.uk/Acad/IBLS/II/tjm/index.html
8http://www.acedb.org/. ACeDB is a data management and analysis system used very widely in genetics

research. It provides two map viewers, a data editor and a query tool, plus interfaces to provide access to
external software packages like BLAST.

3

to identify candidate genes thought to cause diseases, in combination with DNA data of a
model organism for this disease (mouse or rat). In both cases sequence searching results
have to be integrated with other data coming from external sources and lab experiments,
and may involve statistical modelling. Research into large-scale genome-level sequence
comparison methods is the leading interest of this thesis.

1.3 Thesis overview

1. INTRODUCTION (context and content)

2. METHODOLOGY

3. LARGE−SCALE DATA PROCESSING IN BIOLOGY

4. THEORETICAL FOUNDATIONS

SUFFIX TREE CONSTRUCTION

APPROXIMATE MATCHING ALGORITHM

paper on mapping chromosome 21
APPENDICES

testing log for approximate matching
paper on indexing and approximate matching
computing in human genome sequencing

5. AND 6. COMPUTING RESULTS

7. CONCLUSIONS

Figure 1.2: A schematic view of this thesis. Our contributions are highlighted in yellow.

We intend to demonstrate that sequence indexing can speed up large-scale sequence com-
parison. Figure 1.2 presents a graphical overview of this thesis. In this Introduction we
presented the subject area by summarising the aims of life science research and introducing
the terminology. In Chapter 2, Methodology, we reflect briefly on our research methods. In
Chapter 3 we develop our argument with a discussion of new biotechnologies which give
rise to very large volumes of data, and claim that efficient access to large data sets requires
the development of indexing and other computing technologies. This leads to a focus on
sequence data indexing. In Chapter 4 we introduce the computing theory used in this work,
and in Chapters 5 and 6 we develop our argument further. We study a variety of indexes,
and discover how to build very large indexes which were not possible previously. We then
experiment with index building and approximate matching using a large index, and come to
a conclusion that indexing is beneficial and requires further research. Additional research
evidence is presented in the Appendices.

4

Chapter 2

Research methodology

Analysis

Evidence & reflection

− bioinformatics challenges
− research on a large scale
− human genome project

persistence
data structures
matching algorithms

data structures
large suffix trees
approximate matching

Theory
− large−scale experimental techniques

INTRODUCTION − CHAPTER 1

LARGE−SCALE BIOLOGY − CHAPTER 3

CHAPTER 4

work plan
biological perspective
significance of our findings

Empirical study
& analysis

CHAPTERS 5 and 6

CONCLUSIONS and FURTHER WORK

CHAPTER 2
Methodology

Figure 2.1: The role of evidence, theory, and empirical investigation in the research into
new database mechanisms for sequence indexing.

Figure 2.1 outlines the structure of our thesis and the reserach methodologies we used. We
used both empirical and analytical methods. Our initial approach was empirical and ev-
idence was gathered by examination of existing software artifacts, in collaboration with
biologists whom we observed during their bioinformatics activities. The second methodol-
ogy was the use of computing and biological theory which provided a frame of reference
for our understanding of existing software systems and a foundation for the design of new
systems. The third method is the experimental work we carried out in an attempt to solve

5

the problems we noted in the evidence-gathering phase. And the fourth method was the
analysis and evaluation of old and new artifacts, and reflection on how they could be further
developed.

Our research methodology is reflected in the struc-

Figure 2.2: Ren�e Descartes,
http://www.culture.fr

ture of this thesis. In this chapter we outline our meth-
ods. Chapter 3 draws together some of theevidencewe
gathered from interactions with biologists and the analy-
sis of biological literature describing the use of software
in biological discovery. It describes emerging large-
scale technologies and the challenges for future bioin-
formatics work. In Chapter 4 we introduce some of the
theoretical foundationsof this work. Those include per-
sistent programming language principles which allowed
for transparent storage of application data, data struc-
tures which have a potential for DNA indexing, and ex-
act and approximate matching algorithms which can be
used in sequence matching. Chapters 5 and 6 describe theexperimental workwith the focus
on the suffix tree and the suffix binary search tree, and the path we followed to develop
an algorithm for the creation of very large suffix trees. We describe our research into ap-
proximate string matching using a suffix tree, and report all the results gathered during our
investigation. This leads to Conclusions which used the technique ofanalysis and reflection
to assess our achievement and draw a detailed plan of the work needed to deliver a prototype
database index for approximate searching in DNA and protein strings.

2.1 Collecting evidence

Our motivation to explore the area of database indexing for sequence data came from the
participation in the Chromosome 21 Transcriptional Mapping Project. Transcriptional map-
ping is synonymous with gene mapping, i.e. finding gene locations and their sequences.
During that project we built a database integrating chromosome 21 data, delivered it on the
web, and built an integrated map of the chromosome. For biological knowledge, we relied
mostly on the information transmitted orally by the biologists we were working with. We
found that the language divide between computing and genetics can be overcome slowly,
given the motivation to collaborate on both sides. While working at the biological lab,
we did not record observations on our research methods and results immediately, but the
results of our mapping and database work were preserved electronically and are publicly
available1. During the course of PhD research we decided to look back at our mapping
work, and spent a month producing a manuscript [121] on the use of relational technology
in genome mapping. That paper, reproduced in Appendinx A, was written to document
the mapping procedure we followed, and was submitted to Bioinformatics just before the
release of chromosome 21 sequence last year [103]. The reviewers recommended some mi-
nor changes. Because of pressing biological work, the co-author, Marie-Laure Yaspo, took
a decision not to invest any time at that point, but intends to come back to it once her current
work on the catalogue of chromosome 21 genes is complete, and release it as supporting
material on the chromosome 21 website. We believe on our part that this draft will now be

1http://chr21.molgen.mpg.de

6

useful in the context of our future work on cross-genome mapping of human, mouse and rat
genes, as needed in hypertension research that we are about to embark on.

Subsequently, we gathered further evidence about the use of available bioinformatics
tools in the contexts of bacterial genomics, linkage analysis, and human somatic mutation
simulation. The latter two have been documented as case studies [183, 184]. The method
we adopted in this work was based on direct observation of the biologists using existing
computational tools for their everyday work. A team of 2 people (myself and a research
assistant David Jack) spent some time with the biologist in direct observation and a question
and answer session where notes were taken and diagrams drawn. Case material was brought
back, and analysed. During this analysis journals and web resources were consulted, so that
a richer understanding of the biological issues was achieved, and then further questions
were addressed to the biologists to clarify the outstanding issues. The case studies were
then written up, sent back to the biologists for comment, and then discussed again. This led
to the final technical reports and fed into grant applications and further research.

Other forms of gathering evidence were less direct but equally important. Three main
sources of evidence come to the fore. One was participation in genomics meetings where
new technologies and biological results were presented, the second one was the study of
publications in the area of bioinformatics and biology, and the most important was partici-
pation in group seminars and meetings with biologists who explained their research. Atten-
dance at external meetings was preceded by poster preparation which helped in the shaping
and presentation of ideas [236, 122, 114, 115, 118, 116, 117]. Following the meetings,
accounts of the issues raised there were prepared and published electronically2.

Evidence gathering involved the study of bioinformatics literature. Nucleic Acids Re-
search3, published by Oxford University Press (OUP) has a methods section which regularly
reports on bioinformatics methods, and devotes a yearly issue to bioinformatics databases.
Bioinformatics4, also published by OUP, reports monthly on a variety of computational
problems and issues. Both journals report only methods that have been implemented and
tested in biology, and where source code or a web site are available. Other biological jour-
nals also report on bioinformatics techniques, but quite often the coverage of computing
science issues is so scant that the computing results could not be reliably reproduced based
on the published articles. A slight departure from that tradition can be seen in the human
genome paper in Science [226], analysed in Chapter 3, where the computing information
is on a par with biology, within the confines of some 50 pages that were allocated to the
paper. On the other hand, the Nature publication on the same topic [57] devotes much less
room to computing techniques which influenced the success of the sequencing project and
the annotation of sequence data.

Yet another way to gather evidence was to import bioinformatics software, or design and
implement new software and use it to solve problems reported by biologists. We classify
that under the heading of experimentation. We carried out the following experiments, some
of them as software projects carried out by students.

� Management and searching of bacterial sequences, based on a whole-genome se-
quence ofStreptococcus pneumoniae. This project went through several phases, from

2http://www.dcs.gla.ac.uk/�ela/Report-Chester2000.html, http://www.dcs.gla.ac.uk/�ela/Report-Cam-
bridge.html

3http://nar.oupjournals.org/
4http://bioinformatics.oupjournals.org/

7

initial investigation, until the most recent prototype which is now being extended with
additional functions. Initially, ACeDB [70] software was installed, and the genome,
as well as predicted genes were loaded. It turned out that ACeDB did not have se-
quence searching facilities, and searching for short protein sequences in that genome
was not possible using BLAST [7, 8] either. This experiment led to the follow-on
work, described as next item.

� Experiment in the use of suffix trees for sequence indexing and exact searching. Ada
code, provided by Rob Irving, implementing Ukkonen’s algorithm for the construc-
tion of suffix trees, was re-implemented in Java [60], as further described in Chapter
5. That work was the starting point of empirical research with suffix trees.

� Implementation of suffix binary search trees in Java (translation from Ada) [125, 237]
and further experimental work [120](see Chapter 5).

� Experiments in the design of genome browsers, i.e tools which allow for the exami-
nation of linear genome maps [134, 214, 221] and collaboration with David Leader
who is working on a new version of a genome browser5 allowing for cross-genome
comparisons.

� Experiments in data integration forStreptococcus pneumoniaeand Streptococcus
pyogenes[87]. This project used MUMmer [66] to align the two genomes, a suffix
tree to position 500 genes on the genome [113], ReadSeq sequence translation mod-
ule [90] to translate between different sequence formats, and Artemis [15] browser
and DerBrowser [97], redesigned by David Leader [118], to display data. BLAST
searches were automated using Java and used to find sequence homologs of 500
genes.

2.2 The role of theory

We read a wide range of papers covering the areas of computing, biology and bioinformat-
ics. Our study of biological subject literature (including Nature, Nature Genetics, Elsevier
Trends in Genetics, Science, and Nucleic Acids Research) performed the role of widen-
ing our understanding of biological research issues. The study of computing methods and
bioinformatics falls under the heading of theory, and requires a different approach from that
needed in the study of biological issues. Computing literature covers a wide range of issues
which can be roughly divided into theoretical and engineering subjects.

Our work made limited use of software engineering literature, and focused on using the-
ory to produce new practical solutions. Theoretical computing science often uses graphical
and algebraic methods to describe the idealised models of possible computations and data
structures. Our background in software engineering and the expectation that this research
is to be understood both by theoretical and practical computing scientists has tilted the bal-
ance more towards the graphical at the expense of the algebraic formulation. This makes
our presentation accessible to a wider audience, at the expense of less concise presentation.
As theory is not in our focus, we consider this departure from the usual style of theoretical
investigation to be fully justified. This heavy reliance on graphical presentation probably re-
flects on the succinctness of notations and ideas used in computing, where mathematical and

5http://www.biochem.gla.ac.uk/Leader/Leader.html

8

algebraic terms are more information rich than they are in biomedical literature, and a full
understanding of the implicit meaning can only be derived by analysing and checking the
correctness of statements using additional graphical or algebraic forms of representation.

During the period of this research we accessed the rich resources of computational the-
ory at times where further progress was thought to require deeper theoretical foundations.
Simultaneously, out of curiosity, we read some superficially unrelated theoretical work and
achieved enough appreciation of theoretical techniques to guide the shape of our experi-
mental research. Within this thesis we give a reckoning of theory which informed most
closely our work. This includes the foundations of persistence, string indexing structures
and pattern matching algorithms. Our broader interests which include agent technologies,
work-flows, software-engineering, semi-structured databases and XML [3, 91] will remain
unaccounted for.

Theory is not a research issue within this thesis but a constituent part of our engineering
research, and its role is to assist us in the building of future sequence databases. In this area
we studied Ukkonen’s work on suffix tree construction [224] as well as Kurtz’s work on
space reduction in a suffix tree [138]. We devoted considerable time to this research, only
to discover that, surprisingly, our testing resultsdo not showthat a time-optimal suffix tree
takes less time to build in Java as a sub-optimalnaiveone. We now think that this is due to
the fact that worst-case analysis is not a universal predictor of programs behaviour, and that
current models of computation do not reflect adequately the complexity of the full memory
hierarchy in modern computers.

Our work directly reveals the limited power of worst-case analysis in making the con-
nection between the time and space complexities of a computation. On the other hand, we
appreciate the available theory, which in most cases correctly predicts that some experi-
mental avenues are dead-ends and provides a good approximation of the performance of
algorithms.

We also need theory to throw light on the way persistence can be achieved. This is a
different type of theory which focuses not on complexity but classification of the computing
universe using types and properties of computational processes. This theory does not use
quantitative measures of goodness, but defines abstract classes of properties and abstract
objects which we use to describe the world of computing artifacts we create. In this theory
the language consists of terms like ”persistence”, ”transactions”, ”scalability” and others
described in Chapter 4. This vocabulary, specific to computing science, and database re-
search in particular, allows us to describe computations from a more practical perspective,
related to the use of resources, and the scheduling of tasks which model operations on data.
Our work relies on this theory, but again the theory is not our focus, and we limit our interest
to the most important features of the computing universe which we come into contact with.

The interplay of theory and experience is important in this work. The computational
theory we have at our disposal is a simplification of the actual computations we perform, and
the database theory we are using, that is orthogonal persistence, is constantly being refined.
In our experimental work with persistent systems, there is no accepted theory yet to describe
the complex interplay of disks and caches with operations in the Java language which have
different computational costs. Tips to software developers [71], on what operations to use
in their programs to achieve fast computation are practical intuitions and would require
research to be made into science.

As an illustration of the complexity of comparing time measurements we have to ab-
stract from is our comparison of two short Java programs of identical functionality, one

9

using String manipulation and Java Collections, the other one using byte arrays. In a test
with 300 MB of data, we observed a ratio of execution times of 60:1. On another occasion,
we executed the same Java program which constructs suffix binary search trees on two hard-
ware configurations, and the execution times ratio was 20:1, possibly due to a difference in
Java optimisation strategies. It is hard to say, perhaps because we are using different imple-
mentations of Java or running different implementations on different hardware platforms, if
an accurate generalisation of operation costs and space/time tradeoffs can be derived in this
context. Such phenomena are not limited to Java, and understanding of the space/time and
hardware/software tradeoffs in different contexts would be a useful foundation for software
engineering.

2.3 Empirical work

Our experimental work consisted of software reengineering (improvement of Java software
produced by students), algorithm design, implementation from scratch, and testing. Stan-
dard Java was used alongside persistent Java, PJama [21, 20]. Successive code versions and
Java/PJama versions were used during the project, and were tested with increasing amounts
of genomic sequence. There was gradual progress in the amount of DNA sequence we could
index. The first suffix tree could index less than 2 Mbp of source sequence. After code re-
engineering, trees for up to 25 Mbp became possible in memory (using 2 GB RAM). Then
persistent trees for up to 15 Mbp DNA followed, and after an improvement to PJama [155],
trees up to 20.5 Mbp were constructed.

Then the suffix binary search tree was produced in Java [237]. Some re-engineering
was required to reduce the computation time on the Solaris OS. Transient trees for up to 40
Mbp were built, and persistent trees for some 50 Mbp followed.

Performance tests were then carried out on five tree structures, with exact matching and
construction time measured for all.

The work switched then to suffix trees, and after studying Kurtz’s work on space-
optimal suffix trees [138], we decided to investigate space optimisations. To do that more
simply than with the optimal Ukkonen’s algorithm [224], we developed our naive suffix
tree which is not time-optimal but more space-efficient than Ukkonen’s tree. This led to
experiments with larger suffix trees, and then to the algorithm for building a suffix tree in
stages, currently for up to 300 Mb of source data, which is one of the main achievements of
our research.

Subsequently, we implemented and refined an approximate matching algorithm using
the naive suffix tree, and we performed various benchmarking tests as described in Chapter
5, Chapter 6, and Appendix B.

2.4 Software engineering methods

Software development activity consumed probably around 15% of the total of just over 3.5
years devoted to this research. Two types of programs were produced: Perl [228] scripts,
used as a job control language for large-scale testing and a data preparation language, and
Java classes which constituted the core research. The Java software which implements dif-
ferent tree structures consists of two main classes for each indexing structure we produced.

10

One class defines the nodes used in a tree, and the other class builds the tree and implements
searching methods. Each index structure uses between 500 and 600 lines of Java code.

No software engineering tools were used. We used “nedit”6 for word processing and
found the development of Perl modules far more time consuming than necessary. Tracing
errors in Perl programs was hard, because the language does not have any typing rules at all.
We would have liked to have access to Java libraries capable of high level manipulations of
ASCII files. For instance, high level functions which would recognise records within a data
file, write them to a temporary file, submit as queries, and report timing and results to two
separate files, would have been of great use. Such tools would be very useful to biologists
as well, and may indeed be developed in the future (similar to data wizards in some office
tools, but more flexible).

We did not use a code versioning system, but filed software according to production
date, which corresponded to the progress we were making. As soon as testing results were
produced, we wrote up the latest results as a report or paper, and filed the results data.

2.5 Research planning

We found it very difficult to plan work. Methods for work planning are not well taught,
and managerial planning of software projects, which we had studied, did not prepare us
for research planning. Software project planning is based on requirements analysis, while
research planning can only be done once research requirements are known. Identifying the
deliverables of a research project is the hardest part of planning. Once a deliverable is well
identified, decomposing it into constituent parts and planning the actual work is easier. The
role of experience in planning is essential. We believe that by having been encouraged
to write funding applications, we made good progress towards learning the technique of
research planning.

We prepared 2 grant applications to BBSRC which were not successful but fed into
work currently done by a group of researchers here. We successfully applied twice for
Masters and PhD studentships to MRC. We applied successfully to MRC for a personal
post-doctoral fellowship in bioinformatics and we helped in the preparation of a ROPA
grant to EPSRC which was successful. During last three months we also submitted a PhD
studentship application to MRC and a bioinformatics summer school application to EPSRC.
We contributed to a Wellcome Trust aplication for bioinformatics support for hypertension
research, and to a British Council application for travel funds to support bacterial genomics
research. We believe that preparing grant applications is a very useful part of the research
methodology employed in this project. During the periods of grant preparation, which
altogether consumed up to 6 months of effort, we performed a lot of research into existing
computing technologies and research trends, and into biomedical issues. These periods of
intensive effort included contact with biologists, which helped to refine our understanding
of the issues we were addressing. The writing process itself was also very useful, as it
helped us in phrasing our concerns in well-formed language. Another benefit was that the
project plans we produced shaped our research, and helped us in day-to-day management
of the process by refining our scientific goals and the strategy to achieve them.

6http://nedit.org/

11

2.6 Interdisciplinary aspects

Our interdisciplinary research consisted in a large part of interaction with biologists and
medical researchers. We estimate that at least 10% of our research time was spent in meet-
ings with biologists and attending biological seminars, and some additional 5% in reading
biological literature. We attended weekly seminars and met with the neurodegenerative dis-
eases group led by Keith Johnson7 which helped us to understand the research techniques
this group uses. We met with Tim Mitchell who works on infectious diseases8 and con-
ducted student projects in collaboration with him. We had several meetings with Julian
Dow9 who researchesDrosophila melanogasterphysiology. We also attended group semi-
nars and had meetings with the cardiovascular research group at the Western Infirmary led
by Anna Dominiczak10. We also met virologists, protein scientists, and statisticians to dis-
cuss joint research. We found that frequent contact with biologists was time-consuming but
necessary. We maintained regular contact, with the exception of several months with very
intensive software development and testing activities when we did not attend regular meet-
ings, but had some individual meetings instead. We benefited from our collaborations and
we believe that the biologists will trust us in the future. This is currently the case, as several
collaborative grant applications are in preparation, and two have now been submitted.

2.7 Reflection

While preparing to write up this thesis, we attempted to gather information about research
methodologies relevant to computing science. We found little relevant information. Web-
sites with course summaries and book contents lists present summaries for research method-
ologies in computing science which are not adequate in our opinion11. Disappointingly,
these research methods are limited to statistical data manipulation and computing literacy.
There is little reflection on research methodologies which would tell us what issues are
worth researching, how to formulate research questions, and how to prepare meaningful
answers to the questions we ask. There is a vacuum there which is worth addressing.

There is however one notable exception. Tichy addresses the need for experimental
[220, 219] research in computing science. He encourages experimentation for the following
reasons:

� a computing theory will be accepted if it explains all facts within its scope and is
borne out by experimentation,

� an experiment has the power to contradict theory and overthrow it,

� experiments can help explore areas where theory and deductive analysis do not reach,
and help with induction: deriving theories from observation.

We believe our research falls within the third area, as there is currently no theory adequately
describing the complexity of persistent systems. We hope that by testing index structures in

7http://www.gla.ac.uk/ibls/molgen/staff/johnson-kj.html
8http://www.gla.ac.uk/ibls/II/tjm/
9http://www.gla.ac.uk/ibls/molgen/staff/dow-jat.html

10http://www.medther.gla.ac.uk/bhf/bhfafdcv.htm
11see CMPUT 601 “Research Methods in Computing Science” at http://www.cs.ualberta.ca/ jeffp/cmput601/

12

different contexts, enough understanding will develop, so that perhaps new theories will be
formulated in this field.

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

literature

PLANNING

REFLECTION AND EVALUATION

THEORY

case studies

EVIDENCE GATHERING

ENGINEERING

EMPIRICAL APPROACHES ANALYTICAL APPROACHES

Analysis

Synthesis

literature
interaction with biologists
seminars, meetings
case studies

prototyping

testing

discussion

papers
posters
talks

prioritisation
grant proposals

Figure 2.3: Empirical and analytical research methods which contributed to our suffix tree
research.

As we found no literature which adequately addresses computing research methods issues,
we summarise our current understanding of the way our research developed. Figure 2.3
outlines the main components of our inquiry. The research we performed can be roughly
grouped into two kinds of enquiry: the empirical and the analytical work. Experience was
the main motivating factor, and a wide range of activities which we undertook helped us
to build a picture of the needs in the bioinformatics data analysis which we could remedy
using persistent technologies. To get a full understanding of the experience we gathered, we
subjected our experimental finding to analytical scrutiny. In this analysis we were guided by
theory, and we prioritised possible work in the light of our understanding and experience.
We drew plans which materialised as grant applications, and moved on to another round of
experimentation - this time by constructing new computing artifacts and testing their perfor-
mance against imported software which we used as benchmarks. Throughout the research
process we regularly reflected on our understanding of theory and of the experiments we
carried out, and wrote case studies, research reports and papers which provide a synthesis
of our progress and our of understanding of the field.

With this short summary of research methods we close this chapter, and direct the
reader’s attention to Chapter 3 which discusses the biological evidence justifying the need
for new database solutions to biomedical data management.

13

Chapter 3

Large-scale data processing in
biology

3.2 example : human genome sequencing

new research
paradigms

3.3

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

changing environment:
new technologies

large−scale gel electrophoresis

sequencing

large−scale hybridisation

protein 2D gels

mass spectrometry

3.1

3.4

DATA MANAGEMENT and INDEXING

INTERPRETATION and INFERENCE

VISUALISATION

DATA FLOW AUTOMATION

DATA INTEGRATION
CHALLENGES

Figure 3.1: Overview of Chapter 3.

The speed of biological discovery seems to be continually accelerating. This results from
improvements in science and technology including physics, chemistry, engineering, robotics,
and optics, combined with the increasing power of computer hardware. The result is the
availability of large-scale testing technologies (many thousand of data points in parallel)
providing data to the biologist who is currently underequipped in terms of software, hard-
ware, and experience to securely store, archive, index and conveniently manipulate those
data sets.

14

In this chapter we focus on this sudden increase in the data generation capacity which
is one of the main characteristics of a modern research lab. We show examples of relevant
technologies and resulting datasets. We introduce those technologies from the perspective
of data management and processing they require, and point out the features that they have in
common. We also look at the first significant application of those large-scale technologies
to the delivery of the human genome sequence, which illustrates the need for specialised
computing support in this area. This leads us to a discussion of a new research paradigm,
which we call data-driven research, and to a short analysis of the future challenges in bioin-
formatics which result from the application of large-scale data generation technologies in
biology. Figure 3.1 summarises the plot of this chapter.

3.1 New technologies

We review the following: gel electrophoresis, sequencing, microarrays, protein gels, and
mass-spectroscopy data. This leads us to consider the commonalities between those large-
scale data production techniques. We finally argue for the preservation of those data sets,
with appropriate annotation, so that they can be re-used and re-examined in future research.

3.1.1 Large-scale gel electrophoresis

Figure 3.2: Large-scale gel electrophoresis

Large-scale gel electrophoresis delivers images representing up to a few thousand data
points, see Figure 3.21, where the horizontal dimension is used to number the lanes in
which DNA samples are placed, and the vertical dimension represents the distance a DNA
fragment travelled in the gel in the electric field (which is proportional to fragment length).
A single experiment may involve pooling DNA from blood for groups of individuals, using
PCR (polymerase chain reaction) to selectively amplify (increase the amount of) a partic-
ular DNA fragment, and placing the samples in gel lanes in an electric field. The distance

1http://www2.perkin-elmer.com

15

travelled by each fluorescently labelled fragment is translated into fragment length by the
associated software. Individuals who provided the samples will be grouped according to the
particular combination of those fragment lengths, and their genotype will be represented as
a fingerprint of those lengths in some predefined order. Such tests produce a list of DNA
lengths for the selected fragments for each individual, and this data can further be used in
locating disease genes, or in criminal and forensic investigations. The underlying biolog-
ical explanation for this use of gel electrophoresis is that stretches of DNA differ between
individuals, but family members share similar DNA fragments, and those are inherited in
contiguous pieces together with neighbouring genes. For a study of a hundred individuals,
and 300 markers, two lengths will be recorded per each individual which leads to some
60,000 data points. In a search for a disease gene, using the technique of linkage analysis,
medical data will also be stored about each individual, together with the family trees for
each family. Several additional data sets will also be used in the process of finding the gene
position, as described in our previous work [183].

3.1.2 Sequencing

Figure 3.3: An integrated high-throughput sequencing system at Stanford University. DNA
is cut with enzymes and inserted in carrier microorganisms where it multiplies. Those
samples are placed in cassettes and then stacked, subjected to further processing and finally
passed on to the sequencer.

Powerful sequencing technology, see Figure 3.32, which has now produced an almost-
complete sequence of the human genome [226, 57], uses the same underlying gel elec-
trophoresis technique as described in the previous section, but this time applied to produc-

2http://sequence-www.stanford.edu/group/techdev/auto.html

16

Figure 3.4: A sequence trace produced from a sequencing run.

ing a coloured band for every base sequenced. An introduction to this technology can be
found on the web3. Gel images are assembled by the computer into colour-coded traces (see
Figure 3.4), and finally represented as strings over the alphabet of 4 letters (A,C,G,T), with
occasional N for bases which could not be determined. Those are delivered as ASCII files
of variable length, generally less than 800 characters. Those fragments are then “cleaned”
to remove the sequence of the carrier organism and assembled using string-matching algo-
rithms enhanced with statistical measures of error. Currently, the volume of public DNA
sequence data exceeds 18 GB, where one DNA letter is encoded as a byte. The source
data leading to the final assembled sequence is a multiple of the published size, as data of
high quality can only be achieved by re-sequencing the same pieces of DNA several times.
For instance, in the human genome project, 8-fold sequence coverage was required, Celera
now have a 6-fold coverage of the mouse genome which they have assembled4, and the
public mouse sequencing project has now achieved 4-fold coverage. Beside human and
mouse genomes, rat, chimpanzee, and dog genomes are being sequenced, each of those
being in the region of 3 GB of finished data, i.e. 15-30 GB of raw sequence each. An
overview of world-wide sequencing work can be seen at the Genomes OnLine database at
http://wit.integratedgenomics.com/GOLD/.

3.1.3 Large-scale array experiments

A large-scale hybridisation image produced using nylon filters is shown in Figure 3.55, and
a microarray slide in Figure 3.66. Those techniques immobilise thousands of catalogued
sequence fragments on a nylon membrane, glass, or other base, and a radioactive or fluo-
rescent sample is applied on top, in order to find affinity or detect reactions between the
sample and the immobilised fragments. Affinity means that the probe on the filter and the
sample have complementary sequence (come from the same DNA fragment), or bind bio-
logically in some other manner. Current array technologies mainly involve DNA, but new
techniques for protein immobilisation and protein-DNA reactions follow the same pattern.
The resulting data is a combination of the image and subsequent evaluation, for instance a
table including spot identity and the level of signal recorded. Associated information should
include a description of the experiment [38], technical data from the scanner and software
used, the name of the biologist and date. Data points may be gathered as an image or a

3http://seqcore.brcf.med.umich.edu/doc/educ/dnapr/sequencing.html
4http://www.celera.com
5http://www.molgen.mpg.de
6http://www.nhgri.nih.gov/DIR/LCG/15K/HTML/imganalysis.html

17

Figure 3.5: Large-scale hybridisation on a nylon membrane, involving over 20,000 data
points, viewed using an image-analysis program Xdigitise, from the Max-Planck Institute
for Molecular Genetics (MPIMG) in Berlin.

series of images with time stamps, with an associated map of spot identities and linked to
the underlying sequence placed in each spot. In a typical experiment, thousands of spots
are present, and depending on technology and the required resolution, between one and four
images are taken per time point. Each image takes up to 5 MB storage, and in a time-series
experiment with 20 time points, this may lead to 100 MB of data. A complex investigation
will use control arrays as well as examine a range of different experimental conditions. We
estimate that persistent storage needed to record one complete investigation may be in the
region of a few GB of images, plus some extra space for the associated annotations and
derived results.

As an example, we quote an early use of large hybridisations in the mapping of parts
of human chromosome 21, in which we were involved. To prepare a detailed map of a
part of this chromosome (totaling 3 Mbp i.e. 1% of the human genome) before sequenc-
ing [105], large-scale hybridisation experiments were carried out. Filters containing over
50,000 clones (each clone in duplicate) were treated with 112 probes (at least one image
per probe). Filters were then digitised, signals scored semi-manually using a computer pro-
gram Xdigitise (shown above), and the signal for the spots which showed a hybridisation
was scored as weak, medium, or strong. This procedure led to the identification of approxi-
mately 2000 clones which mapped in the area of interest and were used in further analysis.
Minimum image storage was for 112 TIFF7 images of 5 MB each (0.5 GB in total), and the
resulting clean data (after removing hybridisations with too many hits) lead to the identifi-
cation of over 2,000 clones, out of which 27 clones and 50 short unique sequences (STS)

7Tag Image File Format, http://www.libtiff.org/

18

Figure 3.6: Microarray image involving two dyes (green and red).

were selected for use in sequencing.

3.1.4 Proteomic techniques

Figure 3.7: Protein separation and analysis of proteins using mass spectrometry and
database searching.

The procedure for two-dimensional protein separation is illustrated in Figure 3.78. In that
experiment a living cell or some cell fractions are homogenised, and the sample is placed
on a gel which has both a pH and an electrical gradient. This leads to two-dimensional
separation of proteins. The gel is photographed, and can be used as a fingerprint of the tissue
and condition in question, and compared using image analysis to other samples. However,
new methods, in particular mass spectroscopy, can now be used in combination with this
procedure. Robots can excise some or all of the protein spots, and pass them on to the
mass spectrometer. Resulting data consist of images with corresponding annotation of the

8http://www.gla.ac.uk/ibls/II/jw/webmaldi.jpg

19

sample, including the procedures and equipment used. Image storage is the most bulky
component of that data, and may require up to 5 MB per image. The number of potential
images will depend on the design of a particular experiment, and may be in the region of
50 to 100, allowing for duplicates to ensure good quality of results, i.e. leading to up to 500
MB of disk storage per experiment.

Figure 3.8: Mass spectrum example.

Mass spectrometry, see Figure 3.89, can now follow on from protein 2D analysis. A spot
picked up from the 2D gel is broken enzymatically into smaller fractions, and the molecular
weights of those fragments are determined. By analysing databases of known proteins,
matches against known protein fragments are found, and some proteins can be characterised,
or close relatives found. Output data from spectrometry will consist of a trace or a list of
molecular weights found. Repeated application of digestion and spectrometry can deliver a
more exact resolution of the sample.

Other new technologies are also appearing in this context, and like microarrays, and
mass-spectrometry, they will deliver large-scale data sets. For instance, protein-protein
interaction data from the Yeast Two-Hybrid Screen10 will result in large images, and protein
localisation and activity information gained using indirect immunofluorescence [188] data
will also contribute significantly to the data volumes.

3.1.5 Common features of new biotechnologies

These technologies share the reliance on the underlying image which is then processed using
image-analysis tools, and leads, via statistical techniques, to numerical data used in further

9http://www.phymetrics.com/gen.asp?GID=283
10http://www.uib.no/aasland/two-hybrid.html

20

research. A substantial amount of source data evaluation happens before numerical results
are produced (image analysis programs vary in the way they process and deliver data), and
data are also produced by robots, microscopes, and other hardware and software.

Data storage requirements

Experimental research in biology often combines sequencing, microarrays, proteomics, and
digitalised microscopy images. Assuming an image size of 5 MB, 5 time-series experiments
of 20 time-points each (each scanned twice), plus 20 protein gels, and 10 images from a
microscope, images for one experiment may require around 1 GB of disk storage. Sequence
data and annotation will slightly inflate that number. It is hard to estimate the global volumes
of data produced using all those technologies. However, looking at the web pages of the
market leader in microarray technology, Affymetrix11, we learn that up to the 31st of March
2001, 450 Affymetrix systems (arrayers or scanners or both) have been sold, accompanied
by 70,000 GeneChip units, usually consisting of several chips. The price of Affymetrix
GeneChips is still high (over£300 per chip) and much more chip development is done
independently, using either Affymetrix systems or other equipment.

There is no doubt that keeping all the images in their original form, as captured, is a
prerequisite for their proper use in the future. There are several reasons for that. Images
cannot be re-acquired from old microarrays, as the microarray fades during scanning and
storage. Re-acquisition of images can only be done by repeating the expensive experiment.
Software that currently exists is still imperfect, as technologies of image analysis will be
improving to match the requirement for better image resolution. And statistical techniques
of data analysis will also be changing so that old images will have to be re-assessed using
new techniques.

We believe that data storage needs resulting from the large scale data generation tech-
nologies will be hard to meet. Techniques like storing data on a CD-ROM are no longer
adequate. If we assume around 1000 research groups which carry out biomedical research
at Glasgow and Strathclyde Universities and use those technologies, if each of them carries
out 5 such experiments next year, (each experiment producing 1 GB of data), we arrive
at a figure of 5 TB per year, which is entirely attributable to new technologies. This is a
real challenge to data management and indexing, if this data is to be made available to all
interested scientists.

Annotation

To be of value in future research, image data have to be properly annotated. Efforts to
standardise the annotation of microarray data are under way12, and minimum annotation
will have to include the descriptions of the experimental design, array design, samples,
hybridisation procedures and parameters, measurements, and normalisation controls. Those
annotations, as well as the identity and brightness of spots in the images will allow for data
indexing and further analysis. Standards for the annotation of data produced using other
techniques will have to be developed along similar lines. Such standards will be required
for protein data in particular.

11http://www.affymetrix.com/
12http://www.mged.org/Annotations-wg/index.html, http://www.mged.org

21

Aspects of data use

The integrated use of complex data sets presents a significant challenge. For instance, so-
lutions to sequence assembly and analysis, in the Human Genome Project, were created by
putting together pipelines of software programs which preprocessed, analysed and merged
source traces from the sequencer into contiguous stretches called contigs. Such pipelines
are now becoming available in the sequencing context, but they need to be integrated with
laboratory information systems (LIMS) which track sample preparation and progress, and
may have to be adjusted to match new hardware or procedures, i.e they have a high associ-
ated software engineering cost. Similar pipelines will be constructed in the future for mass
evaluation of microarrays, protein 2D gels, mass spectrometry, and other data, and will call
for software engineering solutions which can hardly be met cheaply using our current tech-
nologies. It is clear that data and software management to match the biological needs will
have to be developed, and deliver solutions which are both reliable and extensible. This is a
great challenge because of data and software diversity. There is a requirement for new and
more powerful indexing technologies, new approaches to data compression, new software
engineering solutions and new more powerful databases.

Focus on sequence

Out of the sea of possible bioinformatics research issues arising from large-scale data gener-
ation, we selected one. Our focus is on sequence data, and therefore, in the next section, we
explore data processing operations which had been used to produce the draft of the human
genome sequence, the main experimental material of our algorithmic research.

3.2 The delivery of the human genome sequence

In this section we compare the data management approaches used in the public genome
sequencing effort [57] with that used by Celera Genomics [226].

The aim of the Human Genome Project13 is to identify all human genes and their protein
products. To achieve that aim, the human genome is being sequenced, and the public ef-
fort is coordinated by the International Human Genome Sequencing Consortium (IHGSC),
while the private project is carried out by a company called Celera. We now proceed with a
comparison of both approaches.

3.2.1 Two sequencing projects

After a long preparatory period, from 1988 to 1998, public funding bodies agreed to se-
quence and publish the human genome by 2005. Celera Genomics, led by Craig Venter who
previously worked in the sequencing of smaller organisms [83, 106] and had left academia
to form his own company, announced in spring 1998 that Celera would sequence the human
genome by 2001. This caused some vivid discussion, and the public consortium decided
in the autumn of 1998 to change the deadline and deliver a draft sequence by 2001, and a
fully annotated complete sequence by 2003. In the meantime, Celera enlisted the help of
experts in theoretical computing science (Arthur L. Delcher, Gene Myers, Michael S. Wa-
terman, and others), and tested their approach with the much shorter sequence ofDrosophila

13http://www.gene.ucl.ac.uk/hugo/

22

Figure 3.9: Competing genome sequencing strategies.

melanogaster[165, 4], in collaboration with a research group of Gerald Rubin [189, 108]
at Berkeley.Drosophilasequence was delivered in part, i.e. 120 million base pairs (Mbp)
out of the total of 180 Mbp. This failure to deliver a more complete sequence showed an
underlying weakness in the purely computational approach in the areas of genome where
repetitive sequences abound, and in the final pinning of assembled fragments to chromo-
somes, which had to rely on high resolution genome maps requiring considerable skill and
effort to prepare14.

Figure 3.915 compares the strategy adopted by the public consortium (sequencing by
mapped clones) to the approach taken by Celera (sequencing by whole-genome shotgun).
Celera skipped the labour-intensive step of mapping of individual clones to chromosomes.
Instead, they used publicly available data from the IHGSC databases to position their data
on the mapping scaffold created by the publicly funded consortium.

Given no access to public-domain maps and data, Celera’s sequencing effort would

14Maps were constructed using BAC clones and sequence tagged site (STS) markers, and relied on a very
large body of screening experiments

15http://www.sanger.ac.uk/HGP/draft2000/gfx/fig2.gif

23

be of limited use, as it turns out that the human genome consists of up to 50 per cent of
repetitive sequence which cannot be resolved by sequence alignment alone. For instance,
a pattern of 2 or 3 letters repeating over several thousand symbols in the human genome
in several positions cannot be computationally resolved, because current sequencing ma-
chines can deliver up to 750 bases in each run, and the length of the overlap of repetitive
stretches is impossible to determine computationally. Therefore, a fully automated assem-
bly is difficult, and reference to chromosomal assignment (position of each fragment on a
chromosome, orientation and order of fragments) is the minimum required16. To overcome
that problem, Celera used public mapping data as well as a 3-fold sequence (9 GB) from
public genome resources in their assembly process, so that sequence fragments could be
oriented and ordered and the coverage of the genome could be complete enough to enable
assembly. As Eric Lander, leader of the Whitehead Institute / MIT sequencing lab, put it
during the recent Human Genome Conference (May 20001, Edinburgh):

Celera took the publicly available copy of the human genome, which was 95
percent complete, mixed it with its own version of the genome, and SURPRISE!,
what came out was a 95 percent complete version of the genome.

We now look at the computational issues in the human genome project. A listing of hard-
ware and software used in both projects can be found in Appendix B. Next section provides
a high-level overview.

3.2.2 A computational comparison

The task of the genome project is to deliver the annotated sequence for the human genome.
This work consists of two phases, one of them being the creation of sequence, and the other,
sequence annotation.

Sequence production consists of sequencing, sequence cleaning and assembly. Contam-
inants and the microorganisms in which human DNA was replicated will be sequenced as
well as the human DNA. There are also errors in reading the gel which have to be corrected
for. Data cleaning involves both rejecting foreign DNA and correcting for mis-read bases.
Then, assembly for each clone will be carried out separately, based on the lengths of DNA
inserts as measured on gels by electrophoresis [177]. The position of each clone in the
genome is determined by a variety of laboratory techniques (PCR or hybridisation or an-
other test for sequence identity), and based on this positional information, the full genome
sequence can be produced.

Stage two is the annotation. Genes can be predicted from the sequence using purely
computational techniques, which succeed to some extent, but do not recognise all genes,
and miss some gene parts. Genes can also be predicted based of the knowledge of genes
known from other organisms, or based on genes expressed in cells (which might be turned
into proteins by cell machinery). Often, before gene prediction is carried out, the sequence
undergoes a filtering process in which repetitive sequences are removed. Subsequently, gene
prediction and annotation can be carried out just on the DNA, or on the DNA conceptually
translated into protein.

16In the subsequent assembly of the mouse genome, known human genes and human-mouse synteny maps
can be used in sequence assembly.

24

Sequencing, sequence assembly and gene function prediction are all currently based on
computational techniques. Therefore we start this comparison by looking at the computing
resources employed by the public consortium and by Celera.

Appendix B presents more detail gathered from [226], and [57]. A summary of the
publicly released human genome data can be found on the web17. Access to Celera’s data
is via their website, after previous registration, guarded by password and non-disclosure
agreements.

Hardware

It is hard to compare the computing resources exactly. The public consortium consisted
of over 16 parties, and the main contributors were the Sanger Centre and the Whitehead
Institute. We feel that estimating the overall computing power for all public project par-
ticipants is hard, as the information on the computing setup does not clearly distinguish
between sequence production and sequence analysis. Sequence production was distributed
between the sites, and sequence assembly and analysis were partly distributed as well. The
Sanger Centre site, which produced roughly half of the sequence, used a heterogeneous
computing environment managed using a Load Sharing Facility (LSF) software provided
by Platform Computing Ltd18. A detailed listing of the hardware now used for annotation
by the Ensembl project is presented at http://www.ensembl.org/Docs/computation/.

It appears that both sides had access to very large computing resources without which
the computations required in the project would not have been possible. Celera’s computers
had larger RAM sizes (34 GB RAM for analysis and 64 GB RAM for sequencing and
assembly), and that allowed them to make an attempt at whole-genome assembly, which
perhaps would not have been possible in the public project, unless additional machinery had
been acquired. However, for the final assembly of contigs significant computing resources
were used [133] by the public consortium as well, and significant resources are available to
the ongoing genome annotation effort.

Celera report having access to more disk (100 TB for all operations), against 1 TB used
for sequence management and analysis in the public consortium, and the total of 22 TB
disk reported for the Sanger Centre [185] in January 2001. However, we have no exact
numbers on what the total data storage for the public sequencing effort was, because it was
a distributed project.

Celera’s powerful hardware configuration, coupled with access to the mouse sequence
which they were producing allowed for testing of a different approach to sequencing and
gene prediction. Without hardware support, their whole-genome assembly strategy would
have been much harder to implement, if not impossible.

Software

Appendix B lists the software packages used in the project. We provide a high-level evalua-
tion from a software-engineering perspective. Celera’s approach to software was industrial,
with the use of state-of-the-art database and software technology, and high integration of
software systems. This contrasts with more separate pieces of software used by the pub-
lic project, and lack of industrial strength database technology supporting the operation at

17http://www.wi.mit.edu/news/genome/factsheet.html
18http://www.platform.com/products/

25

the Sanger Centre, as shown on the web site19. A freely available database MySQL20 is
used instead to support the Ensembl web site presentation21. The Whitehead Institute, the
other main contributor, reports having moved to Sybase22 to provide a robust system for
sample tracking and analyzing trends in data quality. Sanger Centre seems to have relied
on ACeDB and other pieces of software which were glued together to provide similar func-
tionality. Max-Planck Institute, which was a minor contributor, used a database for data
presentation and map integration but not to track the experiments needed to create the map-
ping data. Those experiments were recorded in lab books and flat files, and data quality
issues due to illegible handwriting or mistyping required attention during the course of the
project. The costs of using more pieces of software and paper-based data management are
hard to quantify, but are perhaps comparable to the cost of implementing integrated soft-
ware packages based on database technologies. However, a more complex data processing
environment will have a negative impact on data quality and work efficiency.

Issues

In the comparison of both sequencing projects we single out the following issues related to
data and software management.

� All data on sequencing, sample preparation and analysis can be more easily reviewed
and checked wherever a database management system is used. As Celera report, this
led to high quality data with a small rate of errors. The high degree of automation, and
ready access to a database mean that any errors and discrepancies can be traced easily.
The database provides an audit and quality record and increases work efficiency.

� At Celera fewer software programs were used, and more integrated solutions were
produced. This probably translated into a productivity gain for anyone using this
software, due to fewer user interactions required.

� The approach to gene prediction taken by Celera, called Otto, was evidence-based
(i.e based on homologous genes in other organisms, and on available partial human
gene sequences) and rule-based. The criteria of gene assignment were very clearly
stated and encoded in the rule system used by Otto. The multitude of gene prediction
programs used by the public consortium may have been harder to manage. Overall,
a simpler and clearer automated gene prediction strategy should translate into more
reliable predictions. Celera also had access to more mouse sequence than the public
consortium. This may have led to better gene predictions, because exons are highly
conserved between the human and the mouse.

� Data access tools released by the public consortium with the first draft of the human
genome were not satisfactory. It appears that this aspect was not planned well in ad-
vance. Celera prepared more comprehensively and the demonstration of data analysis
tools shown at one of their presentations (Edinburgh, spring 2001) revealed a range

19If relational database software is used there, which we believe is the case, (one of the ex-colleagues at
Max-Planck Institute was recruited to join the Oracle team at the Sanger Centre), it is not used to present data
on the web, and is not mentioned on the web pages.

20http://www.mysql.com
21http://www.ensembl.org
22http://www.sybase.com

26

of interfaces to view and query the data. Celera’s tools were based on a combination
of Java and a database. Ensemble web site23 and the Santa Cruz site24 still provide
access to maps via clickable images which give the user no control over data pre-
sentation, and make the task of data analysis hard. Access to Ensembl will soon be
enhanced by the use of more powerful database technology, and adoption of more
modern browsers, currently being developed by the Apollo project.

Celera’s contribution

We summarise how the public consortium benefited from the Celera’s challenge. We think
that the influence of Celera’s approach has already had or will have the following impact.

� It speeded up the human genome delivery, as already discussed.

� It influenced the decision by the public consortium to adopt the whole-genome se-
quencing approach in the construction of the public mouse genome sequence.

� It showed that the industrial approach to sequencing works on a large scale, and that
sequence discovery in itself is not a research issue, and could be outsourced.

� It showed that unfinished sequence is valuable, and can lead to biological discovery,
by using mouse data in human gene prediction.

� It demonstrated the importance of industrial strength database and software support
and business planning for all aspects of data starting with production and finishing
off with data presentation and access tools.

Several of the aspects of Celera’s work are still a subject of debate. This refers for in-
stance to their different assessment of the volume of repeat sequence in the human genome.
They quote a lower repeat figure, possibly due to the fact that repeat sequence cannot be
assembled using purely computational techniques. Since the mouse genome is not publicly
available, it is hard to make judgements about the quality of mouse sequence data or its
presentation.

The public consortium’s data strategy

We now turn to the public consortium’s work. We think that the data and software manage-
ment and presentation issues did not get timely attention in the public project, and justify
this as follows.

� It is our personal experience that reliance on ACeDB [70] for data management, at
was done at the Sanger Centre25, is not an efficient work practice. If a data man-
agement system does not offer full database facilities, including transactions, roll-
back, constraints, archival, and a powerful query language, all those facilities are
then gradually added with considerable programming effort, or are performed manu-
ally with ample scope for error and with a high labour cost. Due to the high reliance
on ACeDB during the project, and lack of planning for a large scale data presentation

23http://www.ensembl.org
24http://genome.cse.ucsc.edu/
25http://www.sanger.ac.uk

27

system, current Ensembl facilities are not satisfactory. Current presentation has now
adopted MySQL for data query on the web, which is much more powerful than using
ACeDB, and will soon include Java browsers for maps, which are being delivered by
the Apollo project.

� The number of software tools used by the public consortium shows a very high com-
plexity. As new genomes are being sequenced, the current system will cost more to
maintain than a lower complexity software system. Other potential sequencing cen-
tres are now looking at the possibility of sequencing stretches of other genomes, and
trying to find out what technologies to adopt. The technologies from the Sanger Cen-
tre do not include robust data tracking mechanisms, and are not the best candidate
solution for the labs which want to start sequencing now. Installation of large-scale
systems like the one at the Whitehead Institute is expensive, but could in the long
time be cheaper. We believe that Celera’s lesson that cheap sequencing should be
done industrially in a centralised fashion and not at each centre separately, should be
heeded.

Conclusion about the human genome sequencing

We conclude, that from the point of view of data management, the Celera approach is su-
perior as it is possibly less labour intensive at the point of use and system maintenance, and
less exposed to human error. However, it required significant investment, and involved an el-
ement of risk, in adopting new tools and techniques. A similar conclusion can be drawn for
software complexity, and it appears that Celera is well equipped to sequence many genomes
fast and reliably using the tools developed for this purpose. In the final score of efficiency
and quality, Celera’s organisation of work was better in our opinion. Celera is a small or-
ganisation, geographically and ideologically coherent, and united in its commercial goals. It
used the available public resources efficiently to gain a competitive advantage and produced
tools which delivered results reliably in a short time scale.

The strategy of the public consortium was conservative, and chose evolutionary software
development. This had its strengths as well as weaknesses. By using techniques known
to themselves, they minimised risk. However, by the same factor, they could not make
efficiency gains possible with a new system implemented from scratch. The advantage was
the extremely high sequence data quality, but a disadvantage was inadequate data access
and presentation.

3.3 Research paradigms

This short illustration based on the human genome project furnishes an example of how
large-scale sequencing bears on the way biological research will now be conducted. With
the availability of the DNA sequence, small-scale questions of the identity of one gene can
now be related to large questions about groups or classes of genes and proteins across many
organisms. Other large-scale data production technologies we discuss will need similar
software and hardware support and will have a similar impact on research, by allowing a
shift towards large-scale data analysis. Until recently only hypothesis-driven research was
possible. A problem was formulated, experiments were performed, and the subsets of data
supporting the hypothesis were presented and published.

28

3.3.1 Hypothesis-driven research

Collect and analyse
blood samples for DNA
markers

− family tree
− severity of disease
− age of onset

Collect patient data

HYPOTHESIS: this
disease is hereditary
and can be localised to one gene

Linkage analysis
process − supported
by software

map the area
find candidate genes
sequence them
and find polymorphisms

relate polymorphic variants
back to patients

of disease
suggest a mechanism

PROVE THAT THE GENE

CAUSES DISEASE

FIND THE CAUSATIVE

GENE

UNDERSTAND THE

MECHANISM OF DISEASE

time

many possible locations
(disease is caused by many genes
or data are insufficient)

investigate protein structure
investigate interaction with
other molecules

IDENTIFY CHROMOSOMAL
LOCATION OF THE GENE

Figure 3.10: A simplified view of hypothesis-driven research in the field of disease gene
finding.

A traditional approach to finding a disease gene is shown in Figure 3.10. In 1999, we con-
ducted a case study of this process [183] and found that the improvements in underlying
technology (availability of large scale gel electrophoresis used in genetic profiling of fam-
ily members) have now made it possible to conduct successful gene finding within short
timescales. Previously finding and cloning a gene (finding its DNA sequence) would have
taken years of team effort. Now, after the publication of the human genome sequence, this
process is even faster, and positional cloning26 is simplified. It now involves examining
the sequence in a particular region on a given chromosome for potential genes and muta-
tions. In fact, during the final years of the genome project, some 30 genes were identified
that way [57]. However, despite the availability of the sequence, the interface between the
traditional methods of research and new technologies still presents a challenge which can
only be solved using software technologies. In the manual organisation of the data flow,
common in linkage analysis, shown in Figure 3.11, we see that the amount of error-prone
manual data processing required to carry out the analysis is excessively large. We see this
as a problem thatbioinformaticsresearch needs to address, and elaborate on the data flow
problem in Section 3.4.3.

26http://www.ich.ucl.ac.uk/cmgs/posclone.htm, positional cloning: isolation of a gene knowing only its chro-
mosomal location, which is typically identified by linkage analysis. Construct physical and genetic map of
candidate region, identify the genes within the region, investigate each candidate gene until the disease gene is
identified.

29

MANUAL DATA FLOW

Merged

Zero−data for
nonexistent

DNA

generate

cut−and−paste into

enter

enter

enter

enter

enter

format

SHOWN IN RED

import

input data

filter

Data

image

Pedigree lengths

data

Corected
allele data

Corrected
pedigree

Excel tables
of marker

GeneScan

Pedigree
checking

displays

displays
generates Histogram

tested

with

Genotyper

Pedigree
tables

Makeped

LINKAGE/
FASTLINK

generates

generates

Query responses

− project name
− no of families
− logfile name

Query responses
− liability classes
− penetrance ratings
− recombination fractions

GDB Allele
Frequencies

imported into

GLUE

LRP − filter

alternative

LEGEND

or applications
local processes

or interactions
external data

Gel
Samples

lab data

data
Output

LOD scores

Excel

numbers
GDB AlleleDNA

external software

Figure 3.11: User interaction with local and distributed software typical of a linkage-
analysis study using large-throughput DNA profiling [183].

3.3.2 Data-driven research

The traditional hypothesis-driven approach to biological research is now often comple-
mented by the data-driven approach. Substantial amounts of data are collected first, and
then patterns in data are analysed, and conclusions and generalisations are formulated. It
is only recently that the view that all data produced in an experiment are relevant is emerg-
ing. Both negative or positive results are beginning to be shown as supporting evidence,
especially with the move to make supporting evidence available on the web, as now re-
quired by most journals. For instance, in the case of PCR experiments testing the genomic
position of a DNA fragment, usually only the positive results were reported, as focus on
small fragments of chromosomes made accounting for all the negative results impractical.
However, with the large-scale genomic approach, reporting of all PCR results or microarray
results becomes imperative, and preservation of that data for future research should become
the norm. Preserving and making all the original data and protocols accessible allows for
data re-analysis. This re-analysis may be used in connection with improved analysis tech-

30

niques which might become available or might help to formulate new hypotheses, using for
instance preserved data from several experiments.

Figure 3.12: Positive and negative results from a chromosome 21 mapping paper [88] pre-
served in a database at http://chr21.molgen.mpg.de

An early example of using both negative and positive results is shown in Figure 3.12.
The construction of one of the early maps of human chromosome 21 used negative and
positive PCR results to create a map [88]. This mode of reporting, where all data are im-
portant and may be used by future research, should become the mode of operation for all
large-scale experiments, where all results are relevant and may contribute to new research
not envisaged by the original investigator.

A mixture of hypothesis-driven and data-driven research is shaping rapidly. Global
questions relating to evolution, models of proteins, or gene interactions are emerging. Ex-
amples of such investigations include the bacterial gene classification project COGS [136,
216], or the large sequence-based comparisons between different species [181] which our
research is hoping to facilitate. We expect questions which refer to large data sets to become
more and more important in the near future, and see data-driven research as a challenge to
the data management technology which we are trying to respond to.

31

3.4 The challenges of bioinformatics

New technologies and trends in biological research call for new computing approaches. We
concentrate on a few possible trends in computing andbioinformaticsresearch which in our
opinion will follow from the data-intensive biology we described. We believe that future
research areas will include:

� data management (database issues),

� data integration (via meta data),

� data flow and automation (data processing and software issues),

� data representation (visualisation), and

� data interpretation and inference (data mining).

We now explore those challenges in more detail.

3.4.1 Data management

Data management encompasses a wide range of issues. Because of our concern with the
increase in data volumes, we concentrate on the need for the preservation and public release
of biological results, and on the issues of indexing techniques needed for new data types.
We also suggest the ultimate solution - an extended file system which organises, indexes
and self-tunes.

The need for data management

The issue of data preservation and availability is of importance not only for the researchers
currently producing large data sets, but also for future researchers and the society as a
whole. Inadequate data management provision will lead to the repetition of costly exper-
iments because previous results were not preserved or were not adequately described and
catalogued. Current data management practices are inadequate. Large data sets are created
and deposited on local disks without appropriate annotation including date, researcher’s
name, laboratory conditions, protocol, source data and the tools used in data evaluation.
Without consulting the lab books themselves, which are paper-based and often illegible, it
will be impossible to share those results with other research groups. This problem has two
causes. On the one hand, funding bodies do not have a policy of enforcing the preservation
of experimental data and making it widely available. Only data leading to a publication
are made available, and a few years later they disappear from supporting web sites. A data
preservation policy on the part of the funding councils would recognise the cost of data
preservation as being lower than the cost of subsequent data re-creation, and make suit-
able policy decisions, for instance enforcing the purchase of database tools and an audit of
database management and sharing provisions. This is currently the case only for a minority
of biological projects, and good examples can be found in some of the web databases seen
today. On the other hand, we recognise that biologists may not have the necessary com-
petence in the area of data management, and they need expert advice and technical skills
which should be costed in grant applications.

32

Maurer and colleagues [151] describe their perspective on data management in similar
terms. They stress yet another point, namely that “discrepant information can be exploited
to identify errors and recommend best values”. Some of their examples come from physics
and they stress the importance of advanced databases in the scientific progress of physical
research. This argument can be extended to biological databases, and their plea for Single
Nucleotide Polymorphisms (SNPs) and microarray databases is currently being met27.

Data capture and indexing

Before specialised databases can be built, data need first to be captured at the point of origin,
and saved for future use. One of the hardest problems in a biological lab is data capture with
full annotation. The problem which follows is data indexing, which is indispensable if data
are to be located fast. Current support for text indexing, image indexing and sequence
indexing is poor. One of the currently popular annotation languages is eXtensible Markup
Language (XML) [3] and techniques for XML indexing are an active research area [58].
Similarly, techniques for XML views and querying are just emerging [9, 175].

Our work focuses on new data types, in particular sequences and images. This thesis
examines one of the subproblems of indexing for new data types, namely indexing of se-
quence data. Other future indexing needs in biology will encompass protein structures and
interactions, metabolic pathways28, mass spectroscopy data, and phylogenetic trees, just to
mention a few. This list will expand to reflect new data types which are bound to accompany
the appearance of new technologies and techniques. It is very likely that bioinformatics re-
search will explore new data description and indexing schemes providing better access to
such data types.

Future databases

A challenge, much harder to meet with current computing technologies, would be to make
database technology available to the scientist directly. Bioinformatics databases could ap-
pear as extended file systems. Such databases would be self-describing and self-indexing,
and would recognise similarities in data items stored using general meta-methods. Ideally,
such databases would provide indexing, visualisation, security, and web publishing facili-
ties at the touch of a button. They would be easy to use, and provide a range of functions,
some of which can only be implemented now with a great deal of custom-built code.

3.4.2 Data integration

Data integration is an important source of software-engineering work in business organi-
sations and a curse in biological research. Every merger of two companies is faced with
the data and systems integration dilemma, and complex decisions are made as to what data
should be extracted from existing production systems to the merged information manage-
ment systems. In biology, the process of selection is also important, but often there are no
technical means to automate the process of data gathering, filtering and reconciliation.

This section elaborates on the state of the art in biological data integration techniques,
on the database foundations of such work, and on the need for ontology-based specific
solutions in bioinformatics.

27http://snp.cshl.org/, http://www.ebi.ac.uk/microarray/
28http://www.ebi.ac.uk/research/pfmp/, http://www.genome.ad.jp/kegg/, http://ecocyc.doubletwist.com/

33

Bioinformatics data integration

With the development of relational databases and database-related bioinformatics, first at-
tempts to solve data integration problems in this data domain appeared in mid-1990s [41].
This coincided with the appearance of web-based bioinformatics systems, and the need to
merge disparate data sets to get exhaustive information. For a biologist trying to find a gene
location, based on linkage analysis, the work required to assemble all of the relevant data
is extremely onerous, as already shown. As changes to external data sources on the web
happen daily, a biologist will never reach all data which might be relevant. Therefore, the
premise of data integration for most biologists is the fact that data will often be out of date,
and data acquisition will be laborious.

The labour involved in importing data sets and merging them to fit the formats required
by different data manipulation tools if often significant. Simple word-processing solutions,
like regular-expressions or macros, are not widely used, and they are not robust as data
formats change frequently. There are no usable interfaces to Unix tools likeawk [5] or
grep [218] and the power of regular expressions in many word-processing packages is
limited. The common solution for a biologist is to learn Perl and produce scripts which are
hard to debug, and impossible to test for correctness. Current solutions are brittle and cost
a lot of work.

Database research and solutions

Data integration problem is a widely recognised issue not only in bioinformatics, and has
been the subject of considerable research in the database field. Some of this research relates
to data translation between different formats, for instance from HTML to XML [193, 192].
Some research explores different type systems and query languages which could support
data transformations [62, 41, 175] and some explores data unification problems [159, 9].
Beside the database approaches mentioned above, other approaches are also known, and
they use diverse methods including information retrieval techniques [129].

The difficulty of biological data integration lies in the syntactic and semantic filtering
and unification of data. Most data transformations used in current bioinformatics appli-
cations are hard-coded, and have to be re-adjusted each time one of the participating for-
mats changes. Extensive research, based on this underlying principle includes strategies
using database languages which operate over data collections, and optimise the evaluation
of queries over those collections [63, 61].

Another strategy used in data integration is based on technologies which use unique
database identifiers, as exploited in the SRS system [76]. This system builds tables of asso-
ciations between database items in different underlying databases, and provides queries over
a large number of databases. The user selects the databases to query and query conditions,
and pages of clickable links to data found by the system are presented. No data unification
is possible, and multiple links have to be followed to retrieve the data. This system is used
only by expert users.

Future solutions in the database area may be based on meta-language descriptions of
data, a mechanism which may allow for semantic data unification. By separating content
and presentation, as done in XML [3] and its predecessor the Abstract Syntax Notation [1],
data translation and unification can be performed on a higher level. In particular, current
research into ontologies for biology [16], now reflected in several databases including the

34

Mouse Database29 and the yeast database SGD30, is very promising.

A meta-ontology

The approach of using ontologies to describe the semantics of data could be extended to en-
compass the entire universe of biological data processing. Future ontologies could describe
data sources, applications, type of data flow, data transformations and even users and their
profiles. Possibly all web resources relevant to bioinformatics research could be associated
and unified using meta-data. Biologists will have to be involved in developing and rec-
onciling different views of data, while the computing science researchers will concentrate
on efficient mechanisms of storage and query using ontologies and ontologically described
data. The possible ways of storing and deploying ontologies are a subject of current research
[31, 46] and performance optimisations will provide ample scope for future work.

3.4.3 Data flow and automation

Data flows are a conceptual tool used in business application design [229]. User interac-
tions with data are captured and encoded using this technique, and applications are built
to automate the flow of data. This solution assumes that data flows are static, and system
re-engineering is required only if changes in business practices occur.

In biology data flows are very complex, and change frequently. They span the internet
and focus on one user or a small group of users. It appears that traditional data flow solutions
would be too expensive to solve the data flow problem in this domain.

We examine two sub-problems in this area. The first one is concerned with individual
user interaction with web interfaces, and the second one concerns the flow of data between
applications.

Using web interfaces

Current ways of interacting with biological databases on the web are constrained by the
stateless HTTP protocol31. Most of the web interfaces used in biology are built as web
forms which use CGI [152]. Data are retrieved by a combination of queries and link traver-
sals. This approach is appropriate for the analysis of small amounts of data, but becomes
inadequate if more data need to be retrieved. Web sites are designed to provide this direct
interaction with data and not to provide bulk delivery of data sets. It is not realistic to expect
that all web data providers create varied data access modalities. This problem was identified
in our case study of linkage analysis [183], and we see a possible solution in providing agent
programs for the users who need to access data in bulk. Such programs could be relatively
simple to start with, with simple means of defining the database to query and the items to be
retrieved, and later developed into sophisticated tools which remember previous retrievals
and allow for building complex retrieval and filing scenarios.

29http://www.informatics.jax.org/
30http://genome-www.stanford.edu/Saccharomyces/
31http://www.w3.org/Protocols/

35

Application data flow

The flow of data from external sources into applications and between applications is an im-
portant research area which we identified. This problem is closely related to the business
data-flow problem. The main difference comes from the high variability of biological data
flows, and the high rate of change in underlying data and software components. In this con-
text flexible mechanisms are needed. We believe that future research in this area will strive
for solutions which are user-focused and not application focused, and will use techniques
which allow for tracking and auditing of the data flow.

Future trends

Future solutions to the data flow problem will probably employ the following techniques:

� graphical languages for workflow composition and evolution that could be used di-
rectly by a biologist,

� meta-data for data and software description and data flow capture, including usable
interfaces to meta-data (editors and viewers), using appropriate visual metaphors, as
current viewers support only hierarchical data representation, see http://www.geneontology.org,

� theoretical foundations of data transformations to be applied to the evolution of meta-
data descriptions, including typing for data, software and flows,

� safe implementations of internet data flow mechanisms,

� software architectures to support evolvable data flow applications.

Some of the issues in this area have already been investigated by Baker and colleagues [31],
but current solutions to the problem, including Pise [141] and AppLab [200] assume that
the data flow will be engineered by a computing scientist, and therefore will not be easy
to change by a biologist. Newer approaches to this problem take into account the need for
evolvable data flows, and the trends can be seen in the work by Hull and colleagues [111]
and the Vortex and E-services projects at Bell Labs32.

We envisage future systems using standardised descriptions of data, software and flows,
and graphical toolsets which would allow the biologist to compose and generate data flows
as required. In a shared environment such data flows would be stored, could be re-enacted
and modified, or re-executed automatically.

3.4.4 Visualisation and representation of data relationships

Visualisation can be defined as an appropriate rendering of multi-dimensional relationships
using two-dimensional presentation media like the screen or paper.

Genome maps

In one of the common activities — drawing a genome map, see Figure 3.13, we simplify the
3D structure of DNA and represent it as a long line, with distances between points on the
line corresponding to physical DNA lengths or other scales. This map representation has

32http://www-db.research.bell-labs.com/user/hull /e-services-interoperation/index.html

36

Figure 3.13: A visualisation of human chromosome 21 sequence data at
http://chr21.molgen.mpg.de

taken some time to develop, and in the plethora of “genome browsers”33 only a few are easy
to use. Implementing this basic visualisation technique in a computer program which has to
be fast, flexible and capable of representing genetic objects at different scales of resolution
is a challenge which is still being addressed. The usability of mapping tools in the area of
genome representation and annotation has not been investigated, despite the existence of
several such systems. We believe that further work is required to find out what solutions
provide good access to this type of data. Further to that, a new type of browser is now
needed, one that can show comparisons between multiple genomes. Our short examination
of current answers to the problem of inter-genome comparison as provided by ACeDB34

33http://compbio.ornl.gov/channel/index.html, http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/mapsearch?chr-
=hum chr.inf&query, http://genome.ucsc.edu/goldenPath/hgTracks.html

34http://www.wormbase.org/

37

Figure 3.14: Cluster of 47 orthologous proteins COG0553 from several bacterial species as
shown at http://www.ncbi.nlm.nih.gov/cgi-bin/COG/palox?COG0553

and ACT35 showed that they are inadequate.

Hierarchies and taxonomies

Another area of great importance is the representation of biological hierarchies and tax-
onomies. Both of these can be represented abstractly as graph structures, but it is not obvi-
ous what representations and visualisations are appropriate once the size of the problem is
greater than 10 discrete items. It is also not clear what underlying database structures serve
graph models best. This problem is currently showing in the difficulties of searching and
navigating hierarchical file directories, and is not resolved for the case of viewing two hier-
archies at the same time (participation in two hierarchies is not allowed in a file system, but
quite common in taxonomy [182]). The difficulties of scaling up data displays are apparent
in the representation of protein families [216], reproduced in Figure 3.14, where the tree
display shows a cluster of 47 orthologous proteins from several bacterial species. Beside
being hard to read, such representations do not provide an optimal view of the complex
relationships within this cluster.

35http://www.sanger.ac.uk/Software/ACT/

38

Metabolic pathways

Figure 3.15: A metabolic pathway as shown at the Kyoto Encyclopedia of Genes at
http://www.genome.ad.jp/dbget-bin/showpathway?hpy02010

Another biological example comes from the display of metabolic pathways, see Figure 3.15.
Metabolic pathways model biological interactions which should be viewable at different lev-
els of resolution. Current tools produce images (usually GIF format) which have embedded
clickable links, enabling drill-down to the database entries. This technology is limited to
displaying objects at a pre-set scale and does not allow any client-side, user-driven explo-
ration or adjustment of the image data (scrolling, zooming, colour modification, selection
of a subset of data for analysis). Better display technologies are needed to provide access
to such data as it is produced by the various microarray and protein interaction experiments
described in this chapter.

3.4.5 Data interpretation and inference

Dealing with large quantities of data is a challenge and new data mining techniques are
being developed with the view to simplifying the analysis of large data sets. Data mining
techniques are already used in the context of sequence analysis [37], protein classification
[74] and micro array data analysis [72]. Data reduction techniques are now used in microar-
ray analysis packages from Affymetrix, www.affymetrix.com, which come equipped with
data mining support from Spotfire, www.spotfire.com. Similar techniques will probably
soon appear for other types of data. The challenge in this area will be to find approaches
which can combine different sources of data in analyses which consider many factors. This
direction has not been explored sufficiently yet, and possibly different statistical approaches
will be applicable. It appears that both the industry and academic researchers are working
very actively, and the laborious analysis of large data sets will soon be performed using
statistical and visualisation packages running on top of powerful databases. For microar-
rays alone, PubMed database, http://www4.ncbi.nlm.nih.gov/PubMed/, lists in excess of
1,000 citations, and the strength of existing statistical techniques seems to provide adequate
foundations for the required inference engines.

39

Use of information retrieval tools in this area has already been mentioned, and data
mining of publications [129, 146, 137] is now becoming common. Also systems which
combine text mining of publications and database descriptions to automatically classify
proteins are being investigated [112].

3.5 Summary

We now close this introductory chapter which argues that new computing technologies and
data storage standards are needed to manage the flood of biological data created by new
large-scale experiments. We have provided examples of new data types, and an illustration
of large-scale data processing issues encountered in sequencing the human genome. We
discussed the new trend in research which we term “data-driven research”, and outlined
future directions in bioinformatics which may contribute computing solutions needed in
this area. Our thesis addresses just one possible technology which could speed up sequence
data searching. Before we describe our contribution in this area of research, we devote
Chapter 4 to the introduction of theoretical concepts on which our work is based.

40

Chapter 4

Theoretical foundations

INDEXING STRUCTURES

suffix−based (tries, suffix trees and arrays)

database−oriented indexes

suffix tree optimisations

EXACT MATCHING

exact matching
over pre−processed text

APPROXIMATE MATCHING

dynamic programming

automata

bit−parallelism

filtering

Java Object Serilization
Relational DB

PJama

Persistence options

PERSISTENCE

persistence requirements
definition of orthogonal persistence

Why? How?

Figure 4.1: Overview of Chapter 3.

Our work on indexes to biological sequence is based on two underlying requirements. One
is for speed of access to sequence and the other one is for programmer’s convenience in inte-
grating sequence searching into complex bioinformatics applications. This requires making
choices among the technologies, data structures, and algorithms to be explored. Our path
leads from the traditional in-memory searching as done by most sequence-searching tools to

41

secondary-memory searching. Secondary storage aspect requires persistence, and the first
section of this chapter will describe the theory and practice of persistent applications. A
data structure (index) which can speed up searches in secondary memory is also required,
and Section 2 will look at potentially relevant indexing structures. And finally, exact and
approximate matching algorithms are needed. We review some of the standard methods in
Sections 3 and 4. More detail about approximate matching in biology will be presented in
Chapter 5. A graphical overview of this chapter is presented in Figure 4.1.

4.1 Theoretical foundations of persistence

We explore techniques of po-

Figure 4.2: Disintegration of the Persistence of Memory by S.
Dali, http://www.salvadordalimuseum.org/

tential use in building per-
sistent indexes supporting fast
searching on biological se-
quence data. To demonstrate
the feasibility of our approach,
we want to use an implemen-
tation of persistence which
can support any data struc-
tures encoded in Java which
we had chosen for ease of
integration with existing data
viewers and data translation
software. Persistence can be
loosely defined as the longevity
of computations (which im-
plies longevity of associated

data structures). This is normally achieved by encoding the computations (and data struc-
tures) in a storage medium which does not degenerate with time. In the world of databases,
the storage medium remains intact, even in the event of a power cut or system failure, and
the effect of the past computation which created an index to data remains available to future
computations.

4.1.1 Motivation for persistence

The main reason to preserve computation state is economic. Economy means minimising
the computations required, and minimising the human effort needed to design and execute
the computations (programming effort needed for software creation, and effort needed to
initiate the program execution). There is also a safety and reliability dimension. Human
beings are prone to error. Complex programming paradigms and complex interfaces are
more error-prone than simple ones, and error may be unsafe or detrimental to business or
science. If computational state is preserved, on program re-entry direct reference to the
past state is made, and complex initialisation rituals need no longer be performed. In the
case of suffix trees for the human genome, building a memory-resident suffix tree takes at
least 9 hours and 45 GB of RAM, and building and writing one to disk would take 140
hours (extrapolating from our experiments which required 14 hours for 10% of the human
genome) and use only 2GB RAM. If we intend to use a tree many times, and do not have a

42

machine with 45 GB RAM, it is advantageous to preserve it on disk1.
The other economic factor is programming labour. Using tools which simplify and au-

tomate data storage is a way of producing applications more cheaply. Managing data and
computations using just one programming language which automatically stores data and
computation state is cheaper than having to support two programming languages (a proce-
dural language and a data definition and access language) which are not compatible in their
view of data, as one is record-based and the other one set-based. Two views of data, as
paramount in JDBC [233], for instance, require more intellectual effort, and mastery of two
programming languages, instead of one. Current training for computing scientists includes
the teaching of both relational (functional) and procedural languages, so that persistent ap-
plications can be built using a combination of at least two technologies: a database language
and a procedural language. In the case of using Java Serialization, only Java is needed, but
this mechanism is suitable only for small applications and not for use in multi-user environ-
ments needed for instance for e-commerce.

Finally, the third economic consideration is the need to produce correct software. Code
which deals with two programming paradigms in one system is bound to be more likely to
have errors and will take longer to debug than code produced using software which abstracts
over persistence. Errors are detrimental not only economically, but they may have impact
on human lives. Therefore using simpler (transparent) arrangements for data and applica-
tion storage, may impact the quality of life, even if the initial impact is just the perceived
economy of code production.

4.1.2 Available persistence mechanisms

Java Object SerializationTM

Java Object Serialization[93] defines ways of serialising objects which are to be written to
disk. InJava Serializationthe whole object-graph has to be present in memory while being
serialised or de-serialised, and additional data structures may be needed to cope with cycles
in a data structure being serialised. This imposes a size restriction and limits the index to
the size of RAM. This restriction is unacceptable in the database context. Random access
to parts of the object graph is needed, and this is not supported. A work-around using this
technology would involve partitioning the structure into smaller units‘ and possibly using a
relational database to store parts of the tree. In an object-relational mapping relations could
store subtrees, for instance indexed on a common prefix.

A custom-built technique of encoding the tree to disk, not involvingJava Serialization,
would require defining a storage format, possibly partitioning the structure, and using ran-
dom access disk reads (equivalent to seek function based on a disk address). This solution
would require new code for each data structure under investigation. We did not investigate
that path, as it would seriously impede our progress.

Relational databases

Relational databases have two mechanisms which are of potential use for tree storage. We
look here at the facilities available in the ORACLE database [144]. We could use relations
or Large Objects (LOBs) to represent a tree.

1We expect to reduce the time required for tree building.

43

We could use three tables, one for internal nodes, one for leaves, and one for links from
parent to child. Each node could be uniquely identified by the first node character and by
an index of that character. Link traversal would be by views joining the tables, some of
which might be materialised. This solution would probably have a high storage overhead,
and graph traversal would be prohibitively expensive.

Another available mechanism is the use of Large Objects (LOBs), where each LOB may
contain up to 4 GB of data [75]. LOBs can be manipulated using either a PL/SQL package
called DBMSLOB or via an API called the Oracle Call Interface (OCI).

Recently we became aware of yet another alternative, called Oracle 8i Extensibility
Framework [211, 207, 13] which seem to be promising and worth exploring.

There are two problems which might have to be faced if ORACLE were to be the per-
sistence platform. The main issue would be the labour required to create the mappings
between a programming language we would be using, and ORACLE tables or LOBs. A
considerable amount of programming would be spent on code which does not directly bear
on our research issue, and we would have no guarantee of good performance. The guide-
lines for the use of LOBs are such that extreme care is required, so that performance does
not suffer. On the other hand, we think that using a table representation of our tree would
disable the use of optimisations built into this database. SQL is not capable of expressing
recursive queries of unknown recursion depth, so that any searching would have to use pro-
cedural constructs. The same performance penalty would be incurred if we used LOBs. We
did not explore this avenue because of the high labour cost and high perceived risk.

Other databases

Our previous experience of SHORE [45] under the guise of Predator [201] was disappoint-
ing. We experienced memory leaks and subsequent database corruption. Those may have
been due to Predator incorrectly assessing SHORE objects. This meant that the use of
SHORE might give us trouble as well, because the complexities involved in creating object
definitions, compiling them, and then filling up with procedural code may have consumed
considerable resources. We also had reports from our colleagues which pointed to ineffi-
ciencies of several known object-oriented database systems, mainly in the areas of perfor-
mance and scalability. We wanted to minimise time spent on software development to free
time for indexing research, and we took the risk of using the persistence paradigm rather
than taking the risk of spending additional time on coding. We now explain the theory
behind PJama.

4.1.3 PJama and orthogonal persistence

Orthogonal persistence envisages a unified view over all computations and data. This vision
which has guided the development of successive persistent language implementations of
which PJama is a recent embodiment. The traceable roots of persistent philosophy reach
back to Pascal/R in 1977 [194], and are then developed in early 1980’s [19, 18] as an
implementation of a persistent language PS-algol. Successive stages and experiments with
persistence include Napier88 [40] and PM3 [107].

The philosophy of persistence is a reaction against the strong dividing line usually drawn
between persistent data and volatile memory structures accessible during program execu-
tion. Persistent languages offer to cure this dichotomy, and propose a unified view pre-

44

serving data and computation between successive program invocations. Such view is partly
implemented in databases, but this implementation is imperfect. Database implementations
store data, or the results of computation, only if such storage is explicitly requested. They
store data which can be typed into the few available categories, and data have to be accessed
using a limited repertoire of commands, for instance SQL [52], PL/SQL or embedded SQL
for relational databases, or OQL [47] for object creation and retrieval, and C++ or Java for
data update, in object-oriented databases [47]. The database paradigm of data persistence
has proven essential to the growth of economy but falls short of the ease of use, and of the
completeness of persistence, which could encapsulate the entire computation.

Defining orthogonal persistence

Orthogonal persistence is based on the belief that a programmer should never have to write
code to move or convert data for long or short-term storage. The main tenets can be found
for instance in the FIDE book [24], and an up-to-date overview of achievements is available
in [23]. We restate the principles of orthogonal persistence.

� The principle ofpersistence independence. The form of a program is independent of
the longevity of the data.

� The principle ofdata type orthogonality. All data objects and computations should
be allowed persistence independent of type.

� The principle ofpersistence by reachability. Language reachability criteria are used
to define the extent of objects made persistent.

PJama uses the typed language Java [93] to implement orthogonal persistence by reach-
ability. By designating a root or roots of persistence (a designated class or classes), we
achieve persistence of all objects reachable from the roots. In PJama persistent classes are
defined as static and added to the set of persistent roots. Adding persistence to a complex
Java application involves adding a few lines of code in the class or classes which have the
main method for a given application. In the case of our tree indexes, we make the main
tree class static, and add checkpoints - which correspond to database commits, to write the
tree structure to disk when the tree grows by a certain factor2. The following lines of code
are required;

import org.opj.*;

static OPRuntime.roots.add(TreeClass.class);

static TreeClass self;

OPRuntime.checkpoint();

We also define the tree root and the array of symbols to be indexed as static variables which
amounts to 6 lines of code altogether.

2PJama currently cannot detect that the available memory is full and checkpoints have to be performed
explicitly for objects which exceed RAM size.

45

Persistence requirements

To make data-persistence automatic (as is now the case with automatic garbage collection),
and useful to software developers, several requirements have to be fulfilled. We summarise
those, closely following [23]:

� Orthogonality. Any object must be capable of persistence.

� Independence. The language must be unchanged and conform to a standard, here
the Java Language Specification (JLS) [93]. This is a practical consideration which
ensures that compiled software can run equally well in a persistence-capable environ-
ment as it does in a transient setting.

� Durability. Persistent system has to be able to recover from crashes without corrupt-
ing previously committed computations. This is equivalent with the trust that we put
in database software.

� Scalability. Computations of any size should be supported.

� Evolution. Application should be able to evolve in a controlled manner (equivalent to
database restructuring techniques).

� Migration. Mechanisms enabling migration to new platforms (hardware, OS, lan-
guage implementation) will be provided.

� Endurance. Continuous operation with no downtime is required.

� Openness. Interaction with the external world, independent of the type of connectivity
and data is needed.

� Transactions are needed to capture the semantics of complete isolated operations
which are concurrent and may fail.

� Performance must be comparable with other ways of implementing persistence.

Those persistence requirements give rise to several technological challenges, some of which
are still being solved. PJama [21, 180] addresses most of those requirements, but each of
them is satisfied to a different extent. The main contribution from the software engineer-
ing point of view, however, is in showing that the dichotomy of persistent and transient
computation can be overcome with minimum programming effort on the part of a soft-
ware engineer. The impact of such a system is very significant in research and prototyping
where several alternative solutions have to be evaluated, and their performance compared.
In this respect, for object-oriented data modelling, PJama is functionally equivalent to the
use of a standard database product for fast prototyping, but much easier to use because of
one-language environment with data modelling capabilities limited only by Java language
constructs.

In theory, producing a software system implementing fully orthogonal persistence should
have a dramatic influence on software engineer’s productivity. However, the acceptance of
orthogonal persistence is not high. This is due to several factors. One of them is ignorance
and inertia, because the heavy indoctrination by database vendors, makes thinking about
applications which do not have a separate database language unthinkable. Another is lack

46

of experimental results showing that it is cheaper to construct applications using automated
persistence than using databases. It would be hard to construct and finance a valid exper-
iment to prove that orthogonal persistence delivers business solutions faster, see Atkinson
[20] for a similar argument. A valid experiment would have to include 2 teams producing
and maintaining a complex application using 2 alternative technologies over a long period of
technological change. To make such an experiment viable, the underlying platform would
have to fulfill all of the requirements listed above. And at the end of the project, evaluating
software that was designed 15 years earlier, and tested over 10 years would also be hard.
In the meantime, other technologies would be developing faster than the platform under
testing. It seems that the only way of influencing the database market of the value of per-
sistence will come from some other research direction where transparent storage of some
type of data will be needed, and indeed, some forms of automatic persistence may appear
for XML data [3].

The benefits of persistence

maxlcp
direction
suffixNumber

rightChildleftChild

leftIndex
rightIndex
suffixNumber

suffixLink

siblingchild

rightIndex
leftIndex

suffixLink

siblingchild

SUFFIX TREES WITH LINKS

leftIndex
suffix

siblingchild

leftIndex

child sibling

NAIVE SUFFIX TREES

SUFFIX BINARY SEARCH TREE

Figure 4.3: Five different indexing structures investigated.

Persistence played a very significant role in this research. Our aim was to develop and
compare different string indexing structures, without having to produce hand-crafted disk
representations of all of the structures we investigated. PJama enabled this research by pro-
viding zero-programming-cost transparent storage for large data sets. During the course of
this research we investigated five alternative data structures, shown in Figure 4.3. A per-
formance comparison of those data structures was facilitated by the fact that data storage
happened with minimum programming intervention. Due to the simplicity of the persistent
programming model, we could easily compare in-memory performance to on-disk perfor-
mance of each data structure.

47

Not all of the features of PJama were equally relevant to our work. One of the main
issues we faced was scalability, and this requirement necessitated some improvements to
the PJama platform [155]. We were also concerned with durability, particularly with store
recovery after a crash caused by multiple thread interactions. As we needed 14 hours to
create a store, fast recovery was essential as we wanted to carry on further tests without
having to recreate a store. Endurance was also indispensable, as it supported our long
running store creation. Finally, store performance was important, so that our results would
be competitive with approaches based on in-memory string comparison techniques. Our
investigation did not use data evolution or openness, but we know that those would be
necessary in an operational system. Features like orthogonality and independence were
most important of all, as they saved time and enabled code reuse between the transient and
persistent contexts.

We currently return to other theoretical considerations underpinning our research, and
discuss the data structures which we considered while looking for a database index structure
to use with DNA and protein sequences.

4.2 Data structures for string indexing

Indexing of DNA differs from text indexing. We presently do not understand what the
structure of DNA sequence is, and cannot divide it into words which could be indexed
efficiently using one of the known inverted file structures. We are dealing with long strings
of length up to 263 Mbp (human chromosome 1, the longest human chromosome), and with
the requirement to search for exact and, more importantly, approximate matches, where
overall sequence similarity may be as low as 20 per cent. Additionally, biologists want to
find common structures in genomes, encompassing all human genes, or all human, mouse,
and rat genes, or DNA from a group of related plants. Indexing structures serving this
purpose must be able to cope with large amounts of fairly static data, for instance indexes
over two or three mammalian genomes totalling around 9 billion letters. At the moment the
human and mouse sequence datasets are being updated frequently, but in two years time the
genomes will be well known, and the challenge will be to compare them with other genomes
which will be sequenced then. This leads to the requirement for both static and dynamic
indexing structures. In this section we outline most commonly used text indexing structures,
and discuss their appropriateness for DNA sequence indexing, taking into account the fact
that DNA cannot be easily broken into words.

There are two main approaches to indexing text data with potential application to bio-
logical sequence. One is based on indexing suffixes. Formally expressed, for a stringS =
s1s2::sn of length n, a suffix index indexes some or all stringssjsj+1::sn for j0s between1
andn. The other approach is based on indexing all words of a given length, or up to a given
length. Givenk, some or all substringssjsj+1::sj+k�1, of maximum lengthk, are indexed.
In biological sequence searching in memory both approaches are used. In our opinion the
use of suffix indexes is possibly preferable. The reason for that is that if a similarity be-
tween two strings is found, biologists want to see similar sequences aligned in the areas of
homology. If only very short substrings are indexed, building an alignment spanning over
100 000 bases (if a human and a mouse gene are being compared) or 5 million bases for

48

two bacterial species will have a high computational complexity34. Moreover, it is widely
accepted that approaches based on hashing (q-grams) are only appropriate for low error lev-
els (high string similarity) [168, 39]. Both problems can be overcome by using suffix trees.
Recent results on the use of suffix trees in biology include:

� yeast gene promoters analysis (6000 gene promoter sequences of 600 bases each)
[37] which used a fraction of the yeast genome and employed a suffix tree structure
to list repeating motifs,

� Helicobacter pylorigenome analysis with 1,667,876 bases of DNA [225],

� suffix tree for repeat analysis, REPuter [139]. REPuter can index both strands of a
genome of up to 67 Mbp sequence, or a single strand of up to 134,217,727 bases
(227 � 1),

� the comparison of mouse and human genomes [226], using MUMmer [66]. In this
application all human and mouse genes were translated into protein sequences, and
repetitive sequence motifs were read off the suffix tree. The tree was held in memory,
and the size of the indexed protein strings must have been in the region of 20 Mb (the
total of gene coding DNA for human is around 30 Mbp, translation to protein will
reduce that to 10 Mb, and adding the same again for the mouse makes 20 Mb).

We note that in the case of whole genome sequence alignment, BLAST [7] cannot be used,
as testified by [66], and BLAST2 [217] or PipMaker [199] are not powerful enough either.
The most practical alternative is the use of MUMmer (provided enough RAM is available)
or an all-against-all BLAST comparison [57, 145] with 2-way BLAST analysis. Such a
comparison of the human and mouse genomes will require a lot of computation. If we as-
sume 40,000 human genes, and a similar number of mouse genes, an all-against all analysis
in both directions (because BLAST is not symmetrical) will need

2

�
80000

2

�
� 6:4 � 109

gene alignments, which slightly exceeds the sum of the lengths of both genomes. Taking
an average gene of 1500 bp of DNA, we need to fill in6:4 � 109 square matrices of size
1500 � 1500, i.e. perform a matrix calculation for

14:4 � 1015

cells. In comparison, building a suffix tree for the combined mouse and human genomes
requires in the worst case

(3:2 � 109)2 � 10:24 � 1018

character comparisons, but in the average case will only need

3:2 � 109 � log(3:2 � 109) � 7 � 1010

character comparisons, and one tree traversal. If we could build a tree for 6 Gbp of DNA,
we might in the future be able to perform sequence comparisons by traversing a suffix tree,
instead of performing all-against-all BLAST. Another scenario could use a tree for two or
three mammalian genomes to perform an “indexed BLAST” against other organisms faster.

3See also Appendix B, and [102]
4We use the widely accepted notation of Kbp meaning 1000 letters of DNA code, kb meaning 1000 letters

of protein code, and Mbp and Mb standing for millions of letters

49

4.2.1 Suffix based indexes

In this section we discuss the suffix treeST which is a version of a digital trie [92], the
suffix binary search treeSBST[125, 126] which can be viewed as a tree equivalent of a
suffix array [148], and the suffix array itself. Further sections describe disk resident data
structures including q-grams, a prefix index, different implementations of suffix indexes,
and finally, suffix tree storage optimisations.

Some of the indexing structures we present here are derived from tries. Tries are re-
cursive structures which use the characters, or digital decomposition of the key, to direct
the branching. The name trie comes from the word retrieval. Different versions of the trie
structure are known. Binary tries branch like binary trees with always 2 children at a node.
For digital tries, the size of the alphabet used dictates the maximum number of children per
node, and each child has a different starting character. Suffix trees are compacted digital
tries. They can be built inO(n) time, and searched in time proportional to the sum of the
length of the query and the number of query occurrences.SBSTs, on the other hand, branch
in a binary fashion, which enables tree re-balancing and may guarantee good searching be-
haviour, by minimising the average length of the search path. For randomly constructed
SBSTsbuilding times areO(n logn) and query times are proportional to the sum of the
tree heighth, length of querym, and the number of pattern occurrences in the tree,x, i.e.
O(h +m + x). The suffix array has similar building and searching characteristics as the
SBST, but more compact storage. Which of those structures are better when used on disk,
and what kind of sequence searching they are best suited for [168] is still to be investigated.

Suffix tree

A suffix tree indexes all or some of the suffixes of a string. It is a compressed version of
a digital trie. An example trie indexing all suffixes ofACATCTTA is shown in Figure 4.4.
A digital trie hasO(n2) nodes, and at each node each child starts with a different symbol,
so that the number of children is limited by the alphabet size. A trie can be compressed to
form a suffix tree. In the compression process single nodes which have only one child are
merged with this child, recursively, and annotated with the length of the string they index. A
tree constructed in this manner forACATCTTA is shown in Figure 4.5. It is often referred
to as PATRICIA tree (which stands for “practical algorithm to retrieve information coded in
alphanumeric”) [161, 135]. The process of compression is illustrated in Figure 4.6. This
edge contraction is the underlying feature of a suffix tree. To change a Patricia tree into
a suffix tree we need one more modification which ensures that each suffix is represented
by a leaf. In Figure 4.5 an inner node represents suffix number 8. To ensure a one-to-
one relationship between leaves and suffixes, we add a terminator symbol to the end of the
string.
A suffix tree with a terminator symbol, showing path traced in searching for characterT is
shown in Figure 4.7.

Exact searching in a suffix tree involves tracing the query string from the root down
the branches. If a match is found, all nodes below the match are reported as matching the
query (a traversal of all leaves below the matching node has to be made). Suffix trees have
been widely studied, but mostly from the point of view of main-memory performance of
O(n) algorithms. A very thorough overview of the suffix tree and other data structures used
in string searching can be found in Gusfield’s compendium of string searching algorithms
[99]. Suffix trees are characterised by fast construction, and good search performance. A

50

C

T

T

1

A

A

T

A

T

2

T

T

C

A

7

T

ROOT

A

C T

A T AC T C

C
T

TT

4

8

T

A

3

6

A

5

A

T

 A C A T C T T A
1 2 3 4 5 6 7 8

Figure 4.4: Trie indexingACATCTTA .

3
5 4 61

2−8

8

6−8 5−8

ROOT

72

3−8 7−84−8

2−2 4−4

7−8

1−1

 A C A T C T T A
1 2 3 4 5 6 7 8

Figure 4.5: Suffix tree.

suffix tree for a stringS of lengthn (for small alphabets) can built inO(n) time, and exact
search for a pattern of lengthk has the cost ofO(k +m) wherem is the number of times
the pattern is present inS. Suffix trees haveO(n) space cost, and most efficient implemen-
tations require at least 10-12 bytes per DNA character indexed (indexing up to227 � 1 bp
of sequence), excluding the storage of the stringS. For large sequences, such as the human

51

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

skip 2

skip 1

s=2

s=1

TRIE SUBTREE
PATRICIA TREE SUBTREE

nodes removed from the
tree and replaced by a skip value

Figure 4.6: Transformation from a trie into a Patricia tree.

T
C

T
T

A
$

T
C

A

T
A

$

TT

A
$

C
T
T T

$

C
T

T
A

$

T
A
$

A

$A
C

A

A

1
3

C

$

52

$ 9

8T

T

7

6
4

root

 A C A T C T T A $
1 2 3 4 5 6 7 8 9

Figure 4.7: Suffix tree with a terminator$ and traced search forT.

genomic sequence around 3 billion bases long, it is not feasible to have a memory-resident
index, as RAM is still too expensive5, and the index would take 40-45 GB of memory and
some 9 hours to build. Recent suffix tree implementations [138, 140] optimise the space
requirements of suffix trees and improve theoretical bounds. Our research builds on those
methods to produce large tree indexes for genome-sized disk-resident data sets. The long
term aim is to combine such database suffix tree implementations with probabilistic mea-
sures so that ultimately approximate matching of query to indexed sequence is possible, in
the way similar to BLAST [7] but without incurring the cost of the sequential scanning of
all data against the query sequence. The suffix tree is a suitable candidate index structure,
because once an index is built, the search time for a query is predicted to be faster than
for other data structures (for instance the suffix array). On the other hand, the suffix tree is
characterised by very irregular topology which seems to stand in the way of efficient disk
storage. Alternatives to the suffix tree exist, and we proceed to discuss those. In a further
section we also discuss storage optimisations for suffix trees.

5However Celera Genomics (http://www.celera.com) use an Compaq Alphas with 32 and 64 GB RAM [226]

52

The suffix binary search tree

Suffix binary search trees are binary trees optimised for fast searching on strings [125, 126].
Figure 4.8 shows an example tree and the path traced along the tree during a search for
string T. As in a common binary tree, the tree encodes an ordering of the nodes, in this case

5

8
A

ATCTTA

3

1
ACATCTTA

6

7
TA

TCTTA

max=0

max=1, d=r
CTTA

2
CATCTTA

root

4

max=1, d=r
TTA

max=0

max=0

direction d is undefined where max = 0
max=1, d=l

max=1,d=l

max=1,d=r

1 2 3 4 5 6 7 8

A C A T C T T A

Figure 4.8: Suffix binary search tree, nodes 4, 6, and 7 contain indices of queryT.

lexicographic ordering, and each suffix is a separate node. Reading all nodes “in-order” will
produce a lexicographic ordering of all suffixes. Unoptimised string comparison, leading to
the construction of anSTor anSBSThas the complexity of at mostO(n2), and in anSBST,
measures are taken to reduce this time complexity toO(n logn), as explained further.

Tree suffixes can be inserted into the tree in any order. Given the fairly random distri-
bution of bases in a DNA string, one can expect a balanced tree structure. To guarantee a
balanced tree, rotations are required. This will carry an additional space cost and a perfor-
mance cost, and is discussed in [125]. The complexity of building an SBST isO(n logn),
due to an optimisation which places additional information in the tree nodes. In each node
an integer is used to encode the maximum longest common prefix computed over all of the
node’s ancestors, and a Boolean value to encode whether this prefix comes from a left, or a
right ancestor. For instance, for node 5 coding for suffix 5CTTA , nodes 1, 2, and 4 are an-
cestors, and node 5 shares only one initial character with node 2CATCTTA , and no initial
characters with other nodes. Therefore the maximum longest common prefix is set to be 1
(max = 1), and direction value, indicating the direction is set to r (dir = r) because node 5 is
in the right subtree of its ancestor node 2 with which it shares this prefix.

Given the values of the maximum common prefix and a direction indicator, the building
(and tree searching) algorithm keeps track of the maximum number of characters matching
with the node being inserted (or the query), and the direction of the ancestor which has
this longest match. Any node further down the tree will only be involved in character
comparisons if its maximum longest common prefix and direction indicate that a further
comparison is needed. Once a node encoding the whole new string (or query) is found,
a traversal of the subtree is performed to find all other occurrences of a query (or, in the
case of tree building, a straightforward insertion follows). In an SBST the time required to

53

search for a string will be limited by the depth of the tree (as the path from the root to the
node encoding the suffix will be traversed) and by the number of occurrences of the query
string. Empirical work with theSBSTstructure is described in Chapter 5.

The suffix array

This data structure was introduced by Manber and Myers [148]. It is often used as the
supporting data structure in q-grams (next page). The suffix array has a smaller storage
requirement than a suffix tree or a suffix binary search tree. It can be built inO(n log n)
time, which is slower than for a suffix tree (Manber and Myers show results for DNA where
the suffix array takes 6 times longer to build than a suffix tree). The query time using a
suffix array isO(m + log n) wherem is the query length andn the length of the indexed
text.

A suffix array is a lexicographically ordered array of suffixes accompanied by informa-
tion about thelongest common prefixes (lcps)of certain pairs of suffixes held in the array,
which reduces the search to efficient binary search in the space of ordered suffixes. The
space requirement of a suffix array is12n bytes (assuming 4-byte integers, two integers
hold the right and leftlcp value, and the third integer is the suffix number6). This data
structure can be used in both exact and approximate searching. A binary search compares
the query string to the leftmost and rightmost strings for a particular interval, using thelcp
values at the pivot point. Two values for each pivot point are kept, theLlcp andRlcp. Llcp
is the longest common prefix length shared by the pivot and the leftmost string of the cur-
rent comparison, andRlcpholds the longest common prefix length shared by the pivot and
the rightmost string. During the search, superfluous character comparisons are avoided by
keeping track of the last character compared, so that the complexity component related to
the query size remainsO(m), and the binary search component isO(logn).

There are several algorithms for building the suffix array, and all require more than
12n bytes at construction time, due to the need for suffix sorting. For instance, a suffix
array can be built from suffixes read from the suffix tree or suffix binary search tree [126].
Other suffix sorting approaches can also be used [148, 2]. If the suffix array were to be
used in a database context, two problems would have to addressed. One would be the way
to partition the array, and the other to optimise it for tree creation, exact searching and
approximate searching. Array partitioning and optimisation would aim to minimise the
number of disk reads required to scan it under different patterns of use. We believe that
the naive approach of using one array to cover the whole range of suffixes indexed is not
appropriate, as the parts of the array which are rarely used (the leaves) would be brought
into memory together with the parts that are needed, both at tree construction time and
during exact searching. During approximate searching the main requirement is to keep in
fast memory the entire top of the tree. It appears that in analogy to the approach adopted
in the B-tree, see Section 4.2.2, a flattened tree-like structure would be appropriate. Baeza-
Yates and Navarro [25] show preliminary results in approximate searching using a suffix
array, without revealing the full data structure implementation details, and we refer to their
work in Chapter 6.

6Refinements of this encoding are possible, and they may reduce the space needed.

54

4.2.2 Data structures for database use

We discuss hybrid data structures which combine or modify the structures already dis-
cussed, as well as theq-gramdata structure. Beside the q-grams, disk-residentString B-
trees, LC-tries, and prefix indexes are introduced at this point.

Q-grams

T H I S T E X T I S A T E X T

T H I S T E X T I S A T E X T

T H I S T E X T I S A T E X T

T H I S T E X T I S A T E X T

THIS
HIST
ISTE
STEX
TEXT
EXTI
XTIS
TISA
ISAT
ATEX

INDEX TERM POSITION

1
2
3
4

6
7
8
9
10

5, 11

Figure 4.9: Q-gram construction forTHISTEXTISATEXTusing a window of size 4.

By sliding a window of a predefined size over the DNA string, we can count all occurrences
of substrings of a certain length, and record all locations of those substrings (q-grams)
[169, 171], see Figure 4.9. This q-gram analysis can be performed on the query only,
or on both text and query. Because q-grams can be converted to integers using simple
coding schemes, very efficient string comparison is possible. Each q-gram is encoded as
a number, and a comparison of the query q-gram to an index involves integer comparison
which is faster than string comparison of several consecutive characters. This approach is
very closely related to hashing techniques [59], and is used in many computing contexts,
including routing techniques for networks7. Another name used for this approach in the
information retrieval context is “n-gram” [86].

A q-gram which is to be used as an index requires a data structure on disk. A suffix
array may be used in this context. The actual position of the q-gram within the text may
be replaced with a pointer to the block of text in which it is placed, and then the whole
block has to be examined for the occurrences of the q-gram. Q-grams have been shown

7for instance in the Web Cache Communication Protocol, see http://www.cisco.com/warp/public/732/wccp/-
history.html

55

to be effective for approximate string searching in several biological contexts [44, 157, 7].
Suffix indexes which we focus on are an alternative to hashing, and have been researched
and made use of to a much smaller extent. As we did not perform experiments with q-
grams, we do not elaborate on this issue further. We only note that q-grams were used with
ESTs (expressed sequence tags, which are short DNA sequences around 500 characters
long) [44] to enable EST clustering and quality control, with datasets of around 300 Mbp.
In this context q-grams were found to be effective in searching for very similar sequences.
The tests of q-gram algorithms performed by Navarro [168] suggest that these structures are
only appropriate in the context of low error levels, and are inferior to suffix arrays.

String B-tree

We start with an overview of the B-tree which is needed as background for theString B-
tree (the authors spellString with a capital S). A B-tree structure is one of the main data
structures used in database technology, and indexes fixed-length keys. A detailed analysis
of B-tree operations and properties can be found for instance in [59]. A B-tree uses the disk

1 2 3 4 5 8

root

page size 7

inner nodes hold keys and pointers to children

leaves hold keys

12 14 272620 25 44 55 62 6428 29 32 35 40 56 60 61

8 27 44

Figure 4.10: A B-tree indexing a set of integers.

page size,b, as a unit of storage of the tree nodes. Each inner node or leaf fits on one page
(or one disk access unit of sizeb). Each leaf has space for a fixed maximum number of
keys, and each inner node contains keys and pointers to other nodes. B-trees have a high
branching factor, and are balanced, to guarantee constant time key access. A sample B-tree
is shown in Figure 4.10. Because keys in a B-tree tend to be of the same size, this often
results in a limit on a string key to lie around 255 characters, and this limit is constant in a
given database system.

The String B-Tree [81] was developed to serve as a database index to string data. It is a
combination of a Patricia tree with the B-tree. Patricia tree is a compact representation of a
trie where all nodes with one child are merged with their parents (see preceding sections).
B-trees guarantee the worst-case search time to be proportional to the height of the tree. To
guarantee that property, there has to be a limit on a composite key length, or more complex
indirect addressing methods have to be used. In fact, pure B-trees have a limited power to
support searching on DNA data, as DNA cannot be broken into words. String B-trees only
solve the problem of variant key lengths over relatively short words as normally a few keys
would have to fit on a disk page. It seems unlikely that they would solve the problem of
indexing very long DNA suffixes. So far no test results for large biological sequences are
available. In a String B-tree sets of strings are sorted lexicographically, and each leaf of the
String B-tree stores the ordered string set and a Patricia trie built on that set to enable fast
searching within the leaf. Internal nodes hold indices of left- and rightmost strings for each

56

Patricia tree Patricia tree Patricia tree

Patricia tree

L R L R L R

INNER NODES:

strings of each child, Patricia tree

string indexes string indexesstring indexes

PRECONDITION: all suffixes have to be lexicographically sorted

L, R are indices of left− and rightmost

is used for string searching within a node

LEAVES: a block of indices to lexicographic
sorted strings, searched using a Patricia tre

Figure 4.11: A String B-tree index structure.

of their children, and a Patricia trie for searching on those strings, shown in Figure 4.11.
Both internal nodes and leaves are limited to page size, to optimise data retrieval from
disk. Algorithms for String B-tree construction, update and searching have good theoretical
bounds, but are very complex. Because of the underlying requirement to sort all strings
(suffixes), it is possible that performance problems similar to those observed for DNA in
string sorting for LC-tries might arise (see next page). In fact, a String B-tree is just another
way of implementing a suffix tree on disk, but one that could be useful for indexing short
strings like exons which are constituent parts of genes.

Prefix index

This work by Jagadish and colleagues [127] is aimed at general-purpose string indexing, and
it claims that the results are applicable to unbounded length strings. One of the motivations
behind it is to enable multi-dimensional indexing for the retrieval of XML data. The authors
contribute the following.

� They present a way of mapping strings to rational numbers, using fractions.

� They represent strings of unbounded length in an index leaf page by a fixed length
offset to an external key.

� They store multiple elided tries (Patricia trees, see Section 4.2.1), one per indexed
textual dimension, in one index page. This helps them to prune search over several
string dimensions during the traversal of index pages.

The mapping of strings to numbers ensures that extensions of a particular prefix are clus-
tered while preserving lexicographic ordering. The mapping function uses the reversal of
commonly used coding using Horner’s scheme, and treats the first letter as the most sig-
nificant constituent of a number, with further letters contributing less. The range of the
mapping is(0; 1) and strings are fractions in base� + 1 where� is the alphabet size. A
stringS = s1s2::sn is represented by

t1=(� + 1) + t2=(� + 1)2 + ::+ tn=(� + 1)n

whereti is the code forsi. One challenge in the implementation of this solution lies in rep-
resenting long fractions accurately. The other challenge lies in distance metrics for strings,

57

which is only solved for prefix matches. It seems that this solution is of limited use in DNA
or protein matching.

The authors propose to store long strings in index pages as pointers to external data
structures. We are not sure if this representation is going to be useful in comparing very
long strings.

Elided tries are a way of circumventing memory problems in the face of externally
stored keys. An elided trie is closely related to a Patricia tree (see preceding section), and
the authors come close to specifying a suffix tree as the structure of choice within a tree
node. They suggest that only the first letter at each branching node is stored, together with
the skip value. This means that after a “successful” attempt to locate a string, we still need
to do the exact string comparison, as the elided trie stores only a part of the string it indexes.
Database operations like searching, insertion, split and merge are then defined in terms of
elided tries.

The index performance is tested using an implementation of string B-trees and string R-
trees. The string B-tree is said to perform better, however full supporting data for the exper-
imental analysis are not quoted. The total volume of data is unclear (200,000 2-dimensional
strings) and details of queries are not available (100 prefix queries of “low, medium and
high selectivities”). The number of disks accesses for both data structures is compared, and
leads to the conclusion of the superiority of string B-trees in prefix searching.

LC-tries

Level-compressed tries (LC-tries) [11] are tries which use path compression, level com-
pression and data compression to build an efficient implementation of a suffix tree. The
authors use the technique of “adaptive branching” where the number of descendants of the
given node depends on how the tree nodes are distributed, and they arrive at an efficient
representation of a binary trie.

We first describe this approach conceptually. A binary trie of all suffixes is built, based
on Huffman [110] encoding of the text. Then, if thei highest levels of the tree are complete
(fully filled with nodes), but leveli + 1 is not, we replace thei highest levels by a single
node of degree2i. This replacement is repeated top-down to produce a level-compressed
trie (LC-trie). In this structure the expected average depth is much smaller than that of a trie.
We call this trie a level-compressed trie. Then we add path compression. Each node with
only one child is merged with this child, and a skip value of each node, which is initially
set to 1, is updated by 1. After this operation has been applied recursively, nodes with
large skip values appear in the tree, and they code for long paths of bits, i.e. achieve path
compression. The implementation of an LC-trie uses an array, and each node is followed
by its siblings. A node is represented by three numbers:number of bits (characters) to be
skipped, relative to the parent node,position of the leftmost child(a pointer), andthe number
of children. The number of children will always be a power of 2, and can be represented
by a small number of bits. Further compression is achieved by replacing two fields in each
node record, called “branch” (log of the number of children) and “skip” with one integer,
one bit of which distinguishes between the two possible types of value. This is possible for
internal nodes which have either a positive skip value or a branching factor larger than 2.

The algorithm for the construction of an LC-trie can use a suffix tree for all suffixes
which is transformed into a binary trie and compressed. The limitation to have a suffix
tree first, which requires much more space (the most important limiting factor in suffix

58

tree creation), and the complexity of the algorithms required to compress the tree, make
this structure an unsuitable candidate for prototype development. Another possible method
of construction is based on sorting all suffixes first, placing them in an array, and then
constructing the tree top-down. For disk-based implementation of the LC-trie the authors
use a partial LC-trie stored in main memory and used as an index into a suffix array stored
on disk.

The authors abstract from the difficulty of dealing with the non-uniformity of real ex-
perimental data, and present simulation results for exact searching, by counting the number
of disk accesses which would have to be made. The datasets used range from 2 to 140 KB
for both main memory and secondary memory implementations. For secondary memory
simulations on most datasets, except DNA and random text, the LC-trie appears superior
to a suffix array based on buckets. Because of the nature of experimental data provided by
the authors, we find it hard to make judgements about the possible practical advantages of
using this data structure. We believe that further experimental work in this area is justified.

4.2.3 Compact suffix trees

PARENT−CHILD REPRESENTATION CHILD−SIBLING REPRESENTATION

D A $

D A $

root
1

2

3

A

4

$

5 6

$D A $

root
1

2

3

A

4

$

5 6

$

INNER NODES

LEAVES

1, root, child 2, sibling null
2, (1,1) coding for A, child 3, sibling 5

3, (2,4) coding for DA$, sibling 4
4, (4,4) coding for $, sibling null
5, (2,4) coding for DA$, sibling 6
6, (4,4) coding for $, sibling null

index for

D A $

A D A $

1 2 3 4

INNER NODES

LEAVES

2, (1,1) coding for A, children 3 and 4

3, (2,4) coding for DA$
4, (4,4) coding for $
5, (2,4) coding for DA$
6, (4,4) coding for $

1, root, children 2, 5, 6

Suffix number: only leaves correspond to unique suffixes, node 3 number 1, node 4 number 3

Node depth: node 3 has depth 3 (text pos 2 to 4), node 2 has depth 1

Figure 4.12: Two possible representations of a suffix tree.

As the suffix tree is the data structure of choice in string searching, and the only disadvan-
tage in its use is its excessive space requirement, efforts have been made to compress it. We
report here work done by Kurtz, and Clark and Munro.

Kurtz [138] presents 4 storage techniques. Those 4 different implementations are then
tested with different data sets, and actual times required to build the tree are measured.
Kurtz then classifies known bioinformatics applications into two groups: those that traverse

59

part of the tree, and those that perform a full tree traversal, referring to Gusfield [99], and
presents implementation guidelines for suffix trees, based on the prospective application.
(In another paper, [139] he presents an application of his trees to the finding of repeats
in sequence data.) He finishes by concluding that 40.5 GB of main memory would be
required to build a human genome tree, and the building of that tree would take less than
9 hours, on a 64-bit architecture, implemented in optimised C. We proceed to discuss the
4 implementations: the Simple Linked List, the Simple Hash Table, the Improved Linked
List, and the Improved Hash Table.

We introduce the relevant terminology first. For further details the reader may want to
consult [99]. The suffix tree consists of internal nodes and leaves, as shown in Figure 4.12.
In the representation of the tree based on linked lists, internal nodes have children and
siblings, while the leaves have no children (but may have siblings). In other possible tree
representations an inner node will explicitly or implicitly lead to its children, and the notion
of sibling may not be used. Each node codes for a substring, and internal nodes correspond
to substrings which appear more than once in the text. The substring the node codes for
will usually be identified by the left and right index into the text, shown as a pair of integers
in brackets. The length of the text indexed by the node will be the node’s “depth”. Suffix
number will be the starting index of the suffix that a given leaf corresponds to (this number
may or may not be stored in the leaf). A suffix link will lead from a node indexing a string
aw wherejaj = 1 to the node indexingw. This means that if we trace the stringaw from
the root down to the node, we can traverse the suffix link and find the node which is the end
of the stringw, as traced from the tree root. Further details and figures showing suffix links
and the tree structure are provided in Chapter 5.

Simple Linked List Implementation (SLLI)

The simple linked list implementation uses two tables, one for leaf nodes, and one for
branching (inner) nodes, see Figure 4.13. Leaf nodes are indexed by leaf number and have
an entry indicating the right sibling node number, or null if there is none. Inner nodes
are numbered separately, in the order of their headpositions (explained below) and their
entries contain node numbers for child, sibling, and suffix link, string depth of node (integer)
and an integer which is calledHeadposition. Headposition is defined to be the leftmost
branching occurrence of the substring indexed by this node, shown in Figure 4.14. This is in
contrast to the conventional annotation of a node by the leftmost substring which gave origin
to that node during tree creation (MOO would have had the index 400). Headposition is
available during tree construction, directly in McCreight’s algorithm, and also in Ukkonen’s
algorithm, whenever a node is being split. Formally,

head1 = �
headi is the longest prefix ofSi which is also a prefix ofSj
for somej between1 andi� 1.

Using headposition instead of the leftmost string occurrence requires explicit calculation of
the left and right labels of each node during tree traversal. Those labels are calculated by
adding depth values of the preceding nodes, during the descent down the tree. Storing the
depth of the node instead of the length of the incoming edge to a node is supposed to be
useful in some tree traversals, and can be exploited in storing the tree more efficiently (see
hash table implementation — next section).

60

string indexed by node depth

2

6

3

4

mm

lpszzz

aal

balk

CHILD (pointer + bit)
SIBLING (pointer + bit)

HeadPosition (integer)

SIBLING (pointer + bit)

SUFFIX (pointer)
Depth (integer)

n LEAVES

q BRANCHING
NODES

depth = 2 depth = 6

depth = 4

NODE DEPTHSLEAF ARRAY (n entries) containing sib pointers
bit to distinguish branch sib from from leaf sib

BRANCH ARRAY (q pointers or pointer + bit entries)

lpszzz

aal

balk

depth = 3

SPACE in WORDS n + 5q <= 6n

node depth is the length of the string indexed by each node

mm

Figure 4.13: A Simple Linked List Implementation of a suffix tree.

Simple Hash Table Implementation (SHTI)

The main reason for investigating a hash table-based implementation is to guarantee constant-
time access to all children, which may be important for large alphabets, as a traversal of an
average of 10 links in the protein alphabet of 20 might be inefficient. A simple hash table
implementation, shown in Figure 4.15 is based on using a hashcode for a combined key
(headposition(w); a) wherew is a substring, as traced from the root, anda is the first
character of the outgoing edge from the node indexingw. Headposition refers to the head-
position of the parent node. Since the number of edges is bounded by2 � n (wheren is
text length) this limits the size of the hash table. Beside the hash table, another table stores
edge records recording string depth, headposition and suffix link. This table requires3q
integers, whereq < n. The hash table itself stores two integers, the hashed value, and the
headposition, as the charactera can be retrieved in constant time (by looking up the text
array using the headposition value). As there are maximum2n entries in the hash table, the
total space requirement is4n+ 3q words.

Similarly to the SLLI, the initial character of each node is not stored but looked up.
The hashing technique used is open addressing hashing with double hashing to resolve
collisions. The size of the hash table is a prime number larger than2n. Details of hashing
schemes can be found for instance in [59].

Further possible space savings

Kurtz explores suffix tree redundancies to arrive at his compressed storage scheme, which
is then implemented in two versions, an improved linked list implementation (ILLI), and

61

1. initially there was just one leaf node for MOODDYMMMMMM

3. string containing MOOSTAN is added, node for MOO remains
 unchanged

2. string containing MOOKKYMD is added, node for MOO becomes
 an internal node, with headposition referring to this new string

MOO − DDY − MMMMMM

MOO − STAN
MOO − KKYMD

 chars 400 to 402

chars 700 to 702
 chars 501 to 503

string MOO occurs thrice:

child sib sLink depth

BRANCHING NODE LAYOUT

head

sibling

child

child

MMMMMM

DDY

3

3

6

5
STAN

4

sibling

sibling

501
MOO

KKYMD

Headposition of MOO is the first
branching occurence of MOO

INSERTION OF NODES INTO THE TREE

Figure 4.14: Headposition example.

improved hash table implementation (IHTI), see the following sections. Kurtz finds a re-
lationship between nodes connected by suffix links. He observes that headpositions are
unique node identifiers, and a suffix link always leads to a node with a headposition de-
creased by at least 1. Based on that observation, a nodeaw is classified to be small if its
suffix link’s headposition is smaller by 1 (nodenumber(aw) + 1 = nodenumber(w)), or
large otherwise (nodenumber(aw) + 1 > nodenumber(w)), i.e. small nodes are always
directly followed by another branching node, and the last branching node is a large node.
Accordingly, sequences of branching nodes connected by suffix links can be partitioned
into chains of small nodes followed by a single large node. Kurtz observes that branch
records for small nodes have redundant information. Namely, within a chainbl; :::; br, for
l <= i <= r there exist the following relationships:

1. bi:depth = br:depth+ r � i

2. bi:headposition = br:headposition� r + i

3. bi:suffixlink = bi+1

Those are exploited in the improved linked list implementationILLI .

Improved Linked List Implementation (ILLI)

The improved linked list, see Figure 4.16, distinguishes between large and small nodes.
Small records storew:distance, w:child andw:sibling wherebi:distance = r � i is the

62

suffix link

Hash table

headposition

 3 q integers

Edge table

depth (edge length)

headposition of node

3 4 6
zaza gggrrr

edge depth
 2n*2 integers

headpos
of parent node

TOTAL : 4n + 3q WORDS

stu

index for:

stugggrrr

stuzaza
stuugg

Hash key

 combination of HeadPosition and first character

hash key

ugg

Figure 4.15: Simple hash table implementation.

distance to the large node, and they occupy 2 integers (under the assumption of maximum
indexed string size smaller than227). Large records occupy 4 integers, and they store the
child, sibling, depth/suffix link and headposition. This compact representation uses a pa-
rameter� to store both depth and suffix link more compactly. Ifdepth < 2� � 1, then both
the depth and suffix link are stored within the large record, and this record is complete. If
the depth value is equal to2� � 1, or exceeds this value, it is stored as follows. Letv be
the rightmost child of this large node (call itw). Betweenw andv there are at mostk � 1

references (k is the alphabet size). Ifv is a leaf, then leaf table will have a null sibling refer-
ence forv, and one bit in the leaf entry will be set to mark that there is a null sibling. Then
the integer in the leaf record has unused bits, which will store the suffix link. So, to find the
suffix link for an incomplete large node, all its children are traversed, and the suffix link is
found. Similarly, ifv is a branching node, then its sibling will be null, and will encode the
suffix link. This special encoding is used only for large nodes whose depth exceeds2� � 1,
and� will be chosen such that these nodes are usually very rare.

To guarantee navigation within the branch table, nodes are ordered by their headposi-
tions, and they are referenced by theirbase addressin the branch table (the index of the first
integer of the corresponding record).

Space requirement for this representation is calculated as follows.

� We assume a base address stored in� bits. A reference is either a base address or a
leaf number, and we need 1 bit to distinguish those, so we use� + 1 bits.

� Each depth and each head position require = dlog2 ne bits.

� Distance values are compressed using a constant� to distinguish between small and
large distances which are encoded differently. In the worst case (for a stringan),
where there is only one chain of lengthn � 1, maximum distance value isn � 2.
However, in most other cases, distance can be constrained to be2� maximum, and the
maximum length of a chain will then be2�. So, for a longer chain, an artificiallarge
node can be introduced (alarge record, taking up 4 integers of space), and distance
can be encoded using� bits. This saves � � bits for most records in a chain.

63

BRANCH TABLE for string abab$

0 11

distance
unused significant bits

suffix link small depth

headposition

2 int

4 int

2 nil 0 1 1 8 2 5 0 4

BRANCH TABLE

child sibling headposition
depth
suff link

distance siblingchild

small record

large record

distance is distance to the large node
(suffix link is the next node in the chain)
(depth & headposition are calculated)

node 1 node 2 node 3

headpos=3
large (root)

2

1

3

root

suffix link (chain)

abab$

ab

ab$

b

ab$

SIBLING (pointer + bit)

Leaf array, with n entries containing sibling pointers
+ bit to distinguish branch from leaf pointers

INDEX for

1 3 leaf
2 4 leaf
3 null
4 null
5 null

1 23
$

$

$
4

5

Figure 4.16: Improved linked list implementation.

The size of asmallnode is then2 � (1 + �) + � + 1 = 3 + 2� + � bits. A large node stores
two references (child, sibling), one nil bit, and onecompletebit to indicate if the node is
complete or incomplete. The head position takes up bits. In a complete record� bits are
used for the suffix link, and� bits for the depth. In an incomplete record, bits are used
for the depth.� bits remain unused, to store the distance of0. This allows us to distinguish
between large and small nodes, as small nodes always havedistance > 0. Altogether the
large node will occupy:

complete node2 � (1 + �) + 1 + 1 + + � + �+ � = 4 + 3� + + �+ � bits, and
incomplete node2 � (1 + �) + 1 + 1 + 2 + � = 4 + 2(� +) + � bits.

Taking into account the constants (� = 10 and� = 5 are chosen), and assuming the size of
input string to be227 � 1 maximum (which implies = 27), this produces a small record
of 2 integers and a large record of 4 integers (32-bit integers). This leads to even addresses,
max address being4n� 4, and� = +1, so that a small node requires 64 bits, incomplete
large record 119 bits, and complete large record 130 bits. The 2 bits missing in 4 bytes
to represent a large record are borrowed from the leaf entry. Every leaf entry has 2 spare
bits (the leaf entry with the same index as headposition is used) as it uses 29 bits for the
reference and one nil bit, so 2 bits are spare.

64

In this representation, each leaf and each large node saves one integer, and each small
node saves three integers (as compared toSLLI), so if there are many small nodes, large
space savings are achieved. The tree building algorithm used in this representation is based
on McCreight’s work [153], and branching nodes of the tree are constructed in order of their
head positions.

Improved Hash Table Implementation (IHTI)

A similar optimisation to that applied in ILLI, which relies on the distinction between small
and large nodes, can be used in the hash table-based implementation. In this case only the
records for large nodes are stored, and small nodes entries for suffix link, head position,
and depth are calculated, relative to the large node entry and the so-calledreference pair.
A reference pair is defined to be(0; j) for the leaf j, and a large node is referenced by the
reference pair(1; i) wherei is the node’s index in the sequence of all large nodes of the
tree ordered by their head positions. With reference to a large node, all small nodes which
create a chain leading to this large nodes, are referenced by pairs(d + 1; i) whered > 0

is distance from the large node. To implement this space saving, the hash key remains the
same (combination of head position and first character of a node), but the hash table now
stores the pair (head position, reference pair) plus the hash key.

Another space saving in the size of the hash table results from the edges which end in
the terminator symbol. For instance inner nodes 2ab and 3b in Figure 4.16 lead to leaves
ending in the terminator symbol (leaves 3ab$ and 4b$). These edges are calledidentity
edgesand they can be deduced. There is at most one identity edge for each branching node.
This edge will not be explicitly stored in the hash table, but a single bit will be used to mark
the existence of such an edge.

This hash table implementation uses a single integer to encode the reference pair. The
maximum chain length is restricted to 31 (32 was used for ILLI), and therefore maximal
distance limited to 30, i.e 5 bits are required for the first element of the pair. 27 bits are then
used for the second component (leaf number, or number i of large node). This limits the
indexed string length to227 � 1. Thus the space requirement of IHTI is4n+3� where� is
the number of large nodes.

Discussion

� Sequence length.The maximum sequence length that can be indexed using Kurtz’s
methods is currently 134 million, which is not sufficient to index large mammalian
chromosomes (up to 263 Mbp) or the fly genome, but will satisfy the needs of bac-
terial genetics. At the price of additional storage, the same storage optimisations can
be used to address larger sequences, with increased storage cost for longer addresses.

� Sequence type.The worst case implementation of ILLI is5n integers, and it is7n
integers for IHTI. Therefore, for the DNA alphabet one would opt for the ILLI im-
plementation, as traversing up to five siblings (two an average) should not present a
significant overhead. However, for proteins, it might be more suitable to use a hash
table implementation IHTI. Kurtz’s experiments were run on a small computer (Sun-
UltraSparc, 300 MHz, 192 MB RAM), and it is to be expected that smaller data sets
will produce structures with different topologies from larger data sets (for instance the
top level of the tree will not be dense for short sequences), therefore any evaluation of

65

the relative speed of both implementations would have to be assessed with large data
sets, to be significant, as there is no theoretical work predicting the expected branch-
ing or the relative numbers of small and large nodes. Hashing, on the other hand,
might be slow, as modulo operation required may be a bottleneck, unless masking is
used.

� Traversal type.Long sibling chains which have to be traversed during the tree build
and exact searching may slow down computation. However, in approximate match-
ing, where all nodes at the top of the tree are to be traversed, it may not matter whether
we use a hash implementation or a linked list implementation. Indeed, it may be more
efficient to use linked lists instead of trying to compute the hash function for all the
possible letters of the alphabet.

� Linked list versus hash table.The ILLI consumes less space than IHTI, and this may
be important in some applications. In exact matching hash access to nodes may be
more efficient, but in approximate matching it will not be more efficient as most nodes
near the root will be visited.

� Running time. The building time of Kurtz’s suffix tree is acceptable for genomes
around 100 Mbp (13 to 18 minutes, see Chapter 5), provided sufficient memory
is available (1.3 GB was the reported use of memory for theC.elegansgenome of
97 Mbp on our hardware configuration). However, for larger data sets (the human
genome), the time to build will be around 9 hours, and the memory required around
40-45 GB, which is not viable for interactive use of a suffix tree index. For large
genomes, persistent suffix tree indexes would be much more attractive.

� Java.Re-implementing most of the optimisations techniques discussed above in Java
would require a departure from our desire to compare and contrast available data
structures without investing a lot of time in complex coding schemes. The simplest
strategy available in Java would be to use inheritance to encode different types of
nodes. The nodes could be classified into: leaf with no sibling, leaf with sibling, in-
ner node with no sibling, and full inner node. Further refinement and the distinction
between small and large nodes could be made, however information sharing between
different nodes would run against the grain of providing distinct objects with distinct
services, unless we see the tree as one object. On the other hand, if we considered
a Java implementation following Kurtz’s ideas, we could achieve a high level of tree
compression. We would then have to devise an appropriate interface for using this
efficient disk-based data structure. We believe that a whole variety of possible space
optimisations should be studied, in order to characterise different compact tree en-
codings and compare their performance.

Compressed suffix tree

This work by Clark, Munro, and others [55, 164], available in two papers which we refer
to as the earlier and the later paper, aims to achieve the best possible theoretical bounds
for suffix tree encoding and searching. The earlier paper quotes some test results and the
later paper is purely theoretical. We did not explore this approach because we wanted to
investigate more direct suffix tree mappings first. We summarise the main contributions
here, as they are relevant to future research in this area.

66

The first step in the tree compression is binary encoding of the indexed string (including
the terminator symbol). A similar compression scheme is advocated by Larsson [140]. All
suffixes are encoded in binary and placed in a trie. Queries are coded in binary as well
before being compared with the trie. This trie is a binary tree in which all the internal nodes
have exactly two children, andn + 1 suffixes will give rise ton internal nodes andn + 1

leaves.

1

2

3 4

5

6

7 8

9

10

1

2 4

5

6

7

8 9

3

10

0

BINARY TREE

0 1 2 3 2 1 4 1 0 5 6 7 6 5 8 5 9 5 0 10 0

ROOTED ORDERED TREE

PARENTHESIS NOTATION

(((()) ()) ((()) () ()) ())

and closed parenthesis (nodes 3, 4, 7, 8, 9, 10)
leaves can be seen as consisting of an open

Figure 4.17: An illustration of the isomorphism between a binary tree and a rooted ordered
tree and its parenthesis encoding.

Both papers share some underlying tree representation features. In the 1996 paper, the tree
representation is based on the isomorphism between the class of binary trees and the class
of rooted ordered trees [163]. This mapping allows for representing nodes which may have
just one child, using the notation of ordered parentheses. An example of this mapping is
in Figure 4.17. Parenthesis notation is based on pre-order traversal. An open parenthesis is
written when a node is first encountered while going down the tree, and a closing parenthesis
is written on leaving the node to go back up the tree. In the ordered tree there is a spurious
root not corresponding to any of the binary tree nodes. The left child of a binary tree node
corresponds to the leftmost child of the corresponding node in the ordered tree, and the right
child corresponds to the next sibling to the right in the ordered tree.

In this encoding, additional information needs to be stored, to enable navigation and to

67

determine the size of the subtree rooted at that node. This encoding (1996 paper) is related to
the schema used in LC-tries where skip values are used to encode the number of children.
The details of the tree operations are intricate, and based on maximum space economy
possible, but theoretically constant time access to parent and child nodes is guaranteed.
Like a suffix tree node, each node stores a string offset of the first bit where the prefixes of
any 2 suffixes first differ. Since there are only 2 children at any point, bit 0 will branch to
the left and bit 1 to the right. Leaves store the offsets of the appropriate suffixes.

Searching in the tree described in the earlier paper is described by the authors as a blind
search with skipping, so that when a “matching suffix” is identified, it has to be verified if
it actually matches (this is similar to the String B-tree implementation, discussed above).
Because for each node the first character is only known (0 if branching left, 1 if branching
right), only that character is compared with the query. When the comparison is complete,
and potential matching suffixes have been identified, starting from the suffix number(s)
indicated by the leaves, a full string comparison has to be performed to confirm a match. In
several tree versions described in the later paper the nodes are stored as suffix arrays, and
searching follows a slightly different pattern.

The 1996 paper reports testing results, however the exact data sizes are not given. The
largest example, Oxford English Dictionary, seems to occupy 18,409 disk pages of 100 K
each, and corresponds to 0.5 billion index points. It is not clear here if index points refer to
words or the size of the binary string indexed. The index size is 1.8 MB and index creation
needed 5 to 6 hours a fast machine with 32 MB of RAM (in 1996). The recent paper does
not report empirical work.

4.2.4 Reflection on data structures

Two major options for indexing very long strings seem to be viable. One is based on q-
grams and the other on different derivatives of suffix indexes. Q-grams implemented as
suffix arrays pointing to buckets of string pointers are one alternative. They are more space-
efficient than suffix trees and seem to offer good performance for close to exact matching
tasks. They have been tested with large genomic strings, but only in the context of high sim-
ilarity matching. On the other hand, suffix tree derivatives offer theoretically faster searches
for exact matching, but are require much further optimisation. Our current implementation
of suffix trees allows for building trees of any size, and offers fast approximate matching at a
lower degree of similarity. A final judgement on the appropriateness of using the alternative
data structures will not emerge for a while, until all the possible implementations are tested
with large data sets. Before we move on to the empirical evaluation of both approaches, we
turn now to the discussion of exact and approximate matching algorithms.

4.3 Exact matching algorithms

Good overviews of exact string matching algorithms can be found on the web8, in Gusfield
[99], or in Apostolico and Galil [14]. Our interest lies in the area of searching on pre-
processed text, to use the terminology of the algorithmics community. This approach creates
an index to the text which is independent of the query string to be used. Beside several data

8http://www-igm.univ-mlv.fr/�lecroq/string/

68

structures with high storage requirements (directed acyclic word graphs (DAWGs)[35]),
following efficient data structures are used in this area:

� the suffix tree,

� the suffix array,

� the suffix binary search tree (SBST),

� the q-gram.

We discussed the four data structures in previous sections. We recapitulate here the main
differences with respect to searching.

� Suffix tree exact searching times are proportional to the sum of the query length and
the number of hits. For short strings, the number of hits reported is extremely high
and will dominate query cost.

� The suffix array can be searched in time proportional to the sum of the query length
and the logarithm of text length. For queries with many hits the number of results to
be reported may influence the speed in a way similar to that seen in the suffix tree. We
do not know how to guarantee the locality of disk access in a suffix array and storage
schemes and memory buffering arrangements may be required for large structures of
this type.

� The SBST can be searched in time proportional to the sum of tree height, query
length, and the number of query occurrences. Tree height for a balanced tree would
correspond to the logarithm of string length, and experience shows that is the case.
We present results in Chapter 5 which show that the SBSTs we tested deliver exact
matches faster than suffix trees.

� Q-gram searching times depend on the actual searching technique used. In the most
common scenario, the query is first changed into aq � gram by sliding a window of
sizeq over the text, and creating an index (for up tom� q+ 1 terms). Subsequently,
hashed retrieval of matching cells from the suffix array follows. The cost of querying
will be proportional to the number of distinct q-grams in the query (which is propor-
tional to the query length) and the average size of buckets (if buckets occupy more
than one disk page), which is proportional to string length.

4.4 Approximate matching algorithms

Baeza-Yates and Navarro offer good overviews of theoretical and experimental properties
of many approximate string searching methods [27, 168]. We follow their classification of
approximate pattern matching methods and place those methods in the context of biological
text searching. Only a high-level view is presented here, and more detail is available in
Chapter 6, in the context of experimental work.

The problem is usually stated as follows: given a short patternP of lengthm and a long
text T of lengthn, and a measure of similarity (for instance the number of errors allowed
k), find all the text positions where the pattern occurs with at mostk errors (or all positions
where the similarity between the pattern and the text is above a given minimum). Most

69

theoretical work centres around the Levenstein distance [142] which for any two strings A
and B is defined as follows.

Given the three basic string operations of character deletion, insertion and
substitution, find the minimum number of such transformations which change
string A into string B.

In biological applications the distance model is complex, and often instead of the distance,
similarity between two sequences is of interest. In most cases the expert biologist user
reserves the right to judge the “goodness” of the match produced by the matching software.

The taxonomy of approximate matching approaches consists of four species: dynamic
programming, automata, bit-parallelism, and filtering. In their presentation Baeza-Yates
and Navarro leave out the methods based on indexing, as in their opinion those are still in
need of much more research.

4.4.1 Dynamic programming

Dynamic programming is based on a matrix calculation where one dimension is the text
and the other the query. There are several ways of defining the goodness of an approximate
match calculated using a DP matrix. One of the approaches uses the edit distance between
the pattern and the text. Computing science theoreticians look at the matrix from this point
of view, and try to identify cells in the matrix which are close to the bottom right-hand corner
and have a low edit cost. In the biological context, however, a different model prevails. In
biology not the cost but thesimilarity of two sequences is of interest. The cell with the
maximum similarity value can be found anywhere within the matrix. In particular, partial
matches on short sequence fragments are also of interest. Often in biology the similarity of
real interest is when the two sequences which code for proteins will have similar or identical
functions in the biological context of interest. Finding such similarities is beyond both our
biological understanding and our computational capacity. We compare both approaches in
Figure 4.18. The formulae used to calculate the edit distance and the similarity are related.
In the edit cost approach, there is a cost function which maps from every pair of characters
to an integer or real cost:

EditCost : �� � �� ! R

In most theoretical work, edit cost for unequal character comparison is assumed to be a
constant 1 (the same for insert, delete or mismatch), and 0 for a match. Under those as-
sumptions, values in the edit cost matrix are calculated as follows:

DP[0,j] = 0
DP[i,0] = i
DP[i,j] = if char[i] = char[j], then DP[i-1,j-1]

else(1 + min (DP[i-1,j], DP[i,j-1], DP[i-1,j-1])).

The cost calculation for every cell involves a look-up in the cells directly above, directly
to the left and diagonally up-left. For the edit distance the formula always compares the
current pair of characters, and if they are the same, it copies the cost value from the cell
diagonally up-left. If the currently compared characters are different, the minimum cost
from the look-up in 3 cells is incremented using the cost function (here equal to 1).

70

3

3

s u r r yg e

s

v

e

0 0 0 0 0 0 0 0

1

2

3
4

5

6

0

0

0

1 1 1 1 1 1

1 1 2 2 2 2

2 1 2 2 3
3 2 1 1 2 3 3

4 3 2 2 1 2 3

5 4 3 3 2 2 2

s u r r yg e

s
u

r

v

y
e

0 0 0 0 0 0 0 0

0
0

0

0

0
0

1
2u

r 1

y

in the bottom−right corner of the matrix

EDIT COST MATRIX

select minimum cost

SIMILARITY MATRIX

anywhere within the matrix
select maximum similarity

S[0,j] = 0
S[i,0] = 0
S[i,j] = if (Pattern[i] == Text[j]) then
 max (S[i−1,j−1] +1, S[i−1,j] − 1, S[i,j−1] − 1, 0)

else
 max (S[i−1,j−1] −1, S[i−1,j] − 1, S[i,j−1] − 1, 0)

C[0,j] = 0
C[i,0] = i
C[i,j] = if (Pattern[i]== Text[j]) then C[i−1,j−1]
 else 1 + min (C[i−1,j], C[i,j−1], C[i−1,j−1])

0 0 0 0 00
0

0

0

0

1

0

00
0

1

0
1

2

0

2

2

1
0

0 0 0

1 0

1

2 1
2 2

1

0 0

3

using the UNIT cost model

Figure 4.18: Edit cost and similarity matrices for the comparison of the patternsurveywith
the textsurgery, using unit costs.

The similarity function, to be found for instance in Smith and Waterman ‘ [203], works
in an analogous manner. For each pair of letters a similarity functionSim is defined, analo-
gous to the edit cost function, and a gap costd is also assumed. In Smith and Waterman for
DNA Sim is+4 for a match, and�5 for a mismatch of any two letters. Gaps are scored as
cost�5 for starting a gap and�2 for gap extension. Several models of gap costs are in use
[94, 69]. We ignore the gap costs in our work. In a simplified model, with a gap costd, the
calculation of similarity is as follows:

DP[0,j] = 0
DP[i,0] = 0
DP[i,j] = max (0,

Sim(char[i], char[j]) + DP[i-1,j-1],
DP[i-1,j]+d,
DP[i,j-1]+d).

In setting of initial similarity values to 0, we achieve a situation where partial matches can
be computed, which correspond to local alignments. We can define a local alignment as
any alignment of the pattern to a part of the text, where the similarity score exceeds a given
threshold.

There are many possible ways of computing the matrix. A full row-by-row or column-
by-column evaluation of all cells will have the time complexity of the product of both di-
mensions. Several optimisations have been developed. Some are based on traversing the
diagonals, some on splitting the matrix into submatrices, and some on the observation that
in a unit edit cost model, next value will differ by maximum of 1 [168]. Those optimisations
lead toO(kn) complexity, wherek is the number of mismatches allowed. Some of them

71

are suitable for biological use, but some are not, in particular where more complex models
of the cost of gaps in the alignment are required [94].

4.4.2 Automata for approximate matching

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

NO errors
s u r v e y

ε ε ε ε ε ε

ε ε ε ε ε ε

s

s

u

u

r

r

v

v

e

e

y

y

1 error

2 errors

Figure 4.19: An automaton recognising the patternsurveywith up to two errors. After
reading the textsurgery, the states which are active are shaded, one of them being a final
state, reproduced from [168].

Non-deterministic finite automata (NDFAs) may be used to model the approximate match-
ing problem. An example automaton which recognises the patternsurveywith up to two
errors is shown in Figure 4.19. In this automaton, each row denotes the number of errors
seen (an automaton recognising low similarity would be large). Every column represents
matching the pattern up to a given pattern position. As text is fed through this automaton,
transitions are made, and, if a final state is reached, the text has a match with the pattern.
Horizontal rows represent exact matching, vertical rows stand for insertion into the pat-
tern, solid diagonal arrows represent replacements, and dashed diagonal arrows represent
deletions in the pattern (� transitions). There are several approaches to transforming this
NDFA to a DFA (deterministic finite automaton) to enable a computational evaluation of
the automaton states. A DFA will generally be very large, so alternative solutions based on
bit-parallelism have been developed.

4.4.3 Bit-parallelism

Bit-parallelism can be used to represent each position in the matrix as a bit, or to parallelise
the computation of the NDFA (without converting it to a DFA). The average complexity of
such a computation remains in the region ofO(kn=w), wherew is the word length, with
O(n) search time for short patterns. The algorithms based on bit arithmetic are limited to
finding appropriate bit manipulation schemas which can be computed fast. In case of protein
matching, designing such a scheme may well be impossible, and even with DNA it is not
easy, as a general schema to cover different possible edit or similarity costs, as well as gap
scores, would have to be devised. It would be a challenge to make such an implementation

72

parametric, to allow the necessary flexibility in the program execution, as is the case with
BLAST [7].

0000

0000

0000

0 0 0 0

0 0

s

u

r

v

e

y

1

1

1

1

1

0 0 0 0 0

0

0

0

0

0

with 1 set to signify the occurrence of
a letter within the pattern

10 0

BITMAP for each pattern character

NEED m/w words where m is text length
and w is word length

the text read up to now (state for a particular
pattern char is active). A match is reported

the pattern up to that bit matches the end of
where a bit is set to 1 whenever
SEARCH state is kept in a machine word

whenever the first state is 1.

1. set D to 1
m

2. for each new text character update D using

 D’ = ((D >> 1) | 10) & BitMap [txtChar]
m−1

s u r v e y
6543210

NDFA for searching for "survey"

Figure 4.20: Principles of the SHIFT-OR algorithm.

We show here the underlying principles of a bit-parallel SHIFT-OR automaton [28], see
Figure 4.20. The automaton is based on bit arithmetic. For each distinct character in a
pattern a bitmap is stored with one or more bits initialised to one. Ones are the positions
where this character appears in the pattern. The text bits are initialised all to 1 (one bit per
text letter). Text characters are provided as input to the initial array of ones, and appropriate
bit arithmetic is carried out, as shown. This results in matches whenever the first bit of the
text bitmap D is set to one. This solution to exact matching is extended to approximate
matching by grouping characters into classes, and each class having one bitmap vector
used to AND with the outcome of the OR comparison. Some limitations of this approach
arise when the text is very long, which is the case with biological texts. The answer here
is to break the text into manageable chunks which can be compared using bit-parallelism
efficiently.

4.4.4 Filtering

The filtering approach relies on selecting parts of text which look similar to the pattern, and
then carrying out the dynamic programming matrix computation on those parts of the text.
For low error ratios filtering works well. Since it is based on the fact that some portions of

73

the pattern must appear with no errors in the text, matches with lower similarity will not be
reported.

This approach is the same as in the q-grams, reported in a previous section. There are
several variants of the filtering approach. Some of the work is based on the fact that if the
pattern is split intok + 1 pieces (in thek errors approach), any approximate occurrence
must contain at least one of the pieces with no error, sincek errors cannot alter thek + 1

pieces. This leads to different variants of hierarchical searching, where exact hits are found
and then extended with neighbouring strings to get longer approximate matches. BLAST
and FASTA [7, 176] use different versions of the filtering approach, based on starting with
exact matches and extending them to include areas of high string similarity.

4.5 Closing

This chapter presented a selection of most important theoretical foundations underlying
our work. Those include orthogonal persistence, sequence indexing data structures, and
matching algorithms. We did not cover the details of approximate searching using suffix
trees. This work is presented in next chapter which is devoted to the experimental work
with very large suffix trees.

74

Chapter 5

Experimental work with data
structures and exact matching

CHAPTER 6

Approximate matching

algorithm
ST and SBST in memory
ST and SBST on disk
SBST forest

INDEX
BUILDING

small structures in memory
small structures on disk

large naive suffix tree

EXACT MATCHING

METHODS

hardware

data

the benchmark

the test

searching
sequence
biological

Figure 5.1: Overview of Chapter 5.

This chapter presents one of the main contributions of our research — the construction of
very large naive suffix trees, described in Section 5.4. A graphical overview of this chapter

75

is in Figure 5.1. We start by introducing our materials - the specific features of biological
sequence analysis, the data, hardware and data structures studied. We then discuss the
creation of index structures both in memory and on disk, including the construction of very
large suffix trees. Subsequently, we provide an overview of exact matching, and thus prepare
the ground for Chapter 6 which deals with approximate matching using a large suffix tree.

5.1 Methods and materials

Our work aims to speed up large-scale sequence comparison tasks carried out by biologists.
Our methodology combines an examination of the current tools in use, with experimentation
based on algorithmic techniques and persistence technologies. This combination of algo-
rithmic techniques with persistence is novel, and allows us to extend indexing techniques to
encompass new data types.

We worked with 3 groups of life-science researchers to understand the scope and re-
quirements of sequence comparison in their work, and to focus our testing methods on the
relevant data and testing scenarios. It became clear that a different focus of biological re-
search makes different demands on the computing resources, and a variety of searching
approaches may be needed within one project. We face the situation where sequence anal-
ysis tasks require significant amounts of computing power, often surpassing our computing
resources. This provides additional motivation for our research into faster string search-
ing. We briefly introduce the three different sets of requirements we studied, and possible
solutions which could be applied in those contexts.

5.1.1 Possible biological tests

Bacterial genetics

With the appearance of many fully sequenced ge-
nomes, the possibility of subtractive genome anal-
ysis arises. The idea is to compare two related
genomes, one of them the focus of research and
the other closely related, in order to identify the
genes responsible for differences between the two.
This type of activity was discussed with Professor
Tim Mitchell. Our initial work was in providing

a global view of sequence similarities betweenStreptococcus pneumoniae1, andStrepto-
coccus pyogenes. We supervised the research of an MRes student [87] who used a variety
of computing tools to generate a comparison of genes in the two genomes. Further work
could involve a comparison withLactobacillus lactisor other related bacteria, with 3-way
gene comparisons or even more complex scenarios. Bacterial genes would be compared
using BLAST, or entire genomes using MUMmer [66]. Because of the relatively small size
of bacterial genomes, this type of analysis is possible using our computing resources (de-
scribed in Section 5.1.4), but the management and visualisation of the data sets and possible
analyses require additional software support. A data and program execution management
and automation system would be useful in this context [206]. Such a system would require
a combination of a database and a powerful map viewer, as a minimum.

1image reproduced from http://www.meddean.luc.edu/lumen/DeptWebs/microbio/med/gram/slides.htm

76

Protozoan genetics

We investigated the use of BLAST in collaboration with Doctor Lorenza Putignani who
researches possible gene transfer from bacteria to a parasiteCryptosporidium parvum. The
hypothesis under investigation is thatCryptosporidiumcontains parts of smaller bacterial
genomes. The full genome of this organism is not available yet, but small contigs totalling
some 7.7 Mbp of DNA sequence have been released. BLAST is the algorithm of choice,
as it is capable of comparing a collection of contigs with a complete genome2. However,
performing BLAST against a full bacterial genome consumes significant amounts of CPU.
On our hardware configuration, see Section 5.1.4, a full BLAST run for the comparison of
7.7 Mbp ofCryptosporidiumcontigs against a database ofRickettsia prowazekiitotalling
1.2 Mbp took in excess of 6 days and produced over 2 GB of results data which after post-
processing with MSPcrunch [205] produced 50 high scoring hits which we attempted to
visualise using ACT [15, 190]. As it turns out this visualisation is not satisfactory, due to
the fact thatCryptosporidiumcontigs are not yet assembled. As further comparisons with
other genomes are required (some 10 other genomes will be involved), the management
of computation and data requires techniques which call for a complex data analysis and
computation management system. Such a system would consist of a database holding the
genomes, results of genome comparisons, genomic maps, and annotations of gene func-
tions. It would also have to organise the computation involved in sequence comparison and
provide data analysis and visualisation support for a rich knowledge domain. Additionally,
it would have to be capable of integrating external data sources from several distributed
databases.

Mammalian genetics

We identified a problem which we could not solve using our com-
puting resources. Professor Keith Johnson’s research group in-
vestigating a mouse with a genetic abnormality (mutation produc-
ing a phenotype reminiscent of human multiple sclerosis) wanted
to map the mouse gene responsible for this phenotypic variation.
The human sequence is now almost complete and there is sufficient mouse sequence (avail-
able as sequence fragments) to possibly find the gene. Because of the special breeding
strategy used with the laboratory mouse3, the area of interest was narrowed down to 2 Mbp.
Since the approximate map for the human genome in that area is known, it should be pos-
sible to build a map for the equivalent area in mouse, based on gene similarity between
species. The only way to perform such a comparison, without having access to an assem-
bled mouse genome, would be to perform sequence comparison of all available mouse data
(now over 17 million sequence fragments) against the 2 MB of the human sequence. We
realised that we did not have adequate resources to support this investigation, as it would
require computing power and data management which lie outside the scope of our research.

Defining the test

None of the investigations presented above furnish a test case which could be easily inter-
preted as a benchmark of our technology. BLAST and other sequence comparison packages

2MUMmer [66] could be used as well [226] but is less suited to the analysis of genome fragments.
3Image reproduced from http://members.aol.com/MusBeMice/LabMouse.jpg.

77

produce data which can only be evaluated using expert biological knowledge. We therefore
propose a different benchmark which can be interpreted independently of the biological
context. We will use the same dynamic programming matrix calculation for the same set of
queries, in two contexts, without an index and with an index. Moreover, as well as reporting
the actual time required to execute a query, we will show the number of columns of the
DP matrix calculated during the partial scan of the tree. This will measure the gain from
using an index rather than executing a full matrix calculation and will study the interplay
of the data set and the parameters of our approximate matching algorithm. While design-
ing a benchmark, we need to keep in mind the main requirements of biological sequence
searching, and we introduce those now.

5.1.2 Biological sequence analysis

This introduction will not cover the field in depth, but concentrate on the salient features of
this kind of pattern matching, in particular on the difference between the idealised view of
pattern matching, as embodied in most theoretical work, and the implementation of match-
ing in the three commonly used biological sequence search algorithms: the Smith-Waterman
algorithm [203], FASTA [176] and BLAST [7, 8]. For a full account of this field of research
the reader may want to consult any of the following texts [230, 99, 69, 162]. We only at-
tempt to distill the commonalities between the three most commonly used packages in order
to decide how flexible our implementation has to be, so that in the end it might lead to a
valid implementation of biological sequence matching.

We now list the main features of biological sequence searching which make this field
distinct.

� The use of the similarity matrix. As illustrated in Chapter 3, biological sequence
searching uses the similarity matrix, not the edit distance matrix, in most cases. The
edit distance matrix is used in the construction of phylogenetic trees [162]. We did
not explore phylogeny construction as it requires multiple sequence alignment which
is outside the scope of our work, and is performed on small data sets.

� The use of non-unit costs. For DNA, for instance, BLAST currently scores every
match as+1, and mismatch as�3 (Stephen Altschul, personal communication), but
those defaults can be changed on demand. Smith-Waterman algorithm for DNA align-
ment was first designed with a match DNA score of+4 and mismatch score of�5.
For protein scoring, a whole variety of approaches are used, we present one of the
scoring matrices, BLOSUM62 [104], in Table 5.1. Protein scoring matrices are based
on the examination of alignments of related proteins and they reflect the likelihood of
substitution of one amino acid by another.

� The use of gap costs. A variety of approaches exist [69]. For instance in DNA BLAST
gap existence is scored as�5 and gap extension as�2, so that a gap of lengthk costs
�(5 + 2k).

� Use of statistical measures of the significance of a match. The scoring system used
in BLAST relies on the use of statistics which are relative to the size of the database
used for querying. The interpretation of results returned by BLAST is subjective,
and biologists use their intuitive understanding to evaluate different results returned
by BLAST. Automated approaches to the problem of filtering of the results are also

78

known [205] and they choose best hits based on similarity scores delivered by BLAST.
Miller [158], however, calls for sequence analysis software which has a more rigorous
statistical foundation (different form BLAST).

� The size of text and pattern under consideration. It is now common to ask for ge-
nomic comparisons, for instance a comparison of all human genes (between 25,000
and 40,000 sequences of differing lengths, some of which exceed 1,000 amino acids
(AAs)) against all proteins (currently 200 Mb). For DNA comparisons the query se-
quence is longer than for proteins (even 100 Kbp) and the underlying text can be as
large as several Gbp.

These requirements diverge significantly from the idealised view of pattern matching with
k differences, as embodied in most computing science theoretical research. Solutions pre-
sented by the available theory address idealised problems, and further work is required to
turn the “idealised” scenarios into efficient search tools.

A R N D C Q E G H I L K M F P S T W Y V B Z X *
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4
* -4 1

Table 5.1: The Blosum62 matrix.

The special features of the problem we are addressing present us with a picture of great
complexity. We currently abstract from the statistical dimension, and are planning to de-
velop an understanding of this area in the near future. We also abstract from the fact that
protein and DNA similarities can be evaluated in different ways, and alternative sets of
scoring matrices as well as alternative ways of scoring gaps in sequence alignments have
to be accommodated. Therefore, we limit our interest to methods which can be used with
arbitrary scoring schemes [187]. This precludes the use of bit-based DP matrix evaluation
techniques for instance, and forces us to focus on the simplest methods initially, that is the
execution of a DP matrix calculation on top of a suffix tree.

79

5.1.3 Data sources

We had a discussion about our work on suffix trees with a European Bioinformatics Institute
researcher (Jaak Vilo, personal communication, April 2001) in whose experience searches
on proteins are currently central to most biological research, and protein searching consti-
tutes most of the load for sequence similarity searching. We decided to focus on proteins
from the SWISSPROT resource4, and the predicted gene sequences (proteins) from the En-
sembl web site5. In the research leading up to final tests we also used other data sets which
we describe next.

Caenorhabditis elegans

This data set is available from the Sanger Centre6, and
consists of 6 chromosome sequences of total length 97
Mbp. Chromosomes range from 12.4 to 20.5 Mbp. As
queries we used cDNA sequences from the same web
site, which have now been replaced with another file7.
General information onC. elegans(see picture) and a
bibliography are available on the web8.

Ensembl dataset and the human genome

The Ensembl dataset9 contains up-to-date human DNA sequence and mapping data, includ-
ing predicted genes. All data produced by the International Human Genome Sequencing
Consortium are published and available via this website. We imported genetic sequences
for chromosomes 1, 21 and 22, totalling some 300 Mbp (300 MB) and the gene set of some
26,000 genes, totalling 34 MB. Genes are available from ftp://ftp.ensembl.org/current/data/fasta/dna/,
and chromosomes are available from the US National Centre for Biotechnology Information
(NCBI) as merged files at ftp://ncbi.nlm.nih.gov/genomes/Hsapiens/CHR01/hschr1.fa.gz
and in the other chromosome directories. The Sanger Centre FTP site used by Ensembl does
not offer merged chromosome data, but presents lists of individual clones instead.

Plant and insect data

We also used DNA sequences of plant origin,Arabidopsis thaliana(fragments totalling 253
Mbp)10, and the fruit fly sequence ofDrosophila melanogaster(130 Mbp)11. We used these
data sets to carry out an initial investigation of the shape and size of the suffix trees we were
producing.

4http://www.expasy.org
5http://www.ensembl.org
6ftp://ftp.sanger.ac.uk/pub/C.eleganssequences/CHROMOSOMES/CURRENTRELEASE/
7ftp://ftp.sanger.ac.uk/pub/C.eleganssequences/ESTS/
8http://elegans.swmed.edu/, http://www.biotech.missouri.edu/Dauer-World/Wormintro.html
9http://www.ensembl.org/

10ftp://ftp.tigr.org/pub/data/athaliana/ath1/SEQUENCES/
11ftp://ftp.fruitfly.org/pub/genomic/fasta/naarms.dros.RELEASE2.Z

80

Protein data set

Protein sequence data consist of three files available from the SWISS-PROT FTP server12.
All known proteins are referred to as SWISS-PROT, and stored under the name sprot.fas.Z.
Predicted proteins form the TREMBL dataset available as trembl.fas.Z, and predicted pro-
teins which are awaiting classification are in the file called tremblnew.fas.Z. Total volume
of AA sequence in the three files is 200 Mb.

Data acquisition

Data were retrieved using FTP. Genetic sequences which were to be indexed were pre-
processed, using a Perl [228] script to remove headers, carriage returns and any symbols
outside the DNA and protein alphabets. Individual sequences were concatenated using a
single* symbol.

5.1.4 Computing methods

Research Methodology

A new research methodology, combining algorithmic and persistence techniques, was de-
veloped and successfully applied to solve the problem of the size limitation which charac-
terised the construction of disk-resident suffix trees. The underlying theoretical foundations
were discussed in Chapter 4.

Hardware and software platform

Tests were run under the Solaris operating system version 5.7, on Sun Enterprise 450
servers, with 2 GB RAM. Transient tree tests were initially run using Production Java for
Solaris, i.e. Java 1.2 with JIT using options modifying the GC behaviour [178], and subse-
quently with Java 1.3 (the so-called Java 2). Initial versions of persistent suffix tree were
tested in 1999 with PJama based on Java 1.1. This version of PJama software was still too
unreliable to support consistent experimentation with large data sets. PJama 1.6.5, based
on Java 1.2 became available in Spring 2000, and allowed for the execution of a substantial
body of tests. Further improvements to the logging component of PJama in the summer of
2000 [155] allowed for longer running transactions, and led to the creation of large persis-
tent data structures.

Initial tests

The tests we carried out reflected the gradual growth of our understanding of suffix trees
and the research into tree structures and tree creation algorithms. The tests stretched the
technology, and we used the data structures of the maximum size possible within the limits
of hardware and software that we were using.

An initial version of ST code was developed in the autumn of 1999, based on code
translation from Ada to Java by Sarah Cox in the summer of 1999 [60]. This code was
optimised and re-written – partly to accommodate the inefficiencies of stack management
in Java 1.1 (an explicit stack had to be used in tree traversal). Our first large-scale testing

12ftp://ftp.expasy.org/databases/sptr nrdb/fasta/

81

was carried out in April 2000. These tests investigated transient suffix trees for up to 26
Mbp of DNA, and persistent suffix trees for up to 15 Mbp.

TheSBSTcode was translated from Ada to Java in the summer of 2000 by Brian Young
[237], and after cosmetic changes was used in a large set of tests in September 2000. These
tests compared suffix trees and suffix binary search trees. Persistent suffix trees and suffix
binary search trees for up to 20.5 Mbp of DNA were built. Additionally, a forest ofSBSTs
containing all ofC. elegansgenome (97 Mbp) was built and tested.

Tests supporting the thesis statement

In January 2001, after work with different versions of the suffix tree, we discovered how
to build trees exceeding the size of RAM. We carried out tests in tree building and exact
querying for a DNA dataset of 263 Mbp, corresponding to the sum of human chromosomes
1, 21 and 22 as available at that time. A paper describing this work was accepted for
publication at the VLDB 2001 conference [119], and we were invited to extend this paper
for inclusion in the VLDB Journal.

Further tests with protein trees for 200 Mb (SWISSPROT) and tests with approximate
matching algorithms followed. We also tested BLAST [7, 8] and SIM4 [84] to gain ex-
perience with the data and package interfaces. Our tests made it extremely clear that se-
quence analysis is very CPU intensive, and we currently do not have resources to perform
it on a large scale. We also experimented with the post-processing of BLAST results using
MSPcrunch [205], and our own tools to post process BLAST and SIM4 results in order to
filter out a subset of relevant matches. We then decided to test our hypothesis in a way which
objectively tests the tradeoff between indexed and unindexed searches. We performed such
tests for protein data, and later for DNA data sets. We used the same dynamic programming
matrix calculation both in the context of the persistent suffix tree index and without an in-
dex. The paper summarising all tests to date has now been submitted to VLDB Journal and
is reproduced in Appendix C.

BLAST as a benchmark

Sequence comparison benchmarking was initially performed using BLAST [7, 8]. The
results we gathered are presented in Chapter 6, as a background and an indicator of the
relative speed of this method. It is beyond the scope of our work to give justice to the
field of biological sequence analysis, as most literature refers to a wide range of statistical
measures which we did not research. We provide a bird’s eye view of BLAST in Chapter 6,
where we also introduce our own benchmark which directly measures the gains from using
the indexing technology.

5.2 Building of suffix index structures

O(n) suffix tree construction was researched by Weiner [232], McCreight [153], and Ukko-
nen [224]. Those algorithms owe their optimal theoretical construction time to an additional
factor in the space domain – the existence of suffix links which traverse the tree in the di-
rection perpendicular to the direction of child-parent links. We do not cover those construc-
tion algorithms here because they are “quite complex and only of theoretical interest” [27].
Gusfield provides a high-level view of those methods [99], but for full detail the original

82

papers are indispensable. Giegerich and Kurtz researched the equivalence between those
algorithms [89], and most of the theoretical work uses those time-optimal algorithms.

When the size of the tree is an issue, i.e. the tree does not fit into RAM, and has to be
constructed on disk, the additional space required for the suffix links, and the fact that they
traverse the tree “horizontally”, makes the time-optimal algorithms underperform. This has
been observed by Baeza-Yates and Navarro [27, 25], and they concluded that suffix trees
larger than RAM cannot be constructed. We noted the same behaviour in our tests, and we
turned to naive suffix trees which allowed us to overcome this limitation. In this section
we sketch the timing tests performed using the original Ukkonen’s algorithm first, then a
modified Ukkonen’s tree, and finally the naive tree of our construction. We contrast those
trees with theSBSTand then show how these trees are built in memory and on disk.

5.2.1 Ukkonen’s suffix tree - original version

leftIndex
rightIndex
suffixNumber

suffixLink

siblingchild

Figure 5.2: Node layout as implemented in [60].

Code translation from Ada to Java for the Ukkonen’s algorithm was performed by Sarah
Cox, based on code provided by Rob Irving who co-supervised the project [60]. The layout
of a tree node in this implementation is as follows. ANode consists of achild reference, a
sibling reference, asuffix link reference, aleft index into the text string, aright index
into the text string, and thesuffix number, see Figure 5.2. The first three fields were
implemented as object references, and the last three as integers.

One of the features of Ukkonen’s algorithm is that a so-called “implicit tree” is built
first, in which the right index into the text in all leaf nodes is populated with an arbitrary
large value, and the suffix number is left unassigned. In a subsequent tree traversal two
modifications to leaf nodes take place. First, the right text pointer is replaced with the index
of the end of the indexed string (total string length). Secondly, each leaf is provided with
the suffix number to which it corresponds. The resulting tree is called an “explicit tree”. In
the case of a tree already on disk, making the tree explicit requires a full traversal of the
entire data structure, and two updates in every leaf. We observed that this was a superfluous
operation, and that the size of the string could be held as a global variable for the entire
index, and initialised just once, while the suffix number could be calculated at query time.
This would remove the need for a traversal changing an “implicit” into an “explicit” tree.
This observation led us to the development of an improved “leaner” tree using Ukkonen’s
algorithm, described below.

83

5.2.2 Leaner Ukkonen’s suffix tree

rightIndex
leftIndex

suffixLink

siblingchild

leftIndex

child sibling

suffixLink

LEANER SUFFIX TREES WITH SUFFIX LINKS

SUFFIX TREE NO SUFFIX NUMBER

(STNSN)
another possible implementation

Figure 5.3: Two possible node layouts for a leaner tree with suffix links.

5 suffixes starting with A

ROOT

A$

4−12

suffix 8

suffix 1

11−12

ACA at positions

$
A$

1211

81

1−3 and 8−10

A

1−1

2−33

4−12

CA

A C A T C T T A C A A $

A $

A A $

A C A T C T T A C A A $

A C A A $

A T C T T A C A A $

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.4: Part of a suffix tree illustrating two suffixes sharing the same prefixACA, and
the 2 leaves (shaded).

Several alternative implementations of lean trees with suffix links are feasible, and we im-
plemented one lean tree version, shown on the left hand side of Figure 5.3. Other alterna-
tives were explored by Malcolm Atkinson’s students [128, 186]. After producing the naive
suffix tree, see next section, we realised that the right hand variant is also possible, but we
did not implement it or carry out any tests with this version, since the naive tree allowed us
to build trees on disk more reliably and for larger data sets. Further analysis of the naive
tree in this chapter will show why the naive tree is our preferred data structure. Removing
the right index into the text from all leaves and using a global value instead is an obvious

84

modification13. Removing the right index from internal nodes is done as follows. Look up
the left index in the child node and subtract1. We now explain why the suffix number can
be removed from the leaf. The suffix number represents the starting point of a particular
suffix in the tree. Suffixes sharing the same prefix will share a part of the path from the
root down to a point where they differ and branch into different subtrees. Let us look at
Figure 5.4 which shows part of a suffix tree, together with the indexed string.ACA is a
prefix of two suffixes, and is represented in the tree by its first occurrence from the left, that
is S1::3 (represented by two nodes). We calculate the actual suffix number on reaching the
leaf, and we use the string length of the path leading towards the node. The formula used
here is

LeafNumber = leftIndex� pathLength:

If we were looking forACA in the tree, we scan 2 nodes, and have traversed 3 characters
so far (the length of the query). Then the two shaded leaves below which have left index
values of4 and11 have suffix numbers4� 3 = 1 and11� 3 = 8.

5.2.3 Naive tree

1. create root

2. new child
for ANA$

1

2

4 4

5

5. add $ as sibling

INSERTION ORDER
1. root
2. ANA$
3. NA$
4. A$
5. $

3. add NA$ as sibling

A$ as sibling
for ANA$ and add
4. split node

3

1 32 4 5

CHILD AND SIBLING LINKS

Figure 5.5:Tree creation forANA$

We developed the naive tree in order to investigate possible space economies of a suffix tree.
Since the algorithm to create a naive tree is easy to understand, it could also be easily used
with alternative storage schemes. As it turns out, because of the lower space requirement
of a naive tree and the lack of suffix links (and hence better locality of access, resulting in

13The right index is needed in querying so that we never try to go past the end of the substring indexed by a
node.

85

leftIndex
suffix

siblingchild

leftIndex

child sibling

THIN NAIVE TREE (TNT)NAIVE SUFFIX TREE (NST)

Figure 5.6: Alternative node structures for the naive suffix tree.

fewer cache misses), this tree showed good characteristics in practice, which subsequently
allowed us to build much larger suffix trees, in excess of RAM size.

The process of building a suffix tree may be carried out starting from the first suffix, or
from the last one. We arbitrarily selected the first method. First the root is created, then
the node for the first suffix is added, and then remaining suffixes are inserted one-by-one by
comparing the string indexed by the new suffix with the suffixes already in the tree. This
way of creating a tree uses 2 operations: adding a new child, if a child starting with the
current character does not exist yet, and splitting an existing node to accommodate a new
suffix whose prefix diverges from an existing suffix. This is illustrated in Figure 5.5 on
the example creation of a tree indexing stringANA$, where on the insertion of suffixA$,
operation number 4, the node coding forANA$ has to be split into two nodes, one coding
for A, and the other forNA$.

In implementing the naive tree, we used two data structures for a node, shown in
Figure 5.6. The first structure (NST) has two object references (child and sibling), a
left index into the string and thesuffix number. Nodes which are to be inserted into the
tree are created with the left index and suffix number initialised to the suffix number value,
and as their appropriate location in the tree is being found, the left index is incremented. In
this tree version we do not use the right pointer into the text. Instead, we look up the right
pointer in the child node,

rightIndex = node:child:leftIndex � 1;

as explained in Section 1.2.2. This has an additional processing cost (a node lookup).
In the thin naive tree (TNT), we do not record the suffix number. A node consists of just

three fields:child reference,sibling reference, and theleft index into the text. The right
index is calculated as above, and the suffix number is calculated during the query, as already
explained. Further optimisations which remove null sibling or child links were explored by
Japp [128] and Riley [186] but were not considered in our work.

The worst-case complexity of naive tree building isO(n2). However, as DNA data
and proteins have an almost random distribution, the average building time is of the order
of O(nlogn) [212]14. Experimental behaviour of this tree is surprisingly good, see the
following sections.

5.2.4 Suffix Binary Search Tree

The suffix binary search treeSBSTwas developed by Rob Irving and Lorna Love [125, 126].
The Ada code was translated into Java by Brian Young in the summer of 2000 [237]. The

14The actual formula used by Szpankowski is more complex, and relates to data entropy.

86

original code executed under Windows created a tree for 1.6 Mbp in less than 2 minutes,
and the same version run under Solaris needed around 20 minutes. Structural changes were
needed to improve performance under Solaris, mainly in the class and method interfaces.
We experimented only with one version of theSBST, and the data structure used is shown in
Figure 5.7. This shows a tree node consisting of two object references (one per child) and
three values calledmaxlcp (maximal common prefix, integer),direction (Boolean) and
suffixNumber (integer) which we explained in Chapter 4. No further code optimisation
was undertaken.

Suffix binary search tree is a potentially interesting
maxlcp
direction
suffixNumber

rightChildleftChild

Figure 5.7:An SBSTnode.

data structure. Because there is only one node per text
character indexed, the total memory occupancy will be 2
integers + 2 references + 1 bit per character indexed. In
comparison, the lean naive tree requires 3 integers per
node, and each text character may give rise to up to 2
nodes (observed values for DNA and protein are in the
region of 1.6 to 1.8 nodes per character indexed). As a
result, theSBSTrequires less memory than a suffix tree.
Recent research [126] shows that anSBSTcan be used

to build a suffix array. Suffix arrays have even lower space complexity than theSBST, so
experimental research in that direction is valuable. Baeza-Yates and Navarro [25] have re-
searched simple approximate matching scenarios using disk-resident suffix arrays for up to
10 MB of source data, as well as optimisations of suffix arrays designed for use on disk. It
would be interesting to extend their results to biological searching with larger suffix arrays,
using cost functions which are relevant in biology.

5.2.5 Tree building in memory

We present now a suite of test results which were re-run recently to provide a most up-
to-date comparison of the alternative structures. We used the following three data sets:
C. elegansmerged chromosomes, merged proteins from TREMBL and SWISS-PROT, and
merged human DNA from chromosomes 1, 21 and 22. Tests were carried out using Java
1.3 with the following settings:

� �server, which indicates the VM suitable for server operation (client VM is the
other option),

� �Xms1000m, which is the initial size of the Java heap, and

� �Xmx1900m to set the maximum Java heap size.

Tests were run once for each data set, with the following sizes of input:1Mb, 5Mb, 10Mb,
and then increasing by5Mb up to the maximum size possible for a given data structure. For
larger input data sets some runs resulted in the “out of Memory” error. For the suffix tree
with suffix links the computation was not progressing and not generating an error message
either, and the Java process had to be terminated after 60 minutes. Creation times were
measured for the data structures presented in Figure 5.8. We measured the time to create a
tree as follows. Data were read in as an array of bytes. Then the time was recorded using
System.currentTimeMillis()method, the tree was built, and then another time stamp was
taken, and the time difference calculated. The computer was not used for any other tasks,

87

leftIndex
rightIndex
suffixNumber

suffixLink

siblingchild

rightIndex
leftIndex

suffixLink

siblingchild

maxlcp
direction
suffixNumber

rightChildleftChild

leftIndex

child sibling

leftIndex
suffix

siblingchild

NAIVE SUFFIX TREES

SBST

STL, suffix tree links

NST, naive suffix tree

SUFFIX BINARY SEARCH TREE

TNT, thin naive tree

STNSN, suffix tree no suffix number

SUFFIX TREES WITH LINKS

Figure 5.8: Transient indexes built in memory.

and only one processor was in use. We now present the measurement results, first ordered
by index type, and then comparing different indexes.

Suffix Tree with Suffix Links (STL) creation

Data size Mb PROTEIN C. ELEGANS HUMAN
1 13218 10522 10526
5 97035 70051 70505

10 254109 199419 198823
15 447873 349126 348070
20 766099 623841 630412
25 999563 815635 816330
26 1052686 897170 1075321
27 1106184 1234593 1201089
28 1152764 2519606 3203641
29 1199547

Table 5.2: Tree creation (milliseconds) for the O(n) tree, version STL.

A summary of tree creation times of the suffix tree with suffix links (version STL) is shown
in Table 5.2, page 88, and in Figure 5.9, see page 89. We make three observations here. The
protein tree takes slightly longer to build than a DNA index. This is probably due to long
linked lists representing siblings. As the protein alphabet is larger than the DNA alphabet,
the lists will be longer. However, there is also another difference, namely that the protein
tree has fewer nodes, as trees for larger data sets than for DNA are possible for protein.
Thirdly, we observe here a sharp rise in the time to produce an index for trees approaching

88

0

10

20

30

40

50

60

0 5 10 15 20 25 30

t
r
e
e

c
r
e
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

data size (Mbp)

O(n) Tree with Suffix Links (STL)

Proteins
C. elegans DNA

Human DNA

Figure 5.9: Time required to build an STL index for three data sets.

the size of the available memory (as expected). This indicates that swapping takes place,
and program behaviour is hard to predict.

Suffix Tree no Suffix Number (STNSN) creation

Data size Mb PROTEIN C. ELEGANS HUMAN
1 12117 9608 9378
5 87376 64746 64268

10 231932 177814 178456
15 402261 319012 305697
20 712535 568620 566887
25 925553 726142 721583
30 1410518

Table 5.3: Tree creation (milliseconds) for the O(n) tree, version STNSN, with suffix links
but no suffix number.

We present a summary of the tree creation experiment for the improved version of theO(n)
tree (suffix tree no suffix number, STNSN). This tree version is leaner (no explicit suffix
field in the node) and it requires no tree traversal to make the tree “explicit”, as described
previously. Observed tree creation times are shown in Table 5.3, page 89, and summarised
in Figure 5.10, page 90. Because of the lower space complexity, and lack of the final tree
traversal, this tree version requires less time to build than the original ST implementation15.

15for instance indexing 20 Mb of human DNA using the STL takes 630 seconds, and using the STNSN takes

89

0

5

10

15

20

25

0 5 10 15 20 25 30

t
r
e
e

c
r
e
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

data size (Mbp)

O(n) Suffix Tree, No Sufffix Number (STNSN)

Proteins
C. elegans DNA

Human DNA

Figure 5.10: Time required to build an STNSN index for three data sets.

As previously noticed, a protein tree takes longer to build, but a larger tree is possible than
with DNA datasets. The tree creation time seems to be influenced by the alphabet size,
and the largest protein tree diverges from the expected linear performance, probably due to
memory swapping operations needed for a tree which reaches the limit of available memory.

Naive Suffix Tree with Suffix Number (NST)

The time required to build this tree is presented in Table 5.4, page 90 and in Figure 5.11, on
page 91. We observe that larger tree sizes are possible than with the original suffix tree, and

567 seconds.

Data size Mb PROTEIN C. ELEGANS HUMAN
1 17101 11803 11661
5 131377 89241 80087

10 319035 194674 190593
15 559151 332667 332039
20 802824 482517 486011
25 1060027 649744 653457
30 1434817 939714 932250
35 1737997 1093467 1087255
40 2023708 1295463 1278753
45 2357526 1757964 1792716

Table 5.4: Tree creation (milliseconds) for NST.

90

that the protein tree takes longer to build.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

t
r
e
e

c
r
e
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

data size (Mbp)

Naive Tree with Suffix Number (NST)

Proteins
C. elegans DNA

Human DNA

Figure 5.11: Time required to build an NST index.

Thin Naive Tree (TNT)

The time required to build this tree is presented in Table 5.5, page 92 and in Figure 5.12,
page 93. DNA trees forC. elegansand human data show similar characteristics while the
protein tree is more compact (larger tree can be built within the available memory) and takes
longer to build.

SBST creation

The time required to build this tree is presented in Table 5.6, see page 92 and in Figure 5.13,
page 94. The code for SBST building has not been optimised, and we used the simple
version of theSBSTalgorithm16. We observe here the same shape of the graph and the
relationship between protein and DNA trees as for suffix trees. The irregular shape of the
plot for C. elegansDNA was probably caused by some network or disk activity which
subsided subsequently. We are currently unable to explain adequately why the protein tree
takes longer to build than the DNA tree. For a suffix tree this difference is probably due
to the length of linked lists which connect the sibling nodes. To explore the issue of the
tree creation time for theSBSTwe would have to measure the number of nodes visited, and

16A more elaborateSBSTimplementation in Java which requires additional storage is also available, and
this version allows for faster tree creation in Ada than for the simple version of the tree (Rob Irving, personal
communication). We did not test the faster algorithm because we wanted to reduce the tree size. It is also
possible that a performance improvement in tree building could be achieved after code re-engineering.

91

Data size Mb PROTEIN C. ELEGANS HUMAN
1 16889 11907 11707
5 133474 89629 81021

10 318229 194382 188809
15 554520 333834 333292
20 807349 487833 489799
25 1059601 655399 649900
30 1440385 929096 939092
35 1748979 1093559 1096373
40 2034271 1289894 1282010
45 2360460 1782224 1780282
50 3005667

Table 5.5: Tree creation (milliseconds) for TNT.

Data size Mb PROTEIN C. ELEGANS HUMAN
1 18341 14340 13941
5 116453 146768 89427

10 277608 275586 195453
15 528018 430138 325904
20 793786 530258 469364
25 1004392 671230 629826
30 1219113 830099 801455
35 1571219 1279580 1033430
40 1841070 1483357 1224281
45 2128671 1732245 1422216
50 2408032 1701047 1620394
55 2901096 2125339 1978192

Table 5.6: Tree creation (milliseconds) for SBST.

92

0

5

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25 30 35 40 45 50

t
r
e
e

c
r
e
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

data size (Mbp)

Thin Naive Tree (TNT)

Proteins
C. elegans DNA

Human DNA

Figure 5.12: Time required to build a TNT index. The graph for worm DNA indexing is
superimposed on the graph for human DNA tree construction.

the number of equal and unequal character comparisons made during the tree construction.
This phenomenon of longer tree creation for proteins than for DNA was also observed
for the SBSTimplemented in Ada (Rob Irving, personal communication), and is possibly
attributable to the overall shape difference between DNA and protein trees.

Comparison of all five data structures

We now present a summary of tree creation times which compares all five data structures
examined. Index creation for human DNA (very similar toC. elegansresults) is shown
in Figure 5.14, page 95, while Figure 5.15, page 96, shows index creation for the protein
data set. Surprisingly, there appears to be no major difference in the tree creation times for
alternative indexes. The major limitation in this experiment turns out to be the available
RAM, and leaner data structures permit larger indexes. With respect to space,SBST is the
best choice, and both naive suffix trees follow closely behind. There is no visible difference
in tree construction time between the naive suffix tree and theO(n) suffix tree. This means
that the additional space complexity provided by the suffix links, and the additional cost of
traversing them cost as much time as the additional character comparisons performed in the
construction of the naive suffix tree, for the full range of trees that we could construct using
2 GB RAM and the latest version of Java.

The role of garbage collection strategies

Index creation times reported are highly dependent on several system variables. Our com-
parison of the first SBST execution under Windows NT and Solaris has already been re-

93

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

t
r
e
e

c
r
e
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

data size (Mbp)

SBST

Proteins
C. elegans DNA

Human DNA

Figure 5.13: Time required to build an SBST index.

Data size (Mbp) standard GC No young generation
12.8 421 136
14.2 479 285
15.0 503 296
16.8 574 319
17.4 603 336
20.6 728 371

Table 5.7: Comparison of transient ST building times (in seconds), for the STL data struc-
ture, using standard GC and a GC version with no young generation.

ported (20 minutes under Solaris and 2 minutes under Windows for the same data set but
different Java Virtual Machines). Another example is the garbage collection strategy which
plays a significant role in the performance of tree construction. Our earlier experiments with
GC options available in Java 1.2 showed that tree creation time can be halved, if no young
generation is used [178]. We reproduce here this measurement which was performed for
all C. eleganschromosomes and theSLTdata structure. Table 5.7, see page 94, shows that
the copying of object references from the young to the old generation while creating a data
structure which produces little garbage has asignificant impact on the tree creation time.
In fact by not using the young generation, we can halve the time needed for tree creation.

Timing Kurtz’s tree

We summarise the tests carried out using Kurtz’s suffix tree implementation [138] which we
discussed in Chapter 4. The purpose here is not to compare with our implementation, but to

94

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

t
r
e
e

c
r
e
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

data size (Mbp)

Human DNA

SBST
Thin Naive TNT

Naive NST
STNSN
STL

Figure 5.14: Time required to build an index for human DNA, the graph for TNT is super-
imposed on the graph for NST.

provide background on the fastest algorithm available which is faster and more efficient than
the suffix tree used by Celera for human genome analysis [66, 226] (Stefan Kurtz, personal
communication, 2001). Kurtz’s lean tree structure is implemented in C. We obtained the
code from the author and carried out a test on all of theC. elegansgenome, human DNA
and on proteins, and tested two data structures he provides - the improved linked list and
the improved hash table implementation. The time required to build a linked-list based
tree for the size of theC. elegansgenome (96,934,461 bp) differed widely between the 3
data types we used. We report the minimum time measured over two runs on a machine
that was otherwise idle. ForC. elegansthe tree construction needed 12 min 28.14 sec, for
human DNA the time recorded was 9 min 20.50 sec, and for proteins 20 min 18.19 sec. We
then tried to test the hash table based implementation. It turned out that the maximum data
size allowed was below 9 Mb. For larger datasets we encountered error messages “Sorry,
textlen = 9693447 is larger than maximal textlen = 8388605”, and “Can’t find primetab
larger than 100485343”. The time needed for tree creation for 8 Mb was 32.84 sec forC.
elegans, 33.09 sec for human DNA, and 29.93 sec for proteins. We discovered that the C
code provided by Kurtz does not separate the time required to read in the data file from the
time needed for tree construction, and we decided not to modify the code. To overcome
this problem we simply created appropriately sized input files for this test. We recorded
the time to run the program using the Unixtime command. We notice that the protein
tree requires longer to build using the linked list structure, but slightly shorter using the
hash table implementation. The difference in construction time between DNA and proteins
for the linked list implementation is very significant. This difference parallels the tests
we carried out with our data structures, where protein index construction took longer. A

95

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60

t
r
e
e

c
r
e
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

data size (Mbp)

Proteins

SBST
Thin Naive TNT

Naive NST
STNSN
STL

Figure 5.15: Time required to build a protein index.

direct comparison of tree construction times is in favour of Kurtz’s tree. Java data structures
require more memory and therefore take longer to build. For this reason we are not capable
of building memory-resident indexes for 100 MB of source data, which is possible using
Kurtz’s code. Based on these tests we assume that the time needed to construct a tree for
the human genome using Kurtz’s tree can lie somewhere in the region of 5-9 hours (this
confirms our previous estimate of 9 hours, based on our measurement of tree construction
for the worm data in around 18 minutes, using Kurtz’s REPuter [139] software, which did
not allow for separating tree construction from tree traversal needed to calculate repeating
motifs).

5.3 Small persistent trees

Our work is concerned with prototyping an indexing solution using available persistence
mechanisms. We used PJama which provides a generic mechanism of persistence, and
is designed to provide several database features which may interfere with fast creation of
objects on disk. For instance transaction logging [100] consumes a lot of resources and
slows down the process of tree creation. As a result, the time needed to make data structures
persist on disk is much longer than the actual time needed for disk writing of objects outside
the database context. This apparent inefficiency is a practical impediment, as more time is
needed for testing. On the other hand, the fact that PJama offers recovery facilities is of
practical benefit once the tree is built. This is needed for testing, as some tests may cause a
system crash and some may have to be aborted, if they take too long to execute. We believe
that with advances in persistence, solutions to the problem of write-once indexes will appear

96

and they will be efficient enough to make write-once read-many-times indexes viable.
We used two distinct versions of PJama in this work, as described previously. Since

we are using a prototype implementation of persistence, and PJama is a general purpose
persistence mechanism, we do not focus here on the actual time needed for tree creation on
disk, but investigate the feasibility of indexes of various sizes and their performance within
the constraints of the technology we are using. From that point of view the maximum size of
the data structure possible is of great interest, as the disk-resident data structures we created
index more text than any of the approaches used by other researchers who investigated suffix
trees and suffix arrays.

5.3.1 PersistentSTL tests

A suffix tree with suffix links, using Ukkonen’s algorithm, was constructed first. It was
limited by the size of RAM (2 GB). Small trees (up to 12 Mbp of sequence) required just
an invocation of PJama runtime environment, and no explicit checkpoints (data being com-
mited to disk by invoking the methodOPRuntime:checkpoint()). For larger trees, check-
points during the tree creation had to be added. Trees for datasets smaller than 20 Mbp were
the largest that could be built until the Autumn of 2000, as the log kept by PJama was not
large enough to keep all the records required for recovery. Since the new version of PJama
appeared in September 2000 [155], it has become possible to create a tree for 20.5 Mbp of
DNA, usingC. elegansChromosome 5 data, taking up 2 GB of disk. This version of the
suffix tree initially used checkpoint granularity of 300,000 new suffixes, and it needed 43
hours to build on disk. Further runs explicitly called the GC after each checkpoint, and with
checkpoint granularity of 0.5 million, the same tree was build in 8 hours.

Trees larger than 20.5 Mbp, i.e. the size of available RAM, could not be built using this
data structure, which is also reflected in the observations made by Navarro and Baeza-Yates
[25].

5.3.2 PersistentSBSTtests

In September 2000 tests on suffix binary search trees were carried out. Initially an SBST
index for 20.5 Mbp ofC. elegansDNA was created. The store containing the index occupied
1 GB of disk, and fitted in memory (2 GB RAM), which enabled a straightforward store
creation. Subsequently we built a store for all of worm data (97 Mbp), as 6 trees in one
store, occupying 4.7 GB of disk. The full store creation took some 8 hours, and after each
tree was added a checkpoint took place. This contrasts with our unsuccessful attempt to
build a forest of 6 STL trees using a similar method. We also tried to build largerSBSTs
but found that trees over 45 Mbp of DNA were not possible, even with partial checkpoints.
This was due to the fact that after each checkpoint we had to modify the structure which
was already disk-resident, and the persistence mechanism found the management of large
updates pertaining to the addition of large numbers of leaves throughout the data structure
too hard to orchestrate (most of the tree had to be kept in memory as updates were randomly
distributed, and the amount of memory at our disposal was limited). We conjecture that with
the method of tree building in partitions presented in the next section we will be able to build
largerSBSTs. Further work could investigate the potential of this technique.

97

5.4 Naive suffix tree for an arbitrarily large index

5.4.1 The memory bottleneck

9

8

6

42

7

5

3 1

AC

AC

AC$
$

$

$

$

$

$

$

C

child relationship

next suffix

AC

AC

AC$

AC

1 2 3 4 5 6 7 8 9

A C A C A C A C $

Figure 5.16: Suffix tree with suffix links forACACACAC$.

After the development of the naive tree code it turned out that this tree could be built on
disk more easily than the suffix tree with suffix links. We now present an explanation of
why that is the case. First of all, there is the space factor, as the naive tree does not require
suffix links, but this factor is of minor importance. What is significant in a naive suffix tree
is its simple structure of child and sibling links in the direction from the root towards a leaf.
In contrast to the naive tree, in the suffix tree with links, links traverse the tree horizontally,
see Figure 5.16, and contribute to tree traversal in two directions (from the root down, and
horizontally from suffix to suffix).

Suffix links [224] are defined as follows. Given an internal node indexingaw where
length ofa is one, there is always a suffix link to a node indexingw. These suffix links,
necessary for theO(n) tree construction, are an impediment in the disk-based tree construc-
tion. This effect has been observed before and is referred to as a “memory bottleneck” by
Farach and co-authors [79]. In Farach’s work this bottleneck is attributed to the difficulty
of string sorting, and his efforts focus on overcoming the difficulty by proposing a new the-
oretical approach to tree building. In our opinion, the problem is caused by suffix links, and
removing those leads to practically applicable algorithms, as shown in our work.

5.4.2 Tree construction

Our algorithm allowing us to build arbitrarily large trees is based on the naive tree con-
struction. It first pre-groups the suffixes down to a given prefix length and then builds a

98

9

8

6

42

7

5

3 1

AC

AC

AC

AC$
$

$

$ $

$

$

C

AC

AC

AC$

$

Subtree for A* Subtree for C*

Subtree for $

1 2 3 4 5 6 7 8 9

A C A C A C A C $

Figure 5.17: Suffix tree with suffix links removed, consisting of 3 subtrees, based on prefix
length of 1.

tree for groups of suffixes which are lexicographically close together, shown in Figure 5.17.
This grouping allows us to partition the tree construction into distinct phases. In each phase
a subtree is built and committed to disk, and the subtrees create distinct tree partitions.
Once a partition is completed, it is never revisited. We illustrate this fan-like structure for
strings over a 3-letter alphabet (ignoring the terminator), which results in 9 partitions, see
Figure 5.18. The root has three main subtrees, one for all suffixes starting withA, one for
suffixes starting withB, and the third one for all suffixes starting withC . Those subtrees are
further subdivided, based on the second character of each suffix. We first build the subtree
for all suffixes starting withAA, commit, and then proceed with theAB prefix, commit,
and so on, until the lastCC prefix is built and committed to disk. In a naive suffix tree there
are no suffix links, and those subtrees are built independently. For the same reason, because
subtrees can be made to fit entirely in memory, post-processing of subtrees to achieve data
compression and optimal placement on disk is now possible.

In other words, we base our partitions on the prefixes of each suffix. In this section we
will use the DNA alphabet for simplicity of presentation, however the same tree construction
mechanism applies to protein and has been tested in practice on both alphabets. In the DNA
alphabet ofA, C, G, Tthe suffixes that have the prefixAA fall in a different subtree from
those starting withAC, AG or AT . The number of partitions and hence the length of the
prefix to be used is determined by the expected size of the tree and the available main
memory. It may be the case that smaller partitions (for instance based on the first three, four
or five characters of each suffix) would be better because their impact on disk clustering
would accelerate lookups, but this has yet to be investigated.

The number of partitions required can be computed by estimating the size of a main-
memory instantiationSmm, available for tree construction, and the number of partitions,p,

99

root

B

C

A C A CB A B C

BA

alphabet of {A, B, C}

Figure 5.18: A fan-like structure of the partitioned suffix tree, with 9 partitions, using prefix
length 2.

is �
Smm

Amm

�
;

whereAmm is the available main memory. The actual partitioning can be carried out using
either of the two approaches we outline. One way is to scan the sequence once, for instance
using a window of size 3 (sufficient for 263 Mbp of DNA and 2 GB RAM), count the
number of occurrences of each 3-letter pattern, and then pack each partition with different
prefixes, using a bin-packing algorithm [59]. Alternatively, we can assume that, given the
pseudo-random nature of DNA, the tree is uniformly populated. To uniformly partition, we
calculate a prefix code,Pi, for each prefix of sufficient length,l, using the formula:

Pi =

l�1X
j=0

ci+ja
l�j�1;

whereck is the code for letterk of the sequence, anda is the number of characters in the
alphabet. The code of a letter is its position in the alphabet, i.e. for DNAA codes as 0,C
codes as 1, etc. The minimum value forPi is 0 and its maximum isal � 1. So the range of
codes for each partition, r, is defined by:

r =

�
al � 1

p

�
:

The suffixes that are indexed during thejth pass of the sequence have

jr � Pi < (j + 1)r:

The structure of the complete algorithm is given as pseudocode below:

100

for j in partitions do

for i in 0..totalLength do

if suffix i is in partition j

new Node(i);

insert Node(i);

endif

endfor

checkpoint; (write to disk)

endfor

5.4.3 Space requirement of the thin naive tree

leftIndex

child sibling

Figure 5.19: Node of a Thin Naive Tree (TNT).

Our TNT implementation disposes of suffix links, see Figure 5.17. A single tree node is
shown in Figure 5.19. We reduce storage by not storing the suffix number and the right
index into the string for each node. The suffix number is calculated during the search. The
right pointer into the string is looked up in the child node, or, in the case of leaves, is equal
to the size of the indexed string. Each tree node consists of two object references requiring
4 B each (child, sibling), one integer taking up 4 B (leftIndex) and the object header (8 B for
the header in a typical implementation of the Java Virtual Machine). The observed space is
some 28 B per node in memory in the persistent context. The difference is due to PJama’s
housekeeping structures, such as the resident object table [143] which account for around 8
B per object.

PJama’s structure on disk adds another 8 B per object over Java, i.e. 36 B per node. The
actual disk occupancy of our tree is around 65 B per letter indexed, close to that expected.
The observed number of nodes for DNA remains between1:6n and1:8n, wheren is the
length of the DNA, giving an expectation of between 58 and 65 bytes per node. Some of this
space may well be free space in partitions, and some is used for housekeeping [178]. If we
encoded the naive suffix tree without making each node an object (using arrays which grow
as the tree is being built which involves array copying), we would then require at least 12 B
per node, that is around 21 B per character indexed. Further compression could be obtained
by using techniques similar to those proposed by Kurtz [138], described in Chapter 34.

101

5.4.4 Persistent indexes for large data sets

We constructed large trees for two datasets. One indexed the merged content of human
chromosomes 1, 21, and 22 (263 Mbp in January 2001, corresponding to the full length of
chromosome 1), the other indexed the merged protein sequences from TREMBL, SWISS-
PROT and newTREMBL, totalling 200Mb, using data which we previously described. The
tree for 263Mbp is roughly 13 times larger than the largest tree with suffix links we managed
to build, i.e. for 20.5 Mbp.

We did not concentrate on possible refinements to the tree construction. Our running
times represent unoptimised tree builds. The first run to construct a DNA tree for human
DNA for 263 Mbp in January 2001 took 19 hours. A log file of 2 GB was used and the disk
requirement of that tree was 18 GB. A protein tree for 200Mb took around 8 hours elapsed
time to create on disk, and required a log file of 2 GB and 12.5 GB of store files.

The strategy for the DNA tree was to proceed alphabetically from a tree indexing all suf-
fixes starting with AAA, to AAC, AAG, and all character permutations through to TTT, and
then adding any suffixes which had the concatenation character* in the first three characters
of the suffix. After every triplet of prefix letters a checkpoint was made. The strategy for the
protein tree was slightly different, because by that time we decided to focus on approximate
matching which terminates on reaching a separator symbol. In an application focusing on
motif discovery which we initially had in mind a full tree would be required. We took all
two-letter prefixes over the protein alphabet in lexicographic order, and we accumulated the
number of nodes added. When that number reached 4 million the program performed an
explicit checkpoint. We decided not to add any suffixes starting with* or having* as a
second character, as those suffixes are not useful in searching (the search stops whenever
* is encountered). Further space savings in the tree could be achieved by extending this
technique for instance by excluding suffixes which have* as their third or fourth character,
depending on the tree size, alphabet, query length, and allowed error margin. This exclusion
of some suffixes will have a negative impact on our ability to find repeating words in a tree,
but is sufficient for approximate matching.

5.5 Exact matching with indexes

We explore exact matching using suffix trees and suffix binary search trees. For information
about exact matching without the use of indexes the reader may consult Gusfield [99] or an
online publication by Charras and Lecroq [48]. We did not explore approaches which are
appropriate in the indexing of linguistic text either, and information on those is widely
accessible [27, 234]. Our work does not focus on exact matching but on an approximate
matching algorithm which calculates a similarity matrix. Therefore we report only the
results we produced during the initial work on tree indexes, and do not report on all the data
sets.

5.5.1 Exact matching using a suffix tree

Exact pattern matching in a suffix tree involves a traversal of one path down the tree and
subsequent traversal of all nodes below the last matching character. From the root we trace
the query until either a mismatch occurs, or the query is fully traced. In the second case, we
then traverse all children and gather suffix numbers representing matches. If we ignore the

102

alphabet size, the complexity of a suffix tree search isO(k+m) wherek is the query length
andm the number of matches in the index. This means that in a balanced tree looking for
queries of lengthq brings back a1

aq
fraction of the whole tree, on average, wherea is the

size of the alphabet. For example, a query of length 4 using a DNA index might retrieve
1

256
of all tree nodes. The threshold at which indexing begins to show an advantage over a

linear scan of DNA depends on the precise data structure used, on the query pattern, and on
the size of the sequence. For short exact queries, an alternative q-gram index may be more
appropriate. In a tree indexing proteins searches for short substrings are expected to deliver
fewer hits, and query performance will be different. Our experiments with approximate
queries on a protein tree are reported in Chapter 6 and they support this conjecture.

The exact matching algorithm

in the recursive descent down the tree the depth parameter changes for the child node and
remains the same for the sibling. For the child it is calculated as follows:

This depth parameter is one less than the string depth of the first character
newDepth = depth + na.getChild().getLeftlabel() − na.getLeftLabel() ;

last character’s depth
of each node as measured in characters from the root. It correspond’s to the parent’s

 if this is the last character of the query

 break on mismatch, end of query or end of node characters
 if query is fully matched

 if na is a leaf − add leaf number to results

 if na is a leaf − add leaf number to results

 else if the node is exhausted but not the query

 keep matching characters (advance i)

− else (i.e. this node does not match)

 else traverseLeaves

 else traverseLeaves

 exactRecursive (child, i, results, newDepth)

 exactRecursive (sibling, i, results, depth)

exactRecursive (ThinNode na, int i, Vector results, int depth)

− if node is null return

− establish the right label (look up the child’s left label, or text end for a leaf node)

− if match found in the first character of the node (query[i] == text[na.leftLabel])

 advance i by one character

− if node is not null
 if na is a leaf
 add leaf number to results

 else (not a leaf)

 traverseLeaves (sibling,)

 traverseLeaves (sibling,...)

 traverseLeaves (child, ...)

traverseLeaves (ThinNode na,
 Vector results, int depth)

− create a Vector to hold results
initialisation

EXACT QUERY PARAMETER : query (array of bytes)

− invoke exactRecursive:
 exactRecursive (root.child, queryIndex = 0, results Vector, depth = 0)

Figure 5.20: The algorithm for exact string matching using a suffix tree.

The exact matching algorithm implemented by Cox [60] was discarded because we found

103

query length Number of hits SBST avg time (ms) ST avg time (ms)
8 not measured .0503 3.7215
9 12997843 .0437 1.1123

10 3887138 .0450 0.3566
15 19341 .0460 .0387
20 not measured .0449 .0377
50 1831 .0448 .0375

100 945 .0456 .0415
200 413 .0485 .0367

Table 5.8: Comparison of query response times while using transient ST and SBST indexes
for 20.5 Mbp ofC. elegansDNA sequence, averaged over 10,000 queries.

it hard to reason about its correctness. We implemented a recursive tree traversal for exact
matching. We summarise the technique we used in Figure 5.20, and refer here to the naive
suffix tree, as this simplifies the presentation. During the tree traversal an index into the
query string is used, calledi, and another integer, calleddepth, allows the tracing of the
string depth of any node, as counted from the root. We refer to thedepth of the last character
of the parent node. To record matches, we use thejava:util:V ector class. We believe our
early measurements of exact query performance which we report here are distorted because
of the use of this construct. It has later come to our notice that using Java Collections slows
down the execution of Java code, and a handcrafted data structure which can expand more
efficiently thanV ector would be more appropriate.

We tested the correctness of our implementation of this algorithm by direct comparison
of the result set returned by the suffix binary search tree and our suffix tree for the same
indexed sequence and the same set of queries.

Exact matching in a transient tree

We carried out tests on memory-resident indexes, using the least space efficient version of
the suffix tree (STL) and an SBST in order to gain an appreciation of the difference between
those data structures. Tests were carried out on chromosome 5 ofC. elegans(20.5 Mbp),
and query response was measured for different query lengths and different batch sizes. We
present a summary of data gathered from the run of 10,000 queries in Table 5.8. For longer
queries the performance of both memory-resident trees is similar, however, short queries
over SBSTs are faster. This may be due to different tree topologies. In a suffix tree a
search for a string of length9 traverses a maximum of9 � alphabetSize nodes down the
tree, but then has to scan all the nodes below the ninth node, including all the intermediate
nodes leading towards the leaves, to find the relevant suffix numbers. In anSBST, on the
other hand, the path leading to the identification of the9th matching character may be
considerably longer, but a smaller subtree needs to be scanned completely in search for
matches. The other contributing performance factor is that anSBSToccupies only half of
the memory required for a suffix tree, and could therefore be inherently faster.

In a further investigation it might be worth timing the finding of the first string occur-
rence (traversal down the tree) and then tracing of other occurrences (subtree traversal).
The big performance difference between the ST and the SBST seems to point to the fact
that SBST might be more suitable for exact searching especially with short queries. Since

104

Query length Number of hits SBST avg (ms) ST avg (ms)
9 12997843 38 331

10 3887138 19 107
15 19341 12 14
50 1831 13 12

100 945 13 12
200 413 13 12

Table 5.9: Comparison of average query response times using 10,000 queries running over
a persistent ST and a persistent SBST, based on 20.5 Mbp ofC. elegansDNA.

exact matching is not the focus of this research, we did not carry out measurements with
different variants of the suffix tree. Future work might include executing exact query tests
for both proteins and DNA using all of the data structures we implemented.

Exact matching using a disk-resident index

Using chromosome 5 ofC. elegans(20.5 Mbp) we constructed a suffix tree and anSBST,
each in a separate PJama store. TheSBSTstore measured 1 GB, and the suffix tree store
measured 2 GB. The exact matching test was then carried out, and we report the results
in Table 5.9. For this dataset the SBST fits completely in memory, and the ST is mostly
memory-resident. TheSBSTis faster than the suffix tree for short queries and these results
are analogous to the results recorded on transient trees, with a significant proportional de-
crease in speed due to the loading of all tree parts from disk into memory structures, and
to the larger memory image of a persistent data structure. A transient tree performs, on
average, 2 to 3 orders of magnitude faster than a persistent tree, and for longer queries the
SBSTseems to be equivalent to anST.

A disk-resident forest of SBSTs

Subsequently, we attempted to create a forest of chromosome trees forC. eleganswithin a
single store. We did not succeed in creating a forest of suffix trees, but created and tested a
forest of sixSBSTs.

The purpose of this test was to investigate the performance of PJama under multithread-
ing, and to understand the possible gains from a multi-processor environment. We did not
follow this line of enquiry further, however after this test we are certain that the use of
multi-threading will be beneficial, and further work might examine how to achieve maxi-
mum benefit from a multi-processor machine. For all previous tests the index structure fitted
in the available RAM. For 6 trees held in a 4.7 GB store this was no longer the case, and we
wanted to see how changing the number of threads used would influence query response.
We wanted to exclude artifacts resulting from the use of a synchronised request queue, and
make sure that there were always threads ready to execute a query.

A nursery of 6 SBSTs was created, a tree per each of the six chromosomes ofC. elegans.
Chromosome sizes were as follows (in Mbp): 14.3, 15, 12.8, 16.8, 20.5, 17.4. The trees
were built within one PJama store. The full run for tree creation took 8 hours. A batch of
1000 queries of equal length was prepared, broken into smaller sub-batches, and placed in
a queue where batches circled over the trees, and each tree would receive all 1000 queries.

105

Query length threads batch1 batch2 batch3 batch4
avg (ms) avg (ms) avg (ms) avg (ms)

10 1 149 529 180 494
2 48 511 507 521
4 37 321 335 321
8 36 276 279

16 33
32 35

15 1 374 346 340 342
2 401 340 382 340
4 249 223 224 225
8 201 179 213 183

16 172 172 175 168
32 179 179 162 169

20 1 319 348 304 333
2 349 302 323 306
4 225 197 195 204
8 202 163 205 166

16 173 208 152 162
32 163 163 156 143

100 1 309 351 358 326
2 349 342 302 334
4 225 202 213 198
8 188 180 172 178

16 153 170 152 152
32 147 147 158 167

200 1 310 289 286 290
2 291 261 238 259
4 185 167 154 160
8 137 138 137 140

16 127 127 131 130
32 134 134 129 140

Table 5.10: Average time per query in ms, using the exact search algorithm ran on a forest
of persistentSBSTs for C. elegans.

A number of threads was initialised, and the total execution time from batch submission
to completion was measured. We observed some recoverable crashes during this test. We
assume that thread management within PJama is still imperfect, and thread interactions
must have caused the system collapse. We present the data resulting from four runs, where
we measured the elapsed time in ms for 1000 queries. We showaverage time per query in
milliseconds, in each of the four runs, see Table 5.10.
We calculate the average query time over the four batches, and produce a graph summarising
the observed query performance, see Figure 5.21. We have no plausible explanation for the
differences in query performance we observed between queries of length 10 and longer
queries. The timings we recorded seem to vary a lot, and we think that system activities
influenced the query response times considerably. In all measurements, however, it seems
that the optimum system behaviour was reached with 8-32 threads, and using more threads
sometimes lead to system instability, which is a possible artifact of the lack of investment

106

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35

a
v
g

q
u
e
r
y

t
i
m
e

(
s
)

number of threads

query length 10
query length 15
query length 20

query length 100
query length 200

Figure 5.21: Average query times over 97 Mbp in 6SBSTs(4.7 GB PJama store), using a
4-processor Enterprise 450 server.

in the persistent platform.

5.5.2 Exact queries over a large DNA tree

To find out if the increased tree size has an impact on query performance, we carried out tests
on the large naive tree for 263 Mb of human DNA. Batches of queries were submitted and
the elapsed time for a batch of queries measured. Summary data are presented in Figure 5.22
and in Table 5.11. Analogous summary data for a small transient tree were presented in
Table 5.8. It appears that short exact queries which return large numbers of results take
longer to process because large regions of disk have to be scanned to find the relevant
leaves. For longer queries performance is very good, as either a mismatch generally occurs
or just a few matches are retrieved from the tree leaves. We notice that for all queries
longer than 15 characters the average time reported is below 0 ms. This is due to the
measuring technique which could only provide resolution down to 1 ms, i.e. the call to
System:currentT imeMillis(). As exact matching was not the focus of our research, we
decided not to pursue this measurement at a higher level of accuracy. It appears that larger
indexes (for 263 Mbp) offer similar performance to smaller indexes (for 20.5 Mbp). For
instance for queries of length 10, and a batch of 2000 queries using a large tree, the average
query time was 6 and 9 ms, while in our previous tests with a small tree we recorded a time
of 107 ms. This “improvement” of the larger tree over the small one is due to the difference
in tree structure and their lay-out on disk. The small tree (STL) had suffix links and was
constructed using Ukkonen’s algorithm, with intermediate commits which were triggered
by the need for free memory, rather than respecting the shape of the index. This resulted
in an index with very poor locality of reference. The very large tree (TNT), on the other
hand, has no suffix links and higher locality, as subtrees are committed separately and never
updated.

107

batch size query length avg Time (ms) total hits / batch avg hits / query
500 10 13 945785 1891.57

14 802808 1605.62
15 1 56196 112.39

2 50202 100.40
50 0 211 0.42

0 89 0.18
100 0 59 0.12

0 60 0.12
200 0 13 0.026

0 14 0.028
300 0 4 0.008

0 4 0.008
1500 10 10 1633481 1088.99

8 1346706 897.80
15 0 100952 67.30

0 65829 43.89
50 0 222 0.148

0 543 0.362
100 0 60 0.04

0 61 0.041
200 0 13 0.009

0 14 0.009
300 0 4 0.003

0 4 0.003
2000 10 6 1628307 814.15

9 2344782 1172.39
15 0 103615 51.81

0 105297 52.65
50 0 222 0.111

0 543 0.272
100 0 60 0.03

0 61 0.03
200 0 14 0.007

0 15 0.007
300 0 4 0.002

0 4 0.002

Table 5.11: Exact queries on a DNA tree for 263 Mbp where two batches of queries were
submitted for each combination of query length and batch size.

108

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

t
i
m
e

(
m
i
l
l
i
s
e
c
o
n
d
s
)

query length

Human DNA totalling 263 Mbp (length of Chr. 1)

batch of 500 queries
batch of 1500 queries
batch of 2000 queries

Figure 5.22: Average query times for a warm store.

5.5.3 Discussion of the exact matching tests

Tests on transient and persistent suffix trees show that the unoptimised implementation of
SBSTsis faster than the unoptimised suffix tree with links. We believe that this is partly
due toSBST’ssmaller space requirement. A forest ofSBSTsindexing 97 Mbp of DNA in
6 trees took up 4.7 GB of disk, using PJama 1.6.5, and a forest of equivalent suffix trees
would have needed 9.5 GB, had we been able to complete the forest creation.

These tests force us to consider the following issues in any future work that will follow
on from this investigation, some of which have already been taken up by other researchers
[128, 186].

� The size of the index needs to be reduced. We have taken up this line of work,
and produced the thin naive tree (TNT). Further work at the data structure level and
database level is needed.

� As short exact queries return many hits, a suffix tree which summarises leaves be-
low a certain level might be useful. In our measurement we pay the penalty of using
java:V ector to store hits, and this increases the reporting cost considerably. Mea-
surements with a more efficient data structure to store the matches are needed.

� DNA and protein strings should be compressed to reduce the size of data which is
looked up during the query evaluation. This improvement can be carried out easily.

� The exploitation of parallelism in any future work is a very promising avenue of
research and will reduce the time needed to evaluate a query.

109

� The SBST needs further investigation and exact examination of the performance dif-
ference between theSBST and theTNT should be made.

� A more lightweight approach to persistence which does not require a large object
overhead on each node would be very useful.

� Tree creation without logging or with more efficient logging should be experimented
with, to achieve faster tree creation.

5.6 Summary

This chapter presented our investigation of a variety of alternative suffix indexing structures
against the background of biological work that this research is aiming to support. We de-
scribed the materials and data used, and showed how our work on time and space optimal
suffix trees has led to the discovery of the naive suffix tree which in practice behaves as well
as an optimal suffix tree, as shown in our experiments. We described in detail the algorithm
for the creation of very large suffix trees, based on the naive tree, and showed the perfor-
mance of the exact matching algorithm on a tree for 263 Mbp of human DNA. The tree we
used in our experiments is the largest suffix tree ever reported in literature and contradicts
previous statements that suffix trees in excess of the RAM size were not possible. This data
structure opens new perspectives in the database field, as it will allow for future indexing of
very large sequence repositories.

We now move on to the algorithmic and experimental research we carried out in im-
plementing the approximate matching using a suffix tree index. This work constitutes the
second major contribution of our research and is presented in Chapter 6.

110

Chapter 6

Approximate string matching using a
naive suffix tree

comparison and evaluation

methods based on suffix links

results BLAST benchmark

DP benchmark

approximate matching using a suffix tree

method for the naive tree (depth−first)

DP matrix

Chapter 4

naive tree

Chapter 5

Figure 6.1: Overview of Chapter 6.

We present one of the three main contributions of our research. In this chapter we discuss
our new methodology which defines the indexing gain of a suffix index, and use it to ex-

111

amine the indexing gain for two protein indexes, indexing 36 Mb and 200 Mb of sequence.
We describe the implementation details of our approximate matching algorithm which uses
the suffix tree, and analyse the performance of the index. This chapter builds on Chapter
4 and Chapter 5. In Chapter 4 the theoretical foundations of our work were presented, in-
cluding persistence, suffix trees, and approximate matching techniques. Chapter 5 detailed
the construction of a very large suffix tree which is the index structure used in the research
presented in this chapter.

We describe an approximate matching algorithm which executes the DP matrix calcu-
lation on a naive suffix tree. We characterise the benefits of using the suffix tree index to
carry out a DP calculation, and argue that using a suffix tree considerably reduces the size
of the DP matrix which needs to be evaluated. Our contribution is threefold.

� We implement an algorithm based on [25] and adapt it to reflect the needs of similarity
searching in the biological context.

� We build a suffix tree on the largest publicly available protein data set containing 200
Mb of sequence1, and test the approximate matching algorithm with human protein
data2.

� We present a new methodology for evaluating the indexing gain. We distinguish
clearly between the algorithm speed up resulting from indexing, and other possible
sources of efficiency, for instance following on from the use of an automaton. We
demonstrate that the suffix tree for 200 Mb reduces the size of the DP matrix to be
calculated 10 to 100 times, and that the indexing gain grows with the size of the data
structure.

A graphical overview of this chapter can be found in Figure 6.1. Our argument is structured
as follows. We first describe a DP benchmark which measures the speed of unoptimised
matrix calculation in Java. We then detail two possible approaches to using the suffix tree as
an index. The first family of algorithms uses a suffix tree with suffix links, and the second
one does not use suffix links, and can therefore be executed on the naive tree. We then
describe the implementation of the approximate matching algorithm based on the naive tree,
and present the experimental results we generated, using protein data. Finally, a comparison
with BLAST is presented, and an argument for further work on the suffix tree index is put
forward. Additional testing results, based on work with large DNA indexes are presented in
Appendix C, an invited paper we submitted recently to the VLDB Journal.

To find out if the combination of a naive suffix tree with the DP matrix is beneficial, we
devised a benchmark testing the performance difference between indexed and unindexed
approximate matching. We now present this benchmark.

6.1 Dynamic Programming benchmark

This benchmark enables us to measure directly a possible gain from using a suffix tree
index. We use the same unoptimised dynamic programming matrix calculation both in the
context of a suffix tree and without it. The calculation we carry out measures sequence
similarity using a simple metric (unary costs of match, mismatch, deletion or insertion),

1http://www.expasy.org
2http://www.ensembl.org

112

and this lets us abstract from the complexity we find in the software which is currently
used by biologists. This provides a fair comparison of both approaches without introducing
complexity. Extending this calculation to use protein similarity matrices used in biological
sequence searching is always possible, and the additional cost of using such matrices and
different gap costs should be small, as it would be limited to a look-up in a small array.

Our initial approach to this benchmark was to construct a rectangular matrix indexed by
the text and the pattern. We usedshort as the data type for each matrix cell in order to
reduce the storage requirement of the matrix. However, this optimisation is not sufficient.
Comparing 300 Mbp of DNA to a pattern of length 100 exceeds our available RAM. This
led us to the design of a circular buffer holding the matrix. We initialise the buffer to twice
the query length, and wrap round after reaching the array end. We do not report the hits,
but count them instead to reduce the reporting component and its possible influence on
performance (many matches slow down reporting).

The test for this benchmark is carried out with the minimum size of Java heap set to 1
GB (�Xms1000m), and maximum to 1.9 GB (�Xmx1900m), using Java 1.3.0 and the
-serveroption. We are unable to perform large-scale testing in this case, due to the heavy
computational demand of this test. A single program execution on the protein dataset of
200 MB and a query of 245 characters took over 15 hours to complete. Therefore our test
uses smaller data sets. In this case we expect a linear relationship between the matrix size
and computation time. A full matrix is computed in each case for 20 Mb of sequence and
a query length between 245 to 688 characters. The same computation is carried out twice
for each query. Queries come from the Ensembl file of predicted human proteins3. We
reproduce the first sequence from this data set:

>ENSP00000003603 Gene:ENSG00000000003 Clone:AL035608
Contig:AL035608.00001 Chr:chrX basepair:97278090

MASPSRRLQTKPVITCFKSVLLIYTFIFWITGVILLAVGIWGKVSLENYFSLLNEKATNV
PFVLIATGTVIILLGTFGCFATCRASAWMLKLYAMFLTLVFLVELVAAIVGFVFRHEIKN
SFKNNYEKALKQYNSTGDYRSHAVDKIQNTLHCCGVTDYRDWTDTNYYSEKGFPKSCCKL
EDCTPQRDADKVNNEGCFIKVMTIIESEMGVVAGISFGVACFQLIGIFLAYCLSRAITNN
QYEIV

The file of queries was pre-processed to remove headers and carriage returns. The SWIS-
SPROT and TREMBL sequence file was preprocessed in the same way as for the suffix tree,
i.e. sequence headers and carriage returns were removed, and sequences were concatenated
using a* .

The reporting was done as follows. We recorded the length of text, the length of the
query and the time needed to perform the matrix calculation (starting the timer after the
source data and query were read in). A summary of query execution times recorded is
presented in Table 6.1 and in Figure 6.2. The full matrix calculation is expected to have the
O(nm) time complexity. The relationship between the size of the array and the computation
time is linear and we can calculate a formula to be used in estimating predicted running
times for any combination of text and query lengths. An estimation of the parameters can
be done using the least-squares method. Before calculation, we converted text size to Mb,

3ftp://ftp.ensembl.org/current/data/fasta/pep/

113

Text size Mb Query size text * query (Mb) time (s)
20 245 4900 5501

5514
20 250 5000 5617

5615
20 317 6340 7167

7148
20 688 13760 16482
20 742 14840 17857

17808
200 245 49000 56340

Table 6.1: DP matrix calculation for a selection of text and query sizes (merged TREMBL
and SWISS-PROT) and 5 human genes from the ENSEMBL dataset. The last entry shows
one calculation for the entire dataset of 200 Mb which took some 15 hours to produce and
other rows use 10% of that data.

multiplied the text size by query size, and converted time to seconds. We used a web-based
implementation of that calculation4 which produced the following:

QuickFit: Results

The results of a QuickFit performed at 07:22 on 14-JUL-2001

10 data pairs (x,y):
(4.900E+03, 5.501E+03); (4.900E+03, 5.514E+03);
(5.000E+03, 5.617E+03); (5.000E+03, 5.615E+03);
(6.340E+03, 7.167E+03); (6.340E+03, 7.147E+03);
(1.376E+04, 1.648E+04); (1.484E+04, 1.786E+04);
(1.484E+04, 1.781E+04); (4.900E+04, 5.634E+04);

y = a + bx where:

a= 65.7 (� a = 1.37E+02)
b= 1.16 (� b = 8.49E-03)

degrees of freedom = 8
r = 1.000 (p = 0.000),

We also used Excel functionsSLOPEandINTERCEPTto get an independent calculation.
This produced:

slope 1.150278591
intercept 66.05964582.

We will therefore use the formula

time(seconds) = 1:16 �matrixSize(Mb) + 66:0

to produce approximate running time of any matrix calculation.
4http://www.physics.csbsju.edu/stats/QFNROW form.html

114

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

c
a
l
c
u
l
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

DP size m*n (Mb)

DP calculation times

TREMBL+SWISSPROT db, ENSEMBL AA query

Figure 6.2: Time required to carry out a full DP calculation is proportional to the product
of text and query sizes.

6.1.1 Approximate matching using a suffix tree

The DP matrix calculation can be carried out using a suffix tree. In the simplest form of
such a calculation, a top-down traversal of all nodes down to a predefined depth is used.
In more advanced versions of this approach, presented by Ukkonen [223] and Cobbs [56],
suffix links are used to reduce the number of nodes for which the matrix values have to
be calculated. Cobbs’ algorithm is an improvement on Ukkonen’s, whereas Baeza-Yates
and Navarro [25] develop a hybrid approximate matching method implemented on top of a
suffix array and compare its performance to Cobbs’ implementation.

Our work follows the work of Navarro and Baeza-Yates and uses the simple traversal
method which does not require suffix links. We proceed now to outline the known methods,
and then present our own implementation and testing results.

6.2 Suffix-link based methods

We present a high-level view of those methods, comparing the approach they take with the
simple traversals on trees without suffix links. For a detailed description [56, 223] are to be
consulted.

Ukkonen presents three algorithms with running times

� O(mq + n),

� O(mq log q+ outputSize),

� O(m2q+ outputSize).

Heren is the text length,m pattern length,k the number of errors,� the alphabet, andq
varies depending on the problem instance between0 andn. For unit cost edit distance it is

115

shown that
q = O(min(n;mk+1 j � jk):

The purpose of Ukkonen’s algorithm is to keep the number of columns evaluated in the
matrix calculation� n, so that overall the computation is faster than theO(nm) needed for
a full DP matrix evaluation. Cobbs reduces the running time to

O(mq + outputSize):

Both algorithms are complex and use suffix links. The main idea is to avoid unnecessary
computation of columns which have been computed already, and suffix links enable this
optimisation. If a column of the DP matrix corresponding to a particular suffix has already
been evaluated, the next shorter suffix need not be evaluated. By using suffix links we find
references to nodes which need not be calculated. However, there is an associated space cost
which is significant. This optimisation requires keeping a stack or a hash table of nodes and
the relevant DP columns, and therefore has a significant space overhead. The fact that suffix
links are needed, currently precludes the use of these algorithms in our work. In the future
one might consider adding suffix links to an existing tree down to the maximum depth of
matrix calculation, after the initial tree build. The space and time trade-offs of such a tree
and matrix calculation would then have to be re-examined.

6.3 Depth-first search

This is the name that Baeza-Yates and Navarro use to describe their algorithm which tra-
verses the top of the suffix tree in a depth-first fashion [25]. A traversal down every tree
branch is made, up to a predefined maximum string depth, and possibly aborted before the
full depth is reached. String depth here is the string length as measured from the root down
every existing branch of the tree. The idea of using this kind of traversal is attributed to
Gonnet and Baeza-Yates [30], and this technique is used in a sequence analysis package
Darwin5 which dates back to 1992.

6.3.1 Suffix trie simulation

The algorithm looks at the suffix tree as if it was a suffix trie (where one suffix character is
represented by one node) and goes down every possible branch to a certain depth (counted
in nodes or characters). The depth of traversal has to be kept to a minimum, to guarantee
good performance, as the deeper we descend into the tree, the longer the DP matrix we have
to calculate becomes and more tree branches need to be explored. In the unit cost model
adopted by the authors the maximum depth required for any comparison is the sum of the
query lengthm and the number of errors allowedk. It is also easy to see that minimum
depth of the matrix calculation needed to find a match under the same assumptions will be
the difference betweenm andk (afterm� k text characters the DP matrix calculation can
produce a match with the minimum scorem � k, and further computation can be aban-
doned). This condition will become more complicated to evaluate for non-unit costs, and
the authors confine their interest to unit costs, which also justifies the use of fast bit-based
arithmetic.

5http://www.inf.ethz.ch/personal/gonnet/DarwinManual/DarwinManual.html

116

3

3

s u r r yg e

s

v

e

0 0 0 0 0 0 0 0

1

2

3
4

5

6

0

0

0

1 1 1 1 1 1

1 1 2 2 2 2

2 1 2 2 3
3 2 1 1 2 3 3

4 3 2 2 1 2 3

5 4 3 3 2 2 2

s u r r yg e

s
u

r

v

y
e

0 0 0 0 0 0 0 0

0
0

0

0

0
0

1
2u

r 1

y

in the bottom−right corner of the matrix

EDIT COST MATRIX

select minimum cost

SIMILARITY MATRIX

anywhere within the matrix
select maximum similarity

S[0,j] = 0
S[i,0] = 0
S[i,j] = if (Pattern[i] == Text[j]) then
 max (S[i−1,j−1] +1, S[i−1,j] − 1, S[i,j−1] − 1, 0)

else
 max (S[i−1,j−1] −1, S[i−1,j] − 1, S[i,j−1] − 1, 0)

C[0,j] = 0
C[i,0] = i
C[i,j] = if (Pattern[i]== Text[j]) then C[i−1,j−1]
 else 1 + min (C[i−1,j], C[i,j−1], C[i−1,j−1])

0 0 0 0 00
0

0

0

0

1

0

00
0

1

0
1

2

0

2

2

1
0

0 0 0

1 0

1

2 1
2 2

1

0 0

3

using the UNIT cost model

Figure 6.3: Edit cost and similarity matrices for the comparison of the patternsurveywith
the textsurgery.

Baeza-Yates and Navarro do not use the similarity function [203] but the distance func-
tion [142]. A high level view of the difference between the edit and the similarity function
for strings is shown in Figure 6.3. The approximate matching algorithm traverses the tree,
and extends the DP matrix by one character (one trie node) at a time. After a DP column is
evaluated, the algorithm performs two checks. If the edit distance between the entire pattern
and the current suffix position is less thank, the whole subtree below this node is traversed,
and the leaf numbers of the leaves are reported. If, on the other hand, the algorithm de-
termines that the edit cost at this point is so high that it can never lead to a match with a
maximum number of errorsk, this tree branch is immediately abandoned. We reproduce
the pseudocode as presented by the authors. The functionUpdate is the extension of the
currently considered suffix with the lettera encoded by a child trie node. TheSearchState
is the authors’ designation of the stack which holds the DP matrix.

Search(SuffixTreeNodeN , SearchStateS)

if (S implies a match betweenP andN)
Report all the leaves belowN

else if (S implies thatN can be extended to matchP)
for each edge tree edgeN ! N 0 labelleda

Search(N 0, Update(S,a))

Theif part of this algorithm is obvious, but theelse if needs elucidation. The authors say
that extending the currently evaluated string with any further characters is impossible when
all the values of the last DP column are> k. This condition applies to the edit cost matrix.
We will adjust this condition to fit the similarity matrix calculation context.

117

6.3.2 Filtering

This basic tree traversal is enriched by the authors with the addition of a filtration tech-
nique. Filtration can be based on the fact that each approximate match contains partial
exact matches between the pattern and the text. The suffix tree can be used to locate quickly
the exact occurrences of selected pattern pieces, and then some other mechanism can be
used to verify the surrounding text areas for approximate occurrences of the whole pattern.
This approach isnot adopted in this algorithm. The authors present a lemma which helps
them design the partitions and use the approximate matching in their filter.

LEMMA 3.1
Let A and B be two strings such thated(A;B) � k.
LetA = A1x1A2x2 : : : xk+s�1Ak+s for stringsAi andxi and for anys � 1.
Then, at leasts stringsAi1 : : : Ais appear in B. Moreover, their relative distances
inside B cannot differ from those in A by more thank.

This lemma is the foundation of several different versions of filtration algorithms. It can be
relaxed to permit the presence of some errors in the pieces.

LEMMA 3.2
Let A and B be two strings such thated(A;B) � k.
LetA = A1x1A2x2::xj�1Aj, for stringsAi andxi and for anyj � 1.
Then, at least one stringAi appears in B with at mostbk=jc errors.

Using this lemma the authors partition the pattern into less thank + 1 pieces, so that there
is no guarantee that any of the pieces will be free of errors. However, they assume that
one of the pieces will be present with a reduced number of errors. Their filtration approach
corresponds toP = A, xi = � andB = T 0, whereT 0 is an occurrence ofP in T . The
patternP is split in j pieces and those are searched allowingbk=jc errors in the text.

This approach consists of partitioning the pattern, searching each piece, and then check-
ing all the positions found for a match spanning the partitions. The DP matrix is evaluated
using a bit parallel NDFA (described in Chapter 4 and reproduced in the next section).

6.3.3 The NDFA simulation

We reproduce the automaton here for ease of reference, see Figure 6.4. Following modifica-
tions to the automaton are required in the context of the suffix tree use. The initial self-loop
of the automaton is removed, so that no text is skipped before the evaluation starts. This
follows from the structure of the suffix tree where each suffix is represented and matching
starts at the start of every suffix without any skipping. The first full diagonal (starting at
top left) is active at the start. The states in the lower left triangle need not be represented
(other suffixes will be explored to find those initial matches). To represent this automaton,
the full diagonals are kept. This DP matrix simulation will need(m � k + 1)(k + 2) bits.
Taking a computer word of sizew, the states are split into as many words as necessary, and
the calculation is performed using bit arithmetic on the matrix of states and the matrix of

118

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

NO errors
s u r v e y

ε ε ε ε ε ε

ε ε ε ε ε ε

s

s

u

u

r

r

v

v

e

e

y

y

1 error

2 errors

Figure 6.4: A non-deterministic automaton recognising the patternsurveywith up to two
errors. After reading the textsurgery, the states which are active are shaded, one of them
being a final state (reproduced from [25], horizontal arrows represent an exact match, verti-
cal arrows represent a skip in the pattern, solid diagonal arrows correspond to a skip in the
text, and dashed diagonals are�-transitions).

masks for the text which is being processed. For the full details of the algorithm the reader
should consult [29] where optimised variants for shorter and longer patterns are discussed.

A possible additional optimisation suggested by Navarro and Baeza-Yates is to observe
that every approximate occurrence of the pattern in the text must start with one of the first
k + 1 pattern characters, since otherwise a match is not possible. This limits the number of
nodes entered at the top of the tree to at mostk + 1 different characters.

6.4 Our results

6.4.1 Matching in the protein tree

We performed tests on both transient and persistent trees. For the transient tree we selected
the SWISSPROT6 data (currently 36 Mb), and for database tests we created a tree for the
200 Mb of available protein sequence (SWISSPROT and TREMBL joined). The transient
tree and the associated data structures for approximate matching occupy around 65% of
available RAM so that no paging should take place during the program execution. The
persistent tree uses a 2 GB log file and 12.5 GB of disk storage in 7 files. Tree creation takes
between 7 and 8 hours (given 9 GB RAM the tree could be created in memory in 3 hours,
based on our measurements for transient trees). Partitions based on two-letter prefixes of
each suffix were built one by one, with checkpointing after a partition was finished, if the
sum of new nodes added was greater than 4 million. This tree does not include any suffixes
which start with a star, or have a star symbol as their second character.

119

3

3

3

s u r

s
u

r

v

y
e

0 0 0 0

0
0

0

0

0
0

1
2
0 0

0

0

0

0

1

0

00
0

1

0
1

2

s
u

r

v

y
e

0 0 0 0

0
0

0

0

0
0

0

0

0

0

0

00
0

u r g e

0

0 0 0
1 0 0 0

2 1 0

1 0

0 2
0 1

r

0

0
0

1

0

1
1

y

0

0
0

0

0

0
2

s
u

r

v

y
e

0 0 0 0

0
0

0

0

0
0

0

0

0

0

00
0

0

0 0 0
0 0 0

0

0

0

0
0

0

1

r g e r y

0

1 0 0

1

0

1

0
0

0

0
s
u

r

v

y
e

0 0 0 0

0
0

0

0

0
0

0

0

0

0

0
0

0

0 0 0
0 0 0

0

0

0

0

0

0

g e r y

0

1

1 0

0
1

IS REACHED
STOP WHEN THRESHHOLD

report MATCH

THREE matching columns

surgery$

urgery$

rgery$

gery$

ery$
ry$
y$

$

root

SIMILARITY MATRIX

s u r r yg e

s
u

r

v

y
e

0 0 0 0 0 0 0 0

0
0

0

0

0
0

1
2
0 0 0 0 00

0

0

0

0

1

0

00
0

1

0
1

2

0

2

2

1
0

0 0 0

1 0

1

2 1
2 2

2

1 1

3

SUFFIX TREE − SEARCH USING THRESHHOLD 3

no match

no match

no match

 max (S[i−1,j−1] +1, S[i−1,j] − 1, S[i,j−1] − 1, 0)

S[0,j] = 0
S[i,0] = 0
S[i,j] = if (Pattern[i] == Text[j]) then

else
 max (S[i−1,j−1] −1, S[i−1,j] − 1, S[i,j−1] − 1, 0)

ONE match at threshhold 3

THRESHHOLD 3

Figure 6.5: The difference between DP matrix evaluation using the text matrix and using
the suffix tree. In the suffix tree, on reaching the threshold the calculation stops. For the
textsurgery and the patternsurvey the suffix tree reports one match, while the DP matrix
reports three matches, where the second and the third one are extensions of the first.

6.4.2 DP evaluation using a suffix tree

We implemented a version of Navarro and Baeza-Yates’s algorithm but kept only the parts
of algorithm which fit the sequence comparison context. We first describe the differences
between our approach and theirs.

� We index larger data sets (36 Mb and 200 Mb of protein) while Baeza-Yates and
Navarro index 10 Mbp of DNA.

� We use a suffix tree, not a suffix array. Navarro and Baeza-Yates were not capable
of constructing a large suffix tree and they used a suffix array which is more space-
efficient. However, the search time complexity in a suffix array has an additional
log n factor, and is theoretically inferior to that of a suffix tree.

� We use data as currently used by biologists. Navarro and Baeza-Yates used a small
bacterial DNA dataset which they concatenated with itself to get sufficiently large
data (10 Mb sequence).

� Our tree does not index suffixes which have a concatenation symbol* as a first or
second character. This makes the tree slightly leaner, and will not have negative

6http://www.expasy.org

120

impact on the similarity calculations.

� We did not consider optimised bit-based calculations. Those are currently inappro-
priate in the context of protein cost matrices and gap costs as used in biology.

� We did not consider filtration at this point, because filtration techniques would need
to be adapted to varying cost matrices, and further research is required to clarify this
area.

� We use the similarity matrix and not the edit distance matrix, and therefore need to
derive a new formula to exclude the unnecessary matrix calculations.

Two techniques are used to limit the extent of DP matrix computations needed to compute
sequence similarity. The first one is to break the calculation whenever the required similarity
threshold is reached, as shown in Figure 6.5, top right matrix, report the match and return to
the calling node. If needed, extensions of this match could be carried out if the current state
of the matrix and current node reference were preserved. The second optimisation is to stop
calculating the matrix whenever we determine that the current calculation will never reach
the threshold. The first condition is easy to evaluate. For the second condition, Navarro and
Baeza-Yates state that whenever all cells in theedit distancematrix are above the threshold,
the computation on a given tree branch can be abandoned. We derive a similar test for the
similarity matrix calculation. We are using unit costs. For non-unit costs, more complex
conditions will have to be derived, however this should have limited impact on the speed
of calculation. The additional cost will consist of an indexed look-up in an array of 200
short integers for each position in the array (as there are 20 different amino-acids, if the
matrix is symmetrical, 200 cells are needed, or 400 cells for an asymmetrical replacement
cost matrix). Adding gap costs (which minimise the penalty for a mismatch stretching over
a number of characters) will require calculating the distance between two array positions
which will have a constant cost per array position. In fact, because we will have to split the
query into smaller fragments, accommodation of gaps at this stage may not be necessary,
and gap costs may be considered at the post-processing stage.

6.4.3 Our contribution

Our model of similarity searching does not use the notion of error. We reformulate the
question as follows.

Given a query of lengthq and a thresholdt, find all positions in the text where the
threshold is first reached in each text suffix.

This means that in a given suffix, extensions of a scoring prefix will not be counted, but
only the first score at threshold level will be reported. Such extensions could be calculated
after the query has been executed, as performing extensions within the tree index may lead
to exponential growth of the number of calculations needed.

To define the cut-off points which minimise the depth of tree probing for possible
matches, we now derive the appropriate condition. We start with an example and show
possible scores in Figure 6.6. Take a text of length 6, and consider different thresholds that

121

6 1 2 3 4 5

5 1 2 3 4

3 1 2

4 1 2 3

2 1

TEXT SIZE = 6

1 2 3 4 5

COLUMN NUMBER

MINIMUM VALUE REQUIREDTHRESHOLD

Figure 6.6: Derivation of the minimum value required for the alignment to reach a threshold.

are to be reached as the result of the matching. For threshold 6, there has to be an entry in
the column 6 with the value 6. This is exact matching, and we do not show this column. For
threshold 5, this value will be 5, for threshold 4 it will be 4, etc. To reach that threshold,
the preceding column will have to have the minimum value smaller by 1. And the previous
column’s minimum will be smaller by 1 again. Therefore to reach value 6 in column 6,
column 5 has to be 5, column 4 has to be 4 and column 1 has to be minimum 1. So the first
column to check has the index

firstColumn = textLength� threshold+ 1:

We now identify the minimum value which has to be reached in a particular column. The
maximum valuemax for each column is known after the column has been calculated. We
continue with the previous example of text length 6 and threshold 6. We stop the calculation
under the following condition

(col = 1 ^max < 1) _ (col = 2 ^max < 2) _ � � � _ (col = 5 ^max < 5):

The condition to be evaluated starting with thefirstColumn is then

max < colIndex� textLength+ threshold:

If this evaluates totrue, we stop the calculation for this node and returnTERMINATION
condition. This will return control to the parent method, unless there is a sibling node
which has not been evaluated yet.

122

else

if depth == 0

return TERMINATION for this node

WHILE there are characters in the node and in the DP matrix
 CALCULATE COLUMN
 IF MAX Score in the column >= THRESHOLD
 IF leaf node
 report match
 ELSE

 return TERMINATION for this node
 ELSE IF no chance of ever reaching the score
 (i.e. current column+THRESHOLD>= array length)
 IF MAX score < current col − array length + THRESHOLD
 return TERMINATION
ENDWHILE

if TERMINATION condition

IF leaf

ELSE

called once for each node

calcNode (node, depth)

approx (node, depth)

 call approx on child and sibling

call calcNode on the node

called recursively

traverseBelow (node, depth)

called once

called recursively

recursiveApprox (query, threshold)

initialise the DP matrix

 add match, traverseBelow sibling

 traverseBelow child and sibling

make a set of the initial query characters

call approx (root, 0)

 if starting character NOT in initial query characters

return

 call approx on sibling

 call traverseBelow on child

recursive procedure

LEGEND

non−recursive
procedure

search parameters: QUERY and THRESHOLD

Figure 6.7: The approximate search algorithm.

6.4.4 Summary of implementation

A query of lengthk with the threshold valuet is submitted as an array of bytes to be matched
against the text stored as an array of bytes and indexed by the tree. Using the thresholds
value, the length of the text array needed to reach the threshold is calculated as

size = 2 � k � t+ 1:

This array is then initialised as a rectangle of

size � (k + 1)

cells of typeshort. Row and column zero are set to zero (as we are interested in local
alignments which can start anywhere in the text and query), and the similarity function set
to 1 for match and�1 for mismatch, insert or delete7. Approximate matching starts at the
root, and the depth-first traversal of the tree follows. Recursive descent of the tree is initiated
with the depth value of 0, and as nodes are traversed the depth value is increased to reflect
the string depth of the last character in the node’s parent. The formula for the calculation of

7If a protein similarity matrix were to be used, it would be implemented as an array, and an array look up
would be made to find the cost of mismatch between any two amino acids. The look up cost would be constant,
and should not contribute significantly to the overall cost of the calculation. Experiments combining the use of
a similarity matrix with the suffix tree were carried out this summer [101].

123

depth values on transition from a parent node to child is

newDepth = depth+ rightLabel � thisNode:getLeftLabel() + 1:

For each node the procedure calculating the DP matrix is called. When the node calculations
are done (completely, or incompletely, if a terminating condition occurs), depending on the
outcome of the calculations, either the sibling is considered next (if this node terminates the
descent down this branch) or both child and sibling nodes are entered. If the node indexes
h characters and no terminating condition occurs, thenh columns of the DP matrix will be
calculated, otherwise fewer calculations will take place.

There are two conditions for termination, as outlined in the previous section (score
equals threshold or score is too low to reach the threshold), and two additional conditions
which result from reaching the end of the DP matrix or reaching a string separator symbol
*. Before a column is calculated, we check whether the end of the text matrix is reached or
the current symbol is a *. It this is the case, the calculation stops and returns to a sibling (if a
sibling exists) or to the parent, otherwise. After each column is evaluated a test is performed.
If the threshold has been reached, all leaves originating from the node are traversed and the
matching text positions are output. If the score is below threshold, and the conditions for
termination due to a low score are met, the calculation on this node stops.

An additional terminating condition can also been added. This condition, stated by
Navarro and Baeza-Yates, says that any match at a maximum costk (assuming unit costs)
must start with one of the firstk+1 characters of the pattern. In our matching scenario this
is rephrased. We consider such children of the root which start with the first

queryLength� threshold+ 1

characters of the query. This is justified for a tree over a large alphabet, like protein, but
may not be useful for the DNA alphabet. To test for this condition the initial characters are
scanned, and matching takes place only for the children of the root which start with any of
those initial characters.

We now present the algorithm in detail. It consists of four methods, shown in Figure 6.7.
We discuss the methods, starting with the top entry method,recursiveApprox , shown
in Method 6.1, and follow on with the methodapprox shown in Method 6.2.
Before we discuss the next procedurecalcNode , we explain the mechanism of DP matrix
evaluation. Our simplified schema leaves out similarity matrices and gaps, but those can be
easily incorporated, with some programming effort, and some impact on performance. Fur-
ther work is necessary, however, to establish what termination criteria have to be used with
different similarity matrices, and for different similarity scores used in DNA alignments.
The calculation currently used is as follows.

� Look up the value in the cell above, and increment it using the similarity function.

� Look up the value in the cell to the left, and increment it.

� Look up the value in the cell diagonally to the left and above. Compare the current
text and pattern characters.

� Take the maximum value of the three values derived above and0.

124

recursiveApprox (byte [] x, int threshold)

This procedure is called once, with the appropriate query presented as an array of bytes, and
the threshold that has to be reached during the calculation. It performs the following actions.

� It scans the first
queryLength� Threshold+ 1

characters of the query to deliver a set of characters present in this part of the query. This set
is returned as an unordered array of bytes.

� The text dimensiontextDim of the DP array is calculated as

textDim = 2 � queryLength� threshold;

and the DP array is constructed with size

(textDim+ 1) � (querylength+ 1):

� Methodapprox is called,approx(root,0) , i.e. with depth equal 0.

Method 6.1: The top level methodrecursiveApprox used in approximate matching.

approx (ThinNode na, int depth)

This is a recursive procedure which descends the tree down to the maximum string depth
defined by the DP matrix. The following actions are carried out.

� A comparison is made between the current tree depth and the length of the DP array. If the
last column of the array equals tree depth, this terminates this invocation.

� MethodcalcNode is called on the nodena. This method returns a Boolean.True is re-
turned ifcalcNode established a termination condition.False is returned if further descent
down the tree is warranted.

� If termination condition has been reached,approx is invoked on the sibling.

� Otherwise, we check if the end of the DP matrix has been reached. If it has not,approx
is invoked on the child (using a newly calculated depth) and on the sibling (using the same
depth).

Method 6.2: The approx method which recursively traverses the tree

125

While calculating a DP column we keep track of the maximum score in the column reached
so far, and use that value in checking for the termination condition. We also increment the
total depth of DP matrix calculated so far, for reporting purposes, so that we can find out
how many columns were actually computed. The DP calculation mechanism presented here
is used in the methodcalcNode , shown in Method 6.3.

calcNode (ThinNode na, int rightIndex, int depth)

This method is called once for each node visited. It calculates the columns of the DP matrix
corresponding to the text characters indexed by the node, and investigates possible termination
conditions which may speed up the query evaluation. It delivers matches (either directly or by
calling a procedure which traverses leavestraverseBelow). Following actions are performed.

� Check if the current node descends directly from the root. If that is the case, terminate if
the first character encoded by the node is not in the first initial characters of the query, as
previously defined. If the first character encoded by this node is not in the initial query
characters, return a termination condition.

� Advance the calculation in the direction of the text, by calculating the matrix for each suc-
cessive column. Return termination condition, if end of DP array is reached, or a separator or
terminator character is encountered. Return termination condition if the threshold is reached
(return all matches first by gathering leaves, via callingtraverseBelow). Return termina-
tion condition if there are not enough positions left in the DP matrix to reach the threshold.

Method 6.3: Matrix calculation and the determination of termination conditions.

The methodcalcNode may indentify sequence matches which need to be reported. If the
node where a match is found is a leaf,calcNode adds the end index of the match to the
list of results. If the node is not a leaf, the methodtraverseBelow is called, to gather
leaves which descend from the current node, as shown in Method 6.4.

traverseBelow (ThinNode na, int depth, int iIndex)

This recursive method gathers the leaves which match the query.
iIndex records the column of the DP matrix where the match was observed.
On reaching a leaf, the end position of the match is calculated using:

matchEnd = thisNode:getLeftLabel()� depth+ iIndex:

Recursive call on a sibling node is initiated using the same depth value, while for the child the new
depth is calculated using

newDepth = depth+ thisNode:getChild():getLeftLabel()� thisNode:getLeftLabel():

Method 6.4: Recursive descent of the tree to gather all matching leaves.

In our tests we simplify the management of results, and just count the hits, in the same way
as in our DP benchmark. As is customary in theoretical work on approximate matching, we
report the index of the match end and not the starting index for a match. We stop the DP
matrix calculation as soon as it reaches the threshold (so we do not know if a match better

126

than the threshold exists).

6.4.5 Correctness of implementation

We have not constructed a full test showing the exact equivalence between the matrix-
based and the suffix tree-based matrix calculation. One of the difficulties of finding the
equivalence between the two approaches was already illustrated in Figure 6.5 where we
showed that the suffix tree calculation does not reach all of the extensions of a matching
suffix which might lead to a score equal to the threshold or greater.

Beside this observation we make here another point. This refers to an opposite scenario
where the suffix tree produces more hits than the DP matrix. We illustrate this now. If
we calculate the DP matrix for the textMMSARGDFLN and the queryMMSAR, we
observe the score4 just once, on reaching the text characterR, as shown in Table 6.2. In

M M S A R G D F L N
0 0 0 0 0 0

M 0 1 1 0 0 0
M 0 1 2 0 0 0
S 0 0 1 3 0 0
A 0 0 0 2 4 0
R 0 0 0 1 3 5

Table 6.2: DP calculation for the global alignment ofMMSARGDFLNandMMSAR.

a suffix tree the calculation is different. We get two matches at threshold 4 because we
calculate separately for the first and the second suffix (and other remaining suffixes). For
instance the second suffixMSARGD:::, starting at the second character of the text, is used
in matching starting with zero values in the zero column of the matrix. As a result, we
get local alignments which start anywhere within the text. The first alignment is the same
as for the DP matrix, but stops at the fourth text character at threshold 4. An additional
match ending at text position 5 is also delivered, based on the second suffix. This situation
is portrayed in Table 6.3.
To construct a test of correctness, we would have to evaluate the DP matrix for all of the
suffixes which exactly reach the threshold, and then compare that output with what the suffix
tree produces. Additionally, suffix extensions would have to be taken into account. Those
could be generated by modifying the tree traversal algorithm so that the computation does
not stop when the threshold is reached, but carries on to the full depth ofm+ k (the sum of
the query length and the error).

We did not construct a fully automated test but investigated a number of alignments pro-
duced by the suffix tree and the DP matrix, and reached the conclusion about the correctness
of our code, based on those tests. For instance, we run the comparison of wordssurgery
andsurveyand the matches reported by the matrix were the text positions 3, 5, and 7. On
running the suffix tree on the same data one match was reported at text position 3 only,
as expected, as shown in Table 6.4. The same test run for the textsurgery concatenated
4 times, i.e. surgerysurgerysurgerysurgery using the DP matrix reports 12 matches
(3 matches on eachsurgery), while the same text compared over the suffix tree reports
4 matches at positions 3, 10, 17 and 24, each relating to the first three letters of the word
surgery.

127

M M S A R G
0 0 0 0 0

M 0 1 1 0 0
M 0 1 2 1 0
S 0 0 1 3 2
A 0 0 0 2 4
R 0 0 0 1 3

M S A R G
0 0 0 0 0

M 0 1 0 0 0
M 0 1 0 0 0
S 0 0 2 0 0
A 0 0 1 3 2
R 0 0 0 2 4

Table 6.3: DP calculation for the local alignment of two text suffixesMMSARandMSARG
with queryMMSAR.

1 2 3 4 5 6 7
s u r g e r y

0 0 0 0 0 0 0 0
s 0 1 0 0 0 0 0 0
u 0 0 2 1 0 0 0 0
r 0 0 1 3 2 1 1 0
v 0 0 0 2 2 1 0 0
e 0 0 0 1 1 3 2 1
y 0 0 0 0 0 2 2 3

Table 6.4: DP calculation for the local alignment of two suffixesMMSARandMSARGwith
MMSAR.

6.4.6 Approximate searching - test overview

A naive approach to using the suffix tree would be to submit each query in turn and wait
for the results. Our approximate matching algorithm accepts the query and a threshold.
With real queries as used in biology this approach is not feasible, as for a query length
of 250 characters, we would probably traverse most of the tree and perform the number
of calculations which increases exponentially with the traversed depth, so that the upper
limit on the calculation would be some power of 250 (for the protein alphabet25020 is
the maximum). To avoid excessive computations we need to break the query into shorter
substrings and search for each of them using a predefined threshold. In our scenario we
decided to start with query length 5, and threshold 3, and increase those until the number of
reported calculated DP columns is larger than if the same calculation were to be performed
using a DP matrix.

We report the query, the threshold, the size of the DP matrix used, the number of
matches observed, the number of nodes visited, the number of columns calculated, and the
time in ms needed to perform each query. A full report of the data produced is reproduced
in Appendix D. The output has the format shown in Table 6.5.

128

query thresh DPsize MatchesReported nodesSeen cols timeMs
col 1 col 2 cols 3-5 col 6 col 7 col 8 col 9

MASPS 4 5 x 6 1354 9188 45865 185

Table 6.5: Output format for approximate matching tests.

The semantics of this table are as follows.

1. Column 1 is the query itself.

2. Column 2 is the threshold.

3. Columns 3-5 consist of 2 numbers and the times symbol. They represent the size of
the DP matrix calculated for this query. For instance11 x 19 signifies that the query
length was 11 and the text dimension of the array was 19. The formula we used was

textDimension = 2 � queryDimension� threshold

4. Column 6 is the number of matches recorded.

5. Column 7 is the number of nodes visited in this traversal. The contents of this column
may be used in database performance tuning in future work but are not analysed
further.

6. Column 8 is the number of matrix columns for which a DP calculation was carried
out.

7. Column 9 is the time in ms needed for this traversal. This time measurement is the
total elapsed time for the entire query evaluation, and for the persistent tree it contains
within it a considerable component of garbage collection time. We had to call the
garbage collector usingSystem:gc() Java call after each part of the traversal which
found matching leaves. Without this call we were not able to carry out any queries on
the large PJama store.

Our data analysis concentrates on three issues.

1. Comparison between the number of DP columns calculated in comparison to the
number of column calculations needed for the full matrix evaluation, for text length
n. We take themaximum number of columns and calculate what fraction ofn this
represents.

2. Comparison of the number of results returned for different query lengths and thresh-
olds. If the number of results returned is large, this means that very large portions of
disk are scanned, which is inefficient, and that further post-processing of results may
not be sufficiently fast. This measurement is based onaverage values.

3. Comparison of time required for tree traversal with the time needed for the full matrix
calculation. We base this onaverage time reported and calculate the ratio of time in
seconds to Mb of sequence in the same way as reported for the DP benchmark.

129

query thresh min max avg max/36mln
5 4 21405 53535 42959 .0003
6 4 3181482 8960148 6045120 .0448
6 5 30180 79446 62425 .0004
7 4 33492781 90720238 60637158 .4536
7 5 3640049 11597537 7548249 .058
7 6 35371 119357 84012 .0006
8 4 108495304 251024912 178571276 1.2551
8 5 39192752 102245968 75437310 .5112
8 6 2922120 13570984 9841472 .0679
8 7 74808 139040 108745 .0007
9 4 191805228 475824366 343272622 2.3791
9 5 95033853 276993117 193006027 1.385
9 6 41098536 105980760 78171406 .5299
9 7 6615036 15241887 10962888 .0762
9 8 83538 185526 128722 .0009

10 4 167366310 769337230 562480802 3.8467
10 5 124155670 540604130 371848620 2.703
10 6 69759770 303568470 210464641 1.5178
10 7 34430920 124350020 89022147 .6218
10 8 5280720 19574720 12701967 .0979
10 9 55320 222570 160751 .0011
11 3 883686199 1506901275 1228614912 7.5345
11 4 588209424 1282432382 927304596 6.4122
11 5 337938843 889693266 643200278 4.4485
11 6 252268302 577024657 419560898 2.8851
11 7 168544189 312397712 242837030 1.562
11 8 79405403 137446474 114782868 .6872
11 9 15113879 20830898 17682355 .1042
11 10 193424 214797 207629 .0011

Table 6.6: The number of matrix columns calculated in the 36 Mb transient tree.

130

6.4.7 A transient tree for 36 Mb of protein

We constructed a transient suffix tree for the SWISSPROT dataset of 36 Mb. We carried
out tests on the Sun E450 machine, as for all other tests described previously, and using the
latest version of Java, Java 1.3.2. A set of 40—50 queries was used for each combination of
query and threshold, and data summaries are based on a sample of 1425 queries of length
between 5 and 11 characters, and thresholds between 4 and 10.

We focus first on the fraction of the DP matrix calculated for different combinations of
query and threshold. We report minimum, maximum and average values as well as the ratio
of maximum columns to 36 million in Table 6.6.

The picture emerging from this measurement is that by splitting the original query into
strings of length 5, 6, 7 or 8, we can efficiently query using error ratios of up to 28% (taking
threshold 7 and query length 5, for instance). It appears that low error ratios (one or two
letters in a query of 9-12 characters) are handled well by this size of index, but high error
ratios are not. These figures characterise a small protein index. We predict that for other
alphabets and larger indexes the ratios will be different.

We now turn our attention to the same testing scenario applied to a larger data set (200
Mb, the merged SWISSPROT and TREMBL data).

6.4.8 Approximate matching using a large persistent tree

The same test, but with a smaller batch size was carried out for the persistent tree indexing
200 Mb of protein. The batch size had to be reduced to 20, and several testing runs had to
be aborted, as the query processing on this data set was very time consuming. Overall, the
total processing time required for this test spanned over a week. We present a summary of
the data in Table 6.7.
We observe that for a query of lengthm and error ratios ofm�1 andm�2 there is always a
gain in using the index. In particular for the threshold ofm� 1 ratios of 1/1000 and 1/2000
prevail and those promise a significant speed up in sequence searching. Although these
thresholds guarantee good performance, they may not be competitive enough in terms of
query sensitivity. For queries of length 5 and 6 the thresholdm�2 reduced the computation
to between 5 and 7% of the text matrix and this might deliver good sensitivity as well as a
speed up.

6.4.9 Performance and practicality of this approach

We proceed to analyse our results from two other perspectives. One is the number of
matches returned in each case, and the other the time required to query the tree. The number
of matches is important because after splitting a long query into many parts we need to pro-
cess the matches retrieved for each substring query, and the manipulation of those results
will constitute a significant overhead. On the other hand, the time needed to query the data
will decide if this approach is competitive. Our measurement data reflect directly on the
performance of PJama, and are indicative of the overhead which we will incur by using a
persistent data structure as compared with a transient one which fits completely in RAM.

The measurements we produced were taken using CPUs which are now 3 years’ old.
As the DP matrix calculation is CPU bound in thetransient context, the speed of matrix
calculation will improve from the one we report if a faster processor is used. On the other

131

query thresh min max avg max/200mln
5 3 6436675 9481975 8249977 .0474
5 4 42950 51310 47598 .0003
6 4 8956248 13943562 11641847 .0697
6 5 62592 87888 77719 .0004
7 5 9659566 16140761 14263059 .0807
7 6 81907 122206 107137 .0006
8 6 10457160 21760960 18001259 .1088
8 7 76776 146472 124644 .0007
9 6 190771353 283692348 246872682 1.4185
9 7 13089069 25485219 19755152 .1274
9 8 77760 192555 150067 .001

10 7 204715200 337762230 283422668 1.6888
10 8 15573770 32118120 23200178 .1606
10 9 161180 243360 199979 .0012
11 7 564852574 808146713 723471613 4.0407
11 8 232200210 371462817 301077707 1.8573
11 9 17369022 36604612 28906699 .183
11 10 126247 268433 230633 .0013
12 9 197337984 409506576 336096871 2.0475
12 10 28309116 40709484 34184200 .2035
12 11 234804 326556 285869 .0016
13 9 758829344 1321559070 974136247 6.6078
13 10 238134416 481226798 363482077 2.4061
13 11 25080224 45218784 35699910 .2261
13 12 174850 435175 316965 .0022
14 12 34398056 52736376 42116508 .2637
14 13 291256 485884 378641 .0024
15 12 546638490 546638490 546638490 2.7332
15 13 36644295 60233355 50801498 .3012
15 14 371685 517530 448736 .0026
16 13 415554432 622350800 510104411 3.1118
16 14 40067808 63316144 54075435 .3166
16 15 262656 581600 448268 .0029

Table 6.7: The number of matrix columns calculated in the 200 Mb persistent tree.

132

hand, the retrieval of tree nodes in apersistent suffix treeis disk bound, and in this context
a leaner tree structure and more effective database technology could improve performance.

6.4.10 Performance - number of matches reported

We present the number of matches reported for the transient tree and the persistent tree. Last
column in Table 6.8 shows a calculated value of the expected number of results returned for
a query of length 300, based on theaveragenumber of results reported. This was calculated
as follows:

matches per query of 300 chars = avg � (300=length ofquery):

Our data show clearly that some combinations of query length and threshold in the index
for 36 Mb return very large results sets. In particular, for a query of length 11 and threshold
3 the number of results returned, 14 mln, corresponds to 39% of the queried data set. Even
after taking into account the fact that the suffix tree returns the same suffix number several
times, it clearly does not make sense to use this threshold with longer queries. Similarly for
the threshold 4, query lengths 8 to 11 produce very large result sets. To get a better under-
standing of the relationship between the query length, threshold and the result set, we now
present the same measurement for the index to 200 Mb of protein. Table 6.9 summarises
the results.
It appears that the combinations of query length 5 and threshold 3 and query length 6 and
threshold 4 return too many results to be practical. The suffix tree probably returns the
same result up to three times in both cases (depending on how many of the direct children
of the root are considered in the traversal), but even after adjustment for possible triple
reporting the result set appears to be too large to handle efficiently. Other combinations of
query length and threshold return manageable result sets and seem to be appropriate for our
purposes. As the query becomes longer, higher thresholds lower the similarity between the
text and the query that can be detected using this method.

6.4.11 Performance - timing

We now focus on the time needed to execute the query. Similarly to the average result
set expected for a query of 300 characters, we useaveragequery time to predict typical
evaluation times. An average execution time calculated in this way for a query of length
300 is shown in columnavg 300 chars. We also show the ratio of time (secs) to DP matrix
size (Mb) calculated based on the product of query length and text length and theaverage
time. We first present a data summary for the transient index for 36 Mb, see Table 6.10.
In this measurement for the transient suffix tree index it appears that all combinations of
query length and threshold offer an improvement over the calculation of the full DP matrix.
Our algorithm does not filter results to remove duplicates or build full alignments, so addi-
tional time is required to carry out those operations. On the other hand, the DP matrix does
not output local alignments but only the global ones, so that additional work is needed to
produce those, as detailed in [231]. Clearly, thresholds ofm�1 offer excellent performance
in all cases.

We present our results for the large persistent tree in Table 6.11. In the case of a persis-
tent tree, as expected, performance is slower. This is due to some extent to the larger size
of the index, and more importantly to the fact that data are retrieved from disk. It appears

133

query thresh min max avg expected matches for a
length hits hits hits query of 300 chars

5 4 28 3403 896 53759
5 5 0 151 24 1465
6 4 167 6647 2048 102398
6 5 0 239 53 2642
6 6 0 11 2 101
7 4 420 12600 3888 166649
7 5 7 688 143 6141
7 6 0 50 7 288
7 7 0 5 1 47
8 4 532 22973 6035 226300
8 5 18 1481 244 9165
8 6 0 119 12 449
8 7 0 12 2 73
9 4 1732 32131 9354 311799
9 5 16 2716 408 13584
9 6 0 212 20 666
9 7 0 26 3 109
9 8 0 6 1 46
9 9 0 2 0 16

10 4 1446 43000 13488 404628
10 5 40 2744 633 18982
10 6 0 277 33 990
10 7 0 27 5 143
10 8 0 10 2 67
10 9 0 4 1 33
11 3 279711 732887 516487 14086021
11 4 13353 44715 27134 740014
11 5 542 2506 1377 37555
11 6 30 116 62 1677
11 7 9 31 15 400
11 8 6 16 10 268
11 9 4 8 6 164
11 10 1 4 3 86

Table 6.8: Number of matches observed in the 36 Mb transient tree.

134

query thresh min max avg expected matches for a
length hits hits hits query of 300 chars

5 3 86871 551218 260176 15610540
5 4 218 17526 7449 446953
6 4 1444 31015 13585 679267
6 5 9 739 363 18150
7 5 64 3798 1232 52781
7 6 5 169 40 1719
8 6 16 108 56 2088
8 7 0 19 7 258
9 6 26 112 63 2089
9 7 4 47 12 406
9 8 2 9 4 136

10 7 7 61 23 687
10 8 3 18 9 273
10 9 1 12 5 147
11 7 7 31 18 491
11 8 4 14 9 245
11 9 2 10 6 164
11 10 0 6 2 66
11 11 0 3 1 36
12 9 6 33 17 436
12 10 2 22 10 244
12 11 1 11 5 128
12 12 0 3 2 44
13 9 12 41 21 490
13 10 9 26 15 341
13 11 3 14 8 185
13 12 1 9 4 87
13 13 1 3 2 46
14 12 1 12 6 133
14 13 0 6 3 62
15 12 9 9 9 180
15 13 2 12 7 136
15 14 1 6 3 60
16 13 2 19 11 198
16 14 0 16 7 135
16 15 0 6 3 65

Table 6.9: Number of matches reported in the 200 Mb persistent tree.

135

query thresh min max avg avg 300 chars time (sec)/DP size (Mb)
5 4 42 175 89 5346 .0001
5 5 1 19 2 117 0
6 4 5732 16116 10869 543447 .0091
6 5 54 143 111 5537 .0001
6 6 0 2 1 65 0
7 4 47112 124548 83872 3594513 .0599
7 5 5996 19783 12734 545756 .0091
7 6 60 197 141 6036 .0001
7 7 1 3 2 70 0
8 4 121255 283049 200358 7513423 .1252
8 5 51330 134168 98365 3688685 .0615
8 6 4439 21566 15459 579707 .0097
8 7 117 214 168 6309 .0001
9 4 196316 523115 354320 11810657 .1968
9 5 103649 308100 211009 7033630 .1172
9 6 52051 134134 98294 3276467 .0546
9 7 9759 22828 16402 546735 .0091
9 8 121 272 189 6307 .0001
9 9 1 5 2 77 0

10 4 163226 835883 563602 16908063 .2818
10 5 124304 557265 379482 11384457 .1897
10 6 73123 356037 227065 6811953 .1135
10 7 41526 170960 108653 3259584 .0543
10 8 7385 27516 17774 533213 .0089
10 9 95 317 230 6885 .0001
11 3 825973 1412062 1151716 31410444 .5235
11 4 555693 1211841 874742 23856595 .3976
11 5 325368 855454 617572 16842868 .2807
11 6 248479 569079 413156 11267891 .1878
11 7 173910 323956 250632 6835405 .1139
11 8 92343 158147 132290 3607914 .0601
11 9 22927 28407 24405 665582 .0111
11 10 261 392 297 8100 .0001

Table 6.10: Query times (ms) in the transient index for 36 Mb.

136

query thresh min max avg avg 300 chars time (sec)/DP size (Mb)
5 3 1450560 2583183 1853556 111213340 1.8536
5 4 4151 33372 18650 1119000 .0187
6 4 517083 2070834 1541020 77051017 1.2842
6 5 1685 67656 21380 1069000 .0178
7 5 1139873 1701941 1393505 59721652 .9954
7 6 2052 63256 25098 1075629 .0179
8 6 660330 2266510 1563657 58637154 .9773
8 7 1798 42883 16450 616887 .0103
9 6 3362900 4306590 3874534 129151122 2.1525
9 7 1201663 2016994 1551996 51733192 .8622
9 8 3047 59940 24716 823856 .0137

10 7 3194328 5986231 4574149 137224470 2.2871
10 8 1140265 2570789 1957363 58720897 .9787
10 9 44954 185122 94972 2849157 .0475
11 7 4675691 6276299 5629039 153519245 2.5587
11 8 3346721 4975578 4300113 117275800 1.9546
11 9 1267862 2629181 1768264 48225389 .8038
11 10 3078 185881 49093 1338902 .0223
11 11 2 126 58 1594 0
12 9 2379287 5506253 4480121 112003033 1.8667
12 10 1312396 2793171 2047009 51175214 .8529
12 11 4866 185079 84540 2113500 .0352
12 12 5 302 90 2253 0
13 9 5511472 10047181 6975204 160966254 2.6828
13 10 3773371 6913588 4742562 109443736 1.8241
13 11 1472837 2795986 2058922 47513587 .7919
13 12 71293 150758 104202 2404672 .0401
13 13 49 103 72 1667 0
14 12 947869 1891285 1524030 32657793 .5443
14 13 88479 184132 141211 3025950 .0504
15 12 5111573 5111573 5111573 102231460 1.7039
15 13 1325548 2176277 1704810 34096198 .5683
15 14 68562 188278 140532 2810648 .0468
16 13 4517261 7173091 5225156 97971683 1.6329
16 14 1635917 2724093 2181954 40911642 .6819
16 15 115815 289287 193278 3623954 .0604

Table 6.11: Query times (ms) in the persistent index for 200 Mb.

137

that using this combination of technology and our algorithm, our method offers a speed up
for all thresholds ofm � 1 within the range of queries we investigated. Limited speed up
is also achieved for some thresholds equalm � 2, but the performance is not satisfactory.
Further work at the level of database performance and tree structure is needed to improve
performance, so that using the threshold ofm� 2 becomes viable.

Some of the values we present compare favourably with the values calculated for the
DP matrix where the equation for the graph of time against matrix size was

time (seconds) = 1:16 �matrixSize (Mb) + 66:0

For instance taking queries of length 8 at threshold 7, shown in bold, and using this combi-
nation to evaluate a query of 600 AAs, we expect the suffix tree to deliver the hits within

617 � 2 = 1234 (seconds)

while the full matrix calculation would require

1:16 � 600 � 200 + 66 = 139266 (seconds):

This means that the suffix tree is around 100 times faster.

6.5 BLAST benchmark

We describe one algorithm which is specifically tuned to biological use. A direct com-
parison of our method with known sequence comparison tools does not provide a useful
benchmark yet. To achieve the functionality presented by the software we tested requires
further research and engineering.

6.5.1 BLAST

Basic local alignment search tool BLAST [7] is a sequence comparison tool which computes
alignments faster than the exhaustive-search algorithm of Smith and Waterman [203] or the
heuristics-based FASTA program designed by Pearson and Lipman [176]. A further paper
explaining an improved version of BLAST (with application to proteins) was published in
1997 [8] and a related faster version for DNA comparison called MegaBlast [239] is also
available now. BLAST can be downloaded from ftp://ncbi.nlm.nih.gov/blast/executable/
and installed locally, but then a local mirror of data has to be kept up to date. A full discus-
sion of BLAST is not possible here, but we want to single out some of the features which
are relevant in this context.

BLAST assumes that all sequence data reside in memory during program execution,
and that additional memory is available to hold the query and associated data structures
needed for computation. Currently Compaq Alphas [226, 57] are the preferred hardware
platform used by both NCBI in the US http://www.ncbi.nlm.nih.gov/, and by the Sanger
Centre in the UK, http://www.sanger.ac.uk. Farms of computers (400 at the Sanger Centre)
serve the incoming BLAST requests, and load sharing software is used to serve the requests
coming form the web. Current volumes of sequence data can still be accommodated by the
existing computer farms, but the speed of query processing becomes low around noon when
American users become active, and subsides with the end of the American working day

138

(Keith Johnson, personal communication). Our collaborators in genetics have developed
work strategies to cope with those supply fluctuations, as prolonged waiting for query results
has a bad impact on the efficiency of their work.

BLAST keeps sequence data in a compressed form and concatenates multiple sequences
into one file. A programformatdb is run to format the sequences which are concatenated,
compressed, and filtered. A set of indexes is created, which indexes sequence identifiers,
repetitive sequences, and sequence end/start positions in the so-called database file. This
“database” can be queried with either a single sequence or a file containing many sequences
in the FASTA format [176] (containing a sequence identifier in the first line, starting with
the> sign, and remaining lines containing plain sequence).
The query algorithm has the following components which we outline below.

� The query string is compressed, both in the case of DNA and proteins.

� DNA is filtered for repetitive sequences.

� Protein queries are scanned with a window of a given size to create an index of the
query text. For each unique window alternative (mutated) protein strings are gen-
erated which are similar to the given window and this similarity is bounded by a
thresholdT which has been established using simulation techniques. Usually for
each character in the query, some 50 such words are generated, so for a query of 250
AAs 12,500 words would be produced. This list can be generated in time propor-
tional to the length of the list. A deterministic finite automaton (DFA) encoding all
the words in the list is produced and used to scan the “database” text. This is a Mealy
automaton which signals text acceptance on transitions between states. In 1990 this
automaton could process 500,000 characters per second.

� A DNA query does not use mutated sequences but exact matching on substrings of the
original query. The word length of 12 is commonly used, and all contiguous windows
of length 12 are created, without mutations, producingn � w + 1 words wheren is
the length of the query andw window size. The comparison of text and query is done
by byte-wise scanning. If there is a hit over the whole byte, extending this hit to the
enclosing window, and further into next windows is attempted.

� All matches are then extended in both directions until the score falls a certain distance
below the best score found for shorter extensions.

Additional refinements for DNA include filtering of repetitive regions and removal of such
regions from the list, prior to the comparison operation. Current cost models for DNA
include integers in the range of 1 to 5, where matches are scored positively, and mismatches
bear a negative cost.

In protein matching several cost matrices can be used, and several models of scoring
and gap costs are available. BLAST provides automatic translation between DNA and pro-
tein and different program invocations have to be made depending on the type of sequence
used in the query and the target (biologists usually know which version of the BLAST pro-
gram they want to use). To accompany this complexity, some 20 parameters can be set to
define the behaviour of the program, for instance by reporting hits which are closer to the
query. The underlying filtering of results and the stringency of matching rely on a complex
framework based on statistical considerations which are beyond the scope of our work.

139

We now report the testing results which we produced using BLAST. We used the TREMBL
dataset of proteins (146 Mb) and the human proteins from the Ensembl dataset as queries.
We first formatted the “database” which took 5 min 43.33 s. We reproduce the formatdb
command and the time recorded

mars{ela}99: time /local/pj_test_n2/BLASTsoftware/formatdb
-t trembl -i tremblFASTA -l formatTremblLog -p T -o T

213.97u 9.22s 5:43.33 65.0%

Subsequently we submitted a file containing all of the Ensembl genes, and aborted the
computation after 21 hrs 56 min 10.82 s. In that time 4,051 queries have been processed
and the resulting output file reached the size of 1,189,638,445 bytes. This corresponds to
an average time per query around 30 s. We invoked BLAST as follows, and aborted it as
shown:

neptune{ela}37: time ../BLASTsoftware/blastall
-p blastp -a4 -dtremblFASTA -i ../SEQUENCE/HUMAN/ensembl.pep
-e10 -o BLASTpRESULT

ˆC-172866.-23u 1783.12s 21:56:10.82 0.9%

The parameters were chosen as follows.

� �a4 instructs the software to use all 4 processors available.

� �e refers to the expected random 10 hits for every query sequence submitted.

� �pblastp specifies a comparison between two proteins

� �d and�o specify the “database” and the output file.

The total length of sequence in 4,051 queries was 2,268,482 characters. This yields the
average query length of 560 characters. The total size equivalent (product of database length
and sequence length) is then

2; 268; 482 � 145; 703; 122 = 330; 524; 909; 600; 804:

This is equivalent to 330,524,909,600 Mb of matrix calculation in 78,971 seconds, i.e. an
approximate slope of

2:39 � 10�7:

In comparison, the full DP matrix calculation which we reported, carried out using Java,
had the slope of1:16 and the intercept of66 for the same units. The speed of BLAST is
due to the careful design of the algorithm which avoids the full matrix calculation, and to
its efficient implementation.

BLAST uses heuristics. The choice of the word length to be used in DNA scanning and
protein query partitioning is governed by experience, and with smaller word size, perfor-
mance degrades. The choice of threshold for generating mutated protein strings relies on
simulation results. In practice, parameters which maximise performance have a negative
impact on the sensitivity of string comparison.

140

Statistics used by BLAST, which are outside the scope of our research, are based on the
size of the “database”. Until quite recently that meant that short matches which are signif-
icant in comparison of small genomes were never reported, because those small genomes
were part of large microbial “databases”. Now, an additional menu option at NCBI is pro-
vided, for searching for hits against small data sets and with short strings.

Finally, user control over the size of BLAST output is limited. Different options often
have to be tried to identify the appropriate level of reporting, by setting the expected number
of matches which could arise randomly. In practice, in cross-genome context, parameters
are set to allow for the reporting of all matches, and then post-processing using MSPcrunch
[205] is done which filters for instance the top 50 matches. In our experiment with 7.7 Mbp
of DNA from one species and 1.2 Mb of DNA from another species, BLAST took 6 days
to evaluate the query, and at some point the file size limit of 2 GB for the output file was
reached. This resulted in a truncated result file, and the postprocessing with MSPcrunch
consumed another day.

6.6 Evaluation of results with respect to benchmarks

In comparison to BLAST our technology is not competitive. However, in comparison to our
DP matrix benchmark which carries out a full DP matrix calculation, we observe significant
speed ups. We can also provide the advantage of exhaustive searching, instead of heuristics.

We are limited by two factors. One of them is our data structure, which needs further
optimisation. Secondly, the underlying database technology imposes high space overheads
on every node on the index. Based on our measurement of the number of DP columns that
we calculate, we believe that further refinement of the suffix tree searching mechanism is
warranted. Further data which we gathered, in particular the information about the num-
ber of nodes accessed, will help in identifying appropriate optimisations of both the data
structure and alternative caching strategies to be used in approximate searching.

6.7 Summary

We presented our new method of comparing the performance of indexed string matching
with its counterpart which does not use indexing. Using this methodology we showed that
suffix trees reduce the size of the string comparison problem significantly, and the indexing
gain improves with the size of the index. We started by explaining the approximate matching
algorithm, then proceeded to the analysis of results, which we then compared with the
unindexed string matching and BLAST. We now move on to the presentation of Conclusions
and further work.

141

Chapter 7

Conclusions and further work

This thesis presents three major contributions in the area of bioinformatics. The first contri-
bution is the recognition of the need for new database techniques in biological data process-
ing. The second contribution is a new methodology which combines persistence with the
investigation of suffix indexing structures and their properties. This methodology resulted
in a practical algorithm for the construction of suffix trees in excess of RAM, which has
hitherto not been possible. The third contribution is a new approach to the evaluation of the
indexing gain achieved by using a suffix tree in combination with a dynamic programming
algorithm, as used in approximate matching of biological sequences.

7.1 Developing the scope of our research

The research into string indexing for faster sequence comparison follows on from our earlier
experience in database management of genetics data [236, 213, 122], also see Appendix A,
and from our research identifying the need for special support for large scale biological
analysis [183, 184]. In Chapter 2 we outlined current directions in bioinformatics and the
trend to do more data intensive biological investigations. In this section we close with a
longer term perspective.

In 1996 genome databases and maps were beginning to appear on the internet, coin-
ciding with plans to sequence the human genome. At that point Oracle1 was beginning
to introduce object-oriented features into the new version of its relational product, Oracle
8i. Most biological “databases” relied on ACeDB [70] and each of them had a dedicated
data curator responsible for data management, including formatting the data submitted by
the collaborating labs, reading in the data into the “database”, preparation of queries, and
other chores. Using ACeDB was not only labour intensive and error prone, but resulted
in poor web access to data and genetic maps. The amount of available genomic sequence
was not large initially, and local BLAST engines could cope well with the global volume of
queries they were being subjected to. As it became possible to build genome maps of higher
resolution, for instance by large-scale hybridisation experiments which are a pre-cursor of
microarrays, ACeDB turned outnot to provide adequate query support, and we implemented
a genome mapping system using Oracle. However, we could not perform sequence com-
parison tasks within this system, and several thousand BLAST queries had to be submitted
via email to an external BLAST server. Oracle enabled us to manipulate mapping data and

1http://www/oracle.com

142

to finally present it on the web (using OPM [51, 173, 50], see http://chr21.molgen.mpg.de),
but significant human intervention was needed (software was written to submit a batch of
requests and a trained biologist had to analyse the BLAST output) to select a subset of
BLAST results for inclusion in the map. We found this approach to be cumbersome and
hard to manage, as the BLAST searches had to be re-submitted and re-examined to find
sequence matches in the constantly growing body of known DNA sequences. The database
aspects of this work are described in Appendix A. Our main discovery that automation of
large-scale biological research was needed remained unpublished.

Our further work in the context of linkage analysis and mutation modelling [183, 184]
deepened our understanding of the need for data processing automation but our grant pro-
posal to the Biotechnology and Biological Science Research Council (BBSRC) in this area
was not understood then as being of significant potential in biology. We seem to have done
work ahead of the recognised need for this research which is now coming to the fore under
various guises, including the GRID [31, 85]. Subsequently, we focused on a subproblem
which we identified, that is providing indexed access to sequence data within a database
system. This work combined the issues of large scale data processing with the possibility
of automation of query evaluation and integration with a database, forming the core of this
thesis. We realise that beside this narrow field of research there are further issues in the field
of large scale data processing which are gradually being addressed by many research groups
worldwide [208, 80]. It is very likely that future solutions will include agent technologies,
ontologies and derivatives of the abstract specification language called eXtensible Markup
Language (XML) [3, 111].

We did not investigate the workflow problem further but turned to the nature of the
data itself. We surveyed new biological data types and new data acquisition technologies
which give rise to large scale data collections. In Chapter 2 we introduce this theme with
high-level overviews of the sequencing technology, hybridisation techniques, and protein
analysis techniques. These methods produce thousands of data points in parallel and are
not supported with adequate data management and analysis techniques which would give
the biologist full mastery of their data. With the new technologies data acquisition is now
cheaper and faster, but data manipulation presents significant challenges. In particular, none
of the new data types we described in Chapter 2 are directly supported by database systems,
or can take advantage of indexing technologies which are known to speed up access to large
data repositories. This initial investigation of data processing in the biological domain led
to the focus of our work on solving the data indexing problem just for one of the new data
types — the sequence data. We developed a prototype indexing solution. We developed
an algorithm which breaks the previous limit on the size of a suffix tree index to sequence,
which used to be the RAM size, and showed that we can now build suffix trees on disk sig-
nificantly in excess of RAM size. We also implemented an approximate matching algorithm
using the suffix tree index, and showed what the indexing gain is, for a dataset of 200 Mb of
protein. We also showed that the indexing gain increases with index size, by comparing the
indexing gain for two indexes of different sizes. We now revisit briefly the research issues
which create the backdrop to our work and position our findings against this background.

143

7.2 The biological data processing scene

We claim that indexing technologies can be used to provide faster access to the volumes
of biological data which are growing rapidly, and we demonstrate the value of indexing for
protein data sets. We are aware that the requirement to describe and index all experimental
data for future use, and make them available to other scientists is in most cases not being
met, with the exception of few publicly funded data collections, mostly containing sequence
data. The majority of data reside on hard disks of private computers, are backed up to
CDROM only, and are not annotated. Data reside on electronic media which may be hard
to find, as they reside in filing cabinets, and their location, the description of data, protocols
used to produce it, and the way they were evaluated is recorded only in lab books. By
keeping data separate from annotation, biologists may forego the opportunity of observing
data relationships and discrepancies that could be examined, had all the data been available
in one system which they could query using a variety of search criteria.

Current indexing technologies for biological data have a limited scope. Database index-
ing is available for word structured alphanumeric data. Short space delimited textual fields
are stored as the VARCHAR data type, of limited length. Sequence data are not indexed,
and they attracted our attention because the volume of data is increasing faster than our abil-
ity to search it2. To enable text searching of sequence data, the BLAST suite of programs is
used [7, 8]. BLAST assumes that all sequence data are present in memory, and carries out
a serial scan of all data to identify potential hits which are then aligned with the query. Be-
cause sequential scanning of the text requires large computing resources (Genbank currently
provides access to 18 Gbp of DNA sequence), biologists have to wait for their queries to be
processed, and cannot submit large queries which would let them compare two genomes.
After sequence matches are found by BLAST, combining the results of a BLAST search
with other data residing in a database system or in files is not easy, and requires significant
programming effort, so in practice this is done by a minority of researchers only. A hybrid
solution to this problem was proposed in our work on Chromosome 21 mapping (Appendix
A) and we found that this solution had a high associated labour cost for the biologist and
the programmer. The current state of the art in sequence similarity searching results in two
data universes. One of them is the genomic context universe exemplified by the Ensembl
web site3, where maps of genes positioned on human chromosomes are shown, based on a
relational representation of data (using MySQL). The other universe is the sequence com-
parison (or alignment) world, i.e. BLAST using a web or email interface, where hits may be
shown in different colours based on sequence similarity, but where full contextual visuali-
sation of the hits, or comparison with other relevant data cannot be easily made. In practice,
for large-scale sequence comparison tasks this involves a two-level interaction. First, query
sequences are submitted to an external BLAST server, then manual data selection is made
where a subset of the results is chosen, then the selected results are fed into a spreadsheet,
and possibly finally transferred to a database where a new map could be computed. Facili-
ties for selecting subsets of BLAST matches using logical criteria do not exist yet, although
the biological knowledge needed to sift the relevant hits from bad ones exists, and could be
made explicit as a set of rules to be executed by a database engine. However, if indexing
of sequence data becomes available as part of database technology, and therefore executed

2See the graphs on the NCBI web site with a picture of exponential growth in sequence data volumes,
http://www.ncbi.nlm.nih.gov/Database/.

3http://www.ensembl.org

144

more efficiently than in the current scenario of scanning all of the input text, then local
evaluation of sequence similarity queries can contribute to an integrated data management
approach. This vision of integrating sequence searching with other data operations needed
in genome map construction and protein analysis is one of our contributions. We now de-
scribe further data indexing challenges, some of which we may be able to address in the
future.

We see the following data types as presenting further challenges to the database com-
munity.

� Microarray data which require solutions for data storage, annotation and analysis.
The volume of data produced by microarray experiments is large, and data are stored
without proper annotation which would make them usable in the future or by other
researchers. This problem was investigated by a recent student project [95, 12] and
remains a focus of significant research activity, with more than 1000 papers published
this year. However, most of the current research refers to data analysis of small data
sets and does not address data storage and annotation problems.

� Protein datasets, including 2D gels and other protein abundance and interaction as-
says also need an adequate database solution, if they are to be easily used along other
data. A preliminary exploration of this subject was undertaken [130] and resulted in
the identification of several issues including annotation, data analysis and integration
with other data sets. Current practice for both microarray and protein data includes
CDROM storage without annotation, and, usually, no archival or public release pol-
icy. As both types of data result in large images, the issue of database technologies to
support storage and analysis of such data is a priority.

� Protein structure data. These are deposited in the Protein Data Bank (PDB)4, in ASCII
format, and are searched online, in the same way as sequence data. With the growth
in the volume of structural data, algorithms for faster searching in protein structures
are needed, so that partially resolved structures can be aligned with fully resolved
ones, and 3D motifs can be found [227]. Current protein indexes are small, and can
be held in memory. We expect that such indexes could be stored persistently on disk.

� Alignment data and associated phylogenetic trees. Only a few attempts so far have
been made to explore this issue, and result in databases of alignments including SYS-
TERS5, COGS6, and HOMSTRAD7. With the growing interest in building ”the tree
of life”, and existing databases of protein families, the requirement to search and ad-
equately visualise such datasets is becoming very important. New indexing technolo-
gies will be needed here, and new visualisation techniques are required, as current
solutions, particularly in the area of data visualisation, are highly unsatisfactory.

� Genome comparisons between species. Current ways of storing BLAST results in
very large flat files and postprocessing them using the scan of the entire file are not
efficient or flexible [205]. Database indexing of such data would provide better access
to genome-level comparisons which result in very large results sets. Visualisation

4http://www.rcsb.org/pdb/
5http://systers.molgen.mpg.de/
6http://www.ncbi.nlm.nih.gov/COG/
7http://www-cryst.bioc.cam.ac.uk/data/align/

145

of genome comparisons for 2 genomes is inadequate, see http://www.sanger.ac.uk/-
Software/ACT/, and needs tools which offer greater flexibility to the biologist. Both
database and visualisation techniques can improve access to such data sets, both in
terms of their management and analysis.

� Image data from biological experiments. Biological image indexing is currently lim-
ited to textual descriptions of the image. However, research in this area [174] might
lead to new techniques which would allow for the indexing of a wide variety of im-
ages - including those produced in genetics research (for instance images of protein
expressionin-situ [32]) using techniques which summarise the image itself8.

This background of unsolved database issues demonstrates that database research in the field
of bioinformatics has the potential to make data more readily available and therefore more
useful to researchers. With access to more varied data, the biologists will be empowered to
formulate new hypotheses and develop theories supported by a wider set of experimental
results than currently possible. We now return to other contributions made by this research,
that is the creation of very large suffix trees and the measurement of the indexing gain
produced by a suffix index.

7.3 Construction of large suffix trees

We are the first to report the construction of large suffix trees on disk, in excess of RAM
size, which solves a problem identified as “insoluble” by Baeza-Yates and Navarro [25],
and which focused their attention on the suffix array data structure instead.

The special property of reference sequence collections which we recognised and ex-
ploited is the slow rate of change in the datasets we encounter. Although the volume of data
seems to be growing exponentially9, changes to genome data are limited to the genomes
which are currently being sequenced. As soon as a genome is finished, the data are frozen.
For the organisms which are being sequenced, data are released every few months. This
leads us to believe that a special variation of database technology is called for. We are look-
ing for indexing structures which can be built once and can be replaced if a new data release
is made. This implies that update efficiency is not essential, and the time to create an index
is not a primary consideration. This remains in sharp contrast to the usual database scenario
of concurrent updates to data which might require complex strategies to ensure transactional
correctness of updates as well as speed. Our contribution in this area is to show practically
how large suffix trees can be built, under those assumptions.

We developed an algorithm which allows us to build very large suffix trees, by parti-
tioning the tree and building partitions one by one. Given a known memory size, we can
partition the tree, so that a partition, or a number of partitions fit completely in memory,
and are then committed to disk. A subtree or subtrees once written to disk do not need to
be updated again. This opens up new mechanisms of distributed suffix tree construction
and use, and allows for the distribution of a very large tree between many processors. Our
work presents an alternative solution to the one proposed in theoretical terms by Galil and
Apostolico [14], which required as many parallel processors as the number of tree leaves,

8See for instance http://www.caip.rutgers.edu/ comanici/jretrieval.html where image searching is based on
a similarity metric between the image and the query

9http://www.ncbi.nlm.nih.gov/

146

and built the tree from leaves towards the root, to then reverse the pointers to point from
the root towards the nodes. To the best of our knowledge, their theoretical development
was never subjected to experimentation, whereas our approach has led to the construction
of disk resident indexes for up to 300 Mb of string data. These are the largest suffix trees
ever reported, and our results have now been published [119].

Interesting questions arise from this work. It came as a great surprise that theO(n2)
worst-case construction algorithm performs in practice as well as theO(n) one, for the
range of index sizes that we could test on our hardware. This discovery reflects the need for
caution in using the worst-case complexity as a performance predictor. It also demonstrates
the need for a different analysis of index-building algorithms in terms of a more realistic
computational model than a flat memory model where each memory location can be read
and written equally rapidly, and space complexity does not impact time complexity, a dif-
ficult modelling challenge in its own right. The memory hierarchy that we deal with, and
which consists of caches at different levels, as well as RAM and virtual memory, is hard to
model using known theoretical approaches. We would like to be able to use more accurate
models to predict the performance of index-building algorithms.

The actual possibility of tree building and querying in parallel is quite exciting, and
might improve the performance of BLAST. BLAST uses a filtering approach followed by
matrix calculation, and can be easily parallelised. The same is true for the large suffix tree
which can be split into sub-parts. If we replaced BLAST filtering with suffix tree indexing,
we would combine good performance with the guarantee of delivering all relevant hits.
This means that we could expect speed ups typical of other parallel database technologies
exploiting indexes, and may eventually achieve a faster implementation of BLAST while
offering the guarantee of finding all relevant sequence matches.

Our work leads directly to several avenues of future investigation which we discuss in
Section 7.5. We believe that further work might use either the large suffix tree or its deriva-
tives to deliver more efficient sequence comparison systems than are currently in place.

7.4 Approximate string matching using a suffix tree index

Our contribution lies in adapting a known approximate matching algorithm [25] to the bi-
ological context and in rigorous measurement of the indexing gain achieved for large se-
quence sets, i.e. 200 Mb of protein. Our further work with DNA indexes for 286 Mbp of
sequence was submitted to VLDB Journal as an invited paper, and is reproduced in Ap-
pendix B. We are the first to clearly show the indexing gain component of this algorithm,
and to separate this gain from other performance factors related to the data structure, per-
sistence mechanism, and the DP calculation method. For instance in [25], where the suffix
array data structure is used, the authors selected to present an overall performance measure
which combines the effects of the data structure, persistence, matrix calculation method,
and the indexing gain, so that no clear statement about the significance of using an index
can be made. As their index was small (10 Mbp of DNA), the indexing gain would have
been less significant than the efficient DP matrix evaluation. Our research makes an im-
portant step in justifying the use of indexing for biological data, and we show that with the
growth of the index the indexing gain increases.

We adapted the algorithm published by Navarro and Baeza-Yates [25] to our suffix tree,
and made adjustments which reflect the similarity metric required in sequence comparison.

147

We argued why some of the techniques used by the authors are not suitable in the context
of sequence comparison, and we presented a significant body of testing results which char-
acterise the behaviour of a protein index for most of the currently available protein data.
We tested a range of query lengths and similarity thresholds using a simplified unary cost
model, and showed significant potential of a suffix tree index in this context. Using a bench-
mark we constructed, we showed that even within the limitations of our prototype system,
we can demonstrate efficiency gains resulting from indexing. Our results indicate that in-
dexing is beneficial. It is also clear that we need to produce a more efficient implementation
of the suffix tree so that we can speed up sequence comparison for a wider range of query
lengths and thresholds. This proves that further work in this direction is warranted.

The novelty of our approach in this part of the work was the clear delineation of two
issues. The first one is the speed up resulting from the use of an index, and the second
one the performance aspect which relates to several other implementation factors. Our
findings on the usefulness of indexing are relevant in most suffix indexing contexts, and are
independent of the actual suffix index used, that is they apply to a suffix array, a balanced
suffix binary search tree, or a suffix tree, as the same indexing gain will apply in all cases
where the top-down traversal method is used.

7.5 Further work

We draw two pictures here. The first one is an overview of a wider scope of computing
research that we believe could follow on from our bioinformatics work, and the second is a
focused development of our techniques which might lead to a product useful to biologists.
We present those two perspectives now, starting with the overview.

7.5.1 A conceptual view

We see our work as being part of a wider trend of indexing research. In the most narrow
sense, we are trying to extend database techniques to new data types. We now have a work-
ing prototype for biological sequence data. We believe that similar techniques (but possibly
other indexing structures) could be tested in the context of protein structure searching, phy-
logenetic tree indexing, alignment indexing, microarray and protein gel indexing, and gene
and protein interaction networks. Outside the biological domain, our research is related to
the search for indexing structures for semistructured data [58, 211] and other data types
which are hard to represent as short strings or numbers, for instance large repositories of
astronomy data, see http://research.microsoft.com/ Gray/. Indexing based on explicit data
content is just one possibility. Alternatives include indexing based on data distribution and
clustering, i.e. statistical and data mining techniques which we did not explore, as demon-
strated in [131] where a wavelet transform is used to build an index over biological sequence
data.

In a broader context our research will help in providing a more unified view of data
and human interaction with data. By adding persistence techniques to sequence analysis we
achieve not only more efficient processing at the level of the CPU, but also on the human
level. Our aim is to provide a higher level view of biological data processing and enable
automation of manual tasks. This implies on the one hand an understanding of what a
typical user interaction is, and on the other capturing the knowledge required to automate
this interaction. We analysed the set of interactions required in sequence analysis, and see

148

the possibility of encoding this task in a computer-readable format so that in the future this
work can be made less error-prone and require less human intervention. These concerns
with the data flow on the internet combine the issues of distributed data processing, human-
computer interaction, workflow and databases very closely. Our current understanding is
that by using persistence we can first of all speed up the evaluation of sequence similarity
queries. Secondly, we want to use persistence to record interactions with data (including
data import from an external sequence database, reevaluation of the same query against
an updated database of sequences, and re-examination of new matches in the context of
knowledge already in our possession). By keeping all the intermediate information about
data sources, the processing required and the outputs, we can then automate this interaction
in the future. Additional computing techniques are then needed. We need to store both the
descriptions of data and of actions performed, and this can currently be done using meta-
data descriptions. Techniques for meta-data merging and provenance derivation [9, 43] are a
subject of research, and no general solutions exist yet. By testing the latest theoretical work
in practical context, we can improve our understanding of what issues need to be addressed
next, and find out where current solutions are not satisfactory. Within this context we are
investigating the use of User Interface Markup Language, UIML10, to generate interface
tools which could automate the process of sequence analysis.

We also see the role of this research in the general methodological debate. Most com-
puting science research is very highly specialised. In our research we attempted to combine
the results of algorithmic research with the latest persistence technology. It seems that ex-
perimentation with two branches of computing science research is fruitful as it allows us to
see better the challenges of our field. In the algorithmic field we discover that worst-case
complexity measures do not capture well the observed performance of transient suffix trees.
In the field of persistence we see that an alternative model of persistence is required, one
that does not follow closely the typical database model of efficient transactional updates.
Our research testifies to the need for continuous re-assessment of assumptions and methods
in the light of the experiments we carry out.

From yet another perspective, that of the emerging e-science effort, we see our work as
contributing to the methodological discussion about the management of large data reposito-
ries. It appears that new indexing texhniques are indispensable, if this data is to be shared.
Without indexing, one will not know what data are available, where they are, and how to
access them. This applies equally to any of the data that will be shared via the GRID.

7.5.2 A practical view

Within the narrower scope of database support for sequence similarity searching, we see the
need for further testing and refinement of our prototype solution. Following work could be
done in this area. We list the main research directions which we then analyse in detail, in
the sections which follow.

� Scaling up of the index.

� Data structure optimisation.

� Persistence optimisation.

10http://www.uiml.org/

149

� Optimisation of the approximate matching algorithm.

� Statistical techniques.

� Biological applications.

� Non-biological applications of indexing, for other reference data sets.

We now elaborate on these possible directions.

Scaling up

Comparison of entire genomes can be accomplished in two different ways, depending on the
data processing scenario set by the biologist. One way to compare two sequenced genomes
is to build a suffix tree, and to find common sequences by traversing it. The other scenario
is to build a suffix tree for the stable genomic data and let biologists query it with sequences
which they are producing in the lab. We believe a large suffix tree index would be useful
in both contexts. To this end we propose that large scale tests be carried out with DNA,
for instance with the entire human genome dataset. Our preliminary tests with 286 Mbp of
DNA are described in Appendix B, an invited paper which we submitted to VLDB Journal
in November 2001. This technology needs to be scaled up, so that indexes over mammalian
genomes are possible, and further testing work could throw more light on the usefulness of
such indexes.

We believe that for large scale testing an adaptive testing strategy would be required.
One of the main difficulties in the large test for proteins was our inability to predict the
running time of the test for some combinations of query length and threshold. An adaptive
testing strategy would provide a public interface to some of the measurements gathered
during the search itself. This would allow the program to automatically abort a computation
which is not promising. This strategy could be extended to deal with the current problems
of garbage collection within PJama (see Section 7.5.2).

Data structure optimisation

The prototype index we presented needs further refinement. Most indexing technologies
are developed in an evolutionary manner, and refinements are examined in a succession of
steps which gradually improve on the initial prototype. Similarly, alternative data structures
also need to be examined in detail.

Within this context of refinement and comparison, we believe that known alternatives
require re-assessment. Those will include the suffix array, the balanced suffix binary search
tree, and a new data structure called the suffix vector [160]. Similarly, alternative imple-
mentations of those structures should also be considered. A new specialised layout for the
suffix tree might also be developed, for instance based on subtrees being stored as integer
arrays (in a way similar to the level-compressed trie [11]). In the same vein, compression
of the indexed string itself could be attempted. In particular the work of Clark and Munro
[55, 164] might open up some new ways of dealing with data structure compression and
optimisation. This work suggests decomposing a string over any alphabet into its binary
representation and building of a binary tree for that structure. A hybrid data structure com-
bining the traditional tree with links with a naive tree could also be considered. This would

150

use suffix links just at the top few levels, down to the depth explored by the approximate
matching algorithm.

Malcolm Atkinson’s students [128, 186] have already been following this line of inves-
tigation. Further work needs to compare the alternative data structures from the point of
view of their efficient use in approximate pattern matching. We now have a significant body
of measurement data, including a record of the number of nodes traversed in the tree for
each query, and the suitable combinations of query length and threshold. Given those data,
and additional measurements that would be carried out for larger trees, the data structure
could retain the tree top, and the tree itself below a certain level, dictated by the maximum
query length used and threshold, could consist of leaf summaries. The actual cut-off point
and possible gains from this approach could be easily arrived at, given a full tree traversal
by string depth, and the count of nodes at each level.

The process of reengineering the implementation of the suffix tree alternatives carries a
significant engineering cost but it may result in large performance gains. Any reduction in
the overall size of the data structure is expected to reduce the time needed to fetch the data
from disk which is one of the main limiting factors in any disk-resident index.

Persistence for large indexes

We developed our prototype using general-purpose indexing technology. This enabled us
to compare five different data structures. However, further development is needed to ensure
that this technology is efficient. Several strands of research are feasible.

A decision can be made as to whether using a general-purpose persistence technology is
appropriate. We used a database-like implementation of persistence which incurs overheads
in terms of space and processing. For specialised indexes which are not updateable a new
persistence mechanism which factors out database housekeeping overheads would be more
suitable. Current work [128] minimises the object overhead which currently dominates the
size of the suffix tree node, and reduces the interference between recovery logging and the
tree building process. Since the index itself is used only in read mode, recovery is limited
to the computation failure at creation time. As the tree structure can be built in stages,
recovery does not necessitate a traversal of the entire object graph, but is limited to the
current partition only. As a result, a tailored storage layer may turn out to be a superior
solution in this context.

Alternatives, like Gemstone/J11 and Oracle Extensible indexing framework [207, 13,
132] should also be considered. They would have the advantage of offering an easier way
of integrating the index with other data types which we would like to query in a biological
database system.

Further in this research, additional optimisations will also be possible. Those will inves-
tigate the disk placement of objects (clustering), prefetching and caching strategies. Those
optimisations will have to take into account observation of user and disk activity, and ac-
commodate the observed tree traversal pattern.

Optimisation of the approximate matching algorithm

This type of research would use the existing body of algorithmic knowledge to produce a
faster implementation of the DP matrix evaluation calculated with the help of the index.

11http://www.gemstone.com/

151

Frequently in optimisation work a combination of theory and measurement is needed, and
experimentation will throw a new light on the current understanding of theory and best
practice.

We believe that the code used in BLAST could be adapted to this context, and mea-
surement of the indexing gain delivered by the index will have to be compared with the
filtering offered by BLAST. For instance in protein BLAST, mutated protein substrings are
generated, and a tree index of those strings is built. This technique of indexing all possible
mutations of query substrings could be tested in conjunction with our index, based on exact
matching. Further, optimisations of the DP calculation method are also possible. Lastly, the
derivation of thresholds at which the computation stops also needs to be reexamined.

A query will have to partitioned before being evaluated. The actual partitioning strategy,
and therefore the depth of tree traversal will rely partly on the measurements we have al-
ready carried out for proteins and DNA, as outlined in Appendix B. We believe that scanning
a batch of queries to find repeating substrings offers another possibility for optimisation.

Statistics

Statistical measures of the goodness of a sequence alignment are a subject of debate [158,
69]. BLAST follows one particular model, but other views are also possible. Integration
of statistical measures with indexing technology may offer new solutions in the future. It
is conceivable that known distributions of sequence repeats could be integrated into the
index structure itself, or could be used to pre-screen the query. The query itself could also
be examined using statistical tools [68] and an adaptive query strategy is also imaginable,
based on statistical properties of the index. Statistical approaches to database queries, using
summaries [42, 124], are becoming an integral part of database systems in a situation where
a full database scan is not feasible. This mirrors the situation in BLAST where we are not
guaranteed to find all the relevant hits. However, by combining indexing and statistics about
the indexed sequence, we could conceivably deliver all relevant matches faster.

We see it as one of the limitations of our research that we could not develop sufficient
statistical expertise to include statistical considerations in our work. We believe that future
work on sequence indexing might remedy this insufficiency.

Biological applications

This is a wide area for future research, and we concentrate only on a few possible directions.
Gusfield [99] quotes at least 50 possible uses of a suffix tree but we concentrate on contexts
where large trees are needed.

It would be interesting to use large suffix trees with approximate motif discovery tech-
niques to identify sequence motifs [37, 67, 225, 149, 187]. Current pattern discovery ap-
proaches have been limited by the maximum tree size. Combination with statistical filtering
of possible patterns might offer a useful way of finding the relevant repeated substrings.

As the partial matches may be assessed differently depending on the biological con-
text, visualisation mechanisms appropriate to this use of suffix trees could be developed.
Currently, BLAST at NCBI12 uses colour coding to distinguish between strong and weak
sequence similarities. Beyond that, matches to different chromosomes and species could be
displayed in positional context, and the density of partial matches in a particular area could

12http://www.ncbi.nlm.nih.gov/BLAST/

152

indicate that there is high overall sequence similarity. It would be interesting to display all
the hits returned by the index and let the visualisation tool organise them into meaningful
patterns.

Since versions of suffix tree which are suitable for both sequence and structure discovery
are known, it is not inconceivable that our techniques could be extended to this context
[202].

7.5.3 Priorities

We believe that the best approach to develop an initial solution useful in biological sequence
searching would have to combine an optimised data structure with scaling up to index two
mammalian genomes. Our preferred optimisation would combine integer arrays storing the
top of the tree with leaf summaries for nodes at depths exceeding the tree traversal depth.
Further work would combine the index with a set of data visualisation and manipulation
tools.

Stage two of index research could include a comparison with the suffix array, and the
use of protein similarity matrices, as well as the adoption of known statistical measures of
sequence similarity.

Finally, or perhaps in parallel, database optimisation techniques could be used to im-
prove the clustering and prefetching strategies for the index under investigation.

7.6 Limitations of our work

We now look at the limitations of our work. Those result from the choice of data sets for
testing, from our persistence mechanism, from lack of proper biological evaluation of our
work, and from our lack of statistical expertise.

7.6.1 Data related limitations

We chose datasets based on their availability, and they are representative in the case of pro-
teins (where we used the largest available protein database) but they are not representative
of all the DNA datasets in use. In particular, we built our index using genomic data, and not
short sequence fragments which result from individual sequencing runs.

We did not preprocess the data used for querying to generate an even spread of possible
queries, in terms of sequence composition or frequency of repeats. Additional preprocessing
of our DNA data sets might have helped us to identify a statistically significant sample
of queries which reflect the typical features of sequence which we indexed. We wanted,
however, to approximate queries as they are submitted to a BLAST server. We made an
attempt to gather such query data but it turned out that web server logs do not allow for
collecting such data easily. Biologists (Julian Dow, private communication) demonstrated
that typical searches use known protein and DNA sequences and assured us that using any
sets of sequences constitutes a possible query set.

We feel that the tests carried out with protein data represent another limitation. We
found that protein queries take a long time to evaluate. This is due to a larger alphabet and
a higher fan-out of a protein index. We executed protein queries for one week, and had to
abort several runs. An adaptive query strategy, where queries would automatically abort if

153

they take too long to evaluate or produce an exceedingly large result set would have helped
in this case.

7.6.2 Persistence limitations

We did not test other persistence implementations, because of the time constraint imposed
on a single PhD project. We believe that other persistence alternatives need to be explored.

We did not explore the management of the garbage collection problem within PJama
and this means that the times reported for query evaluation are excessively long. Since
PJama does not manage garbage collection well, our initial attempts to execute a scan of the
top of the tree were unsuccessful. We had to introduce explicit calls to the garbage collector.
We decided to take a shortcut and call the GC after every match found which scanned the
subtree in search of leaves. In practice, we believe that GC must have been called too
often and led to inefficient query evaluation. A better solution would have included calls
to the memory subsystem to establish how much memory was being used, and to carry out
GC only if needed. However, such a solution would require a heuristic which would help us
decide when to force GC, and if that heuristic failed, we would have been faced with system
crashes.

7.6.3 Lack of biological evaluation

We did not manage to carry out a biological evaluation and a comparison with BLAST.
It turns out that many issues will have to be explored in detail before such an evaluation
and comparison with BLAST are possible. This situation is disappointing but reflects the
complexity of the problem we are trying to solve.

7.6.4 Statistical refinement

We would have liked to have included a higher level of statistical refinement to this work.
This might have helped in the choice of test data, in the design of the index, and in the final
sequence similarity measures which are statistically based. We believe that further work
will be able to use those techniques.

7.7 Our contribution to methodology of computing science re-
search

We see our work as an attempt at introducing persistence technology into large scale se-
quence similarity searching scenario. We believe the first step has been made, and we
managed to gather a large body of experimental evidence to convince others that indexing
of sequence data may be possible. We hope that we also may have encouraged others to ex-
periment with persistence, and look at other data types which currently do not use indexing.

We showed that combining the fruits of algorithmic research with databases is a very
interesting area of research and can enrich both fields. Our discussions and exchanges with
both algorithmic specialists and database specialists testify to this thesis.

We hope that by attempting to index sequence data we might bring forward integrated
solutions to bioinformatics data storage and processing, and have significant impact on the

154

development of new technologies for other data types which are used in biomedical research
and drug development.

7.8 Closing

This thesis presented the motivation for improving the technologies used in searching bio-
logical data, and focused on sequence data searching. Our contribution is the development
of a practical method of building large suffix trees, in excess of RAM, and first measure-
ments of the possible speed up in sequence searching which is produced by this indexing
structure. The recognition of the requirement for new data processing methods in biology is
also one of our findings. We believe that our work contributes to the possible future devel-
opment of new databases which will support large scale data operations on biological data
types, currently outside the scope of database technologies.

155

Appendix A

Physical map integration using a
relational database: the example of
the Human Chromosome 21 DB

Ela Pustułka-Hunt, Department of Computing Science, University of Glasgow, Glasgow,
G12 8QQ, UK, Hans Lehrach, and Marie-Laure Yaspo, Max-Planck-Institut f¨ur Moleku-
lare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany

This draft was first produced in November 1999 and updated in April 2000.

Abstract

Motivation: Within the human genome project initiative, building chromosome specific
databases integrating various data sources and physical maps provides the best support for
data analysis and dissemination. Physical map construction and integration are either based
on semi-manual methods or require the creation and maintenance of complex scripts. The
resulting maps are considered to be idiosyncratic, as they do not expose the logic behind the
positioning of the mapped features. The mapping itself is extremely complex and mapping
decisions not directly traceable.
Results: We developed a new computing approach which simplifies the construction of
integrated maps, and we used it to create an integrated physical map of Human Chromo-
some 21, and to position genomic clones and transcriptional units along this chromosome.
Relational database techniques allowed for simultaneous mapping of sets of items, based
on both published datasets and on our laboratory results recorded in a database, and allow
us to make improvements to the existing maps as new data become available. Our mapping
decisions which interpret the available experimental data are provided as item annotations.
We describe our data model and the techniques used in map integration. We discuss how
this method is used in conjunction with other software including ACeDB and a Java map
browser. This approach should be applicable to any physical mapping project, particularly
in the context of integrating chromosome maps prior to sequencing.
Availability: Chromosome 21 Database and maps are available at http://chr21.molgen.
mpg.de/.
Contact: ela@dcs.gla.ac.uk, yaspo@molgen.mpg.de

156

Introduction

The work we describe started in 1996. Our chromosome 21 integrated map was built grad-
ually, and simultaneously with the effort of data integration. Map refinement is an ongoing
process relying on the very powerful abstraction of mapping data which we developed, and
is backed by a database approach to map generation, which uses a relational database to
perform exhaustive searches on the entire data space. The relational query engine optimises
query performance, and the use of indexes and database tuning techniques enables opera-
tions on a large data set encompassing some 240,000 results referring to 40,000 potential
map objects, with currently 4,500 mapped objects, where one map object may represent an
object cluster.

Our decision to use a relational database for mapping was based on several premises.
We were planning to make our data available on the web. We knew that without code
optimisation and data compression we would not be able to keep our projected data sets in
computer memory, so that delegating optimisation issues to a database engine was the right
choice, see [49] for an overview of database query optimisation techniques. We realised
that the task of map integration was separate from map building, and in particular we had
access to only some of the data used to produce maps which we were integrating, so that
is several chromosome regions we could not recalculate the maps, but had to scale and
align the existing maps instead. A significant portion of our data came from hybridisation
experiments involving small clones and had different characteristics from YAC STS content
data where the ratio of STS to YAC hits is high (6.2 in [102]). For instance, there were only
16,000 strong positive hybridisations between 11,000 cosmids and 8,000 cDNAs, and the
cosmids did not form contigs.

Our approach was to concentrate on map refinement, and gene positioning in particular.
Existing software did not directly cater to the requirement of building a physical map based
on NotI fragments, and did not interface readily to a relational database. An interested
reader may consult [34, 102, 167] for a discussion of available mapping tools and issues in
map integration. We judged that managing the data flows between different data formats,
databases and mapping tools would be beyond the means of our project, and tried to reduce
our software environment to minimum.

We use relational calculus to build an integrated map, and because of exhaustive search-
ing performed by the database engine we are guaranteed the best possible answer, based on
our judgement of the quality of data we are using. We can easily exclude unclear results
from mapping, and provide feedback on lab results, leading to re-evaluation or repetition of
an experiment.

Our approach is viable for large data sets, and allows for incremental map building and
refinement. As all data reside in one database, re-running a list of SQL commands can be
done each time new data are loaded, and the queries to be run depend on the type of data
being added. Data loading and integration are handled by Perl scripts and are not discussed
further.

The structure of data during the process of physical mapping is very dynamic and the
biggest challenge was to integrate data gathered from heterogeneous sources and also show-
ing different levels of accuracy. This implies in general that data management supporting

157

mapping projects should accommodate frequent updates and modifications, and should be
based on a robust database.

We believe that a fully automated solution to physical map integration is not viable as
data come from many sources and differ in resolution and accuracy. Moreover, since most
of the software packages used in mapping include a visual assessment of data complexity
and quality, it is not likely that the logic of physical map integration can be fully encapsu-
lated in software. Instead, a semi-manual method is preferable, where a map is constructed
incrementally, with visual and programmatic checks at different stages of map construction,
and with annotations being added to map items for which inherently contradictory results
exist.

Our approach to map integration improves significantly on current practice, by minimis-
ing the use of scripts and therefore the labour involved in mapping. By relying on standard
and robust computing tools (a relational database), we achieve map integration more easily,
in a traceable manner. We also achieve consistent annotations and referential integrity of
data with less programming effort. The graphical display is an ACeDB-inspired Java map
browser communicating with a database (Grigoriev et al., 1998; D. Leader, http://www.-
biochem.gla.ac.uk/BMB/Res/MBGE/DPL.html), which is used to visualise the integrated
map and to highlight possible problems. In this paper we give an example relational schema,
and illustrate the map building process with relevant SQL statements. We also discuss the
issues of data import and export, and the database tuning techniques used in this context.

System and Methods

Data sources

The integrated physical map of Chromosome 21 used a backbone initially based on YAC
pocket map and YAC minimum tiling path [172, 88], providing anchors for data integration.
Physical distance intervals along Chromosome 21 were defined by a NotI restriction map
[123]. Published high resolution bacterial clone contigs were imported and anchored to
the map [73, 210, 98, 105]. Transcriptional mapping was mostly based on a previously
described strategy [235]. Mapping of genes and transcription units isolated from cDNA
selection and exon-trapping experiments refers to the following data sources imported into
the database: (Cheng et al., 1994; Yaspo et al., 1995; Yaspo et al., unpublished; Tassone et
al., 1995). ESTs were collected from the UniGene Initiative Set [197]. Known Chromosome
21 genes were generally localized to YACs from data culled from literature. The gene
list was actualized after the index of protein entries on Chromosome 21 maintained on
the ExPASy server (Bairoch, http://www.expasy.ch). STS markers were imported from the
Genome Database (GDB, http://www.gdb.org) or / and from previously established maps
(see above) and [209]. A large part of the data import consisted of large-scale hybridisation
data from our laboratory produced in the course of constructing sequence-ready maps for
Chromosome 21. Finally, somatic cell hybrid data were also loaded in the data set [96].

Computing methods

We used an Oracle database version 7 on a DEC alpha workstation with 128MB RAM,
Perl scripts [228], an ACeDB database (Durbin and Mieg, http://alpha.crbm.cnrs-mop.fr)
and a spreadsheet for map data entry from printed maps. Perl scripts were used to move

158

data between ACeDB and Oracle, to send multiple BLAST requests [7] and retrieve data
sets from GDB and UniGene. Data parsing was performed using Perl regular expressions.
ACeDB vertical map display was used to check map consistency during the initial map
construction while a Java map browser provided internet access to maps. The present Oracle
database was built and is being accessed via OPM [50]. Mapping is carried out using SQL,
which simplifies the syntax and improves performance.

Algorithm and Implementation

Data integration strategy

An initial map consisting of YACs and STS markers corresponding to a minimum tiling path
(MTP) map [88] was built by a Perl program which started from the telomere and walked
along the chromosome to position the YACs and STSs approximately, with STSs placed
equidistantly within the YACs, while preserving STS-YAC matches and YAC lengths. STS
and YAC positions were then shifted to reflect true NotI distances, as defined by the NotI
map [123], by walking the chromosome with SQL update statements, and moving map sec-
tions up or down the scale for each known NotI distance. Additional STS markers were then
added, based on published data, or had their position adjusted, where exact STS distances
were available. A few gaps in the MTP were filled with additional YACs from high resolu-
tion clone contigs from other maps [53] where overlaps with already placed STS markers
were known. In the next step, available YAC-to-cosmid hybridisation results [172] and raw
laboratory data were used to position the cosmids relative to known YACs, with approxi-
mate cosmid positions computed based on positive overlapping YACs. Additional cosmids,
PACs and BACs from the published maps described in SectionData Sources, were also
added. The resulting map containing a large number of clones could then be used to po-
sition trapped exons and cDNAs, based on cDNA to cosmid and cDNA to YAC matches,
as defined by hybridisation [235]. This strategy was then complemented with positioning
new STS markers in bins defined by somatic cell hybrid breakpoints, and with BLAST re-
sults which matched cDNAs against known exons or STSs. BLAST matches were used in
mapping in a way analogous to hybridisation or PCR data, and documented in the database.
Additionally, genes were positioned on the map manually. The resulting map contains posi-
tions for the following items: genomic clones (YACs, BACs, PACs, cosmids), STS markers,
ESTs, genes, and, finally, cDNAs and exons grouped into transcriptional units mapped to
genomic clones. Mapped items which are recorded in public databases have a hyperlink to
the original data source, and the rationale behind the map position is shown as annotations.
Data were tagged for ownership, in particular, hybridisation results derived at Max-Planck
Institute are shown with the date on which they were entered in the database.

Database design

Our database design is a conceptual simplification of mapping data encountered both in ex-
perimental andin silico approaches to mapping (using BLAST). We group all mapping data
into three entities. This allows us to use a small number of queries with changing parame-
ters to perform all mapping operations. We use the following tables:
Map: mapped features and their positions, with annotations.
Results: experimentally and computationally derived relationships between objects (posi-

159

tive or negative hybridisations, PCR, sequence homology from BLAST, etc.).
Attributes: clone or gene attributes, e.g. measured length(s) of clones or fragments.
The following SQL syntax describes the tables at the conceptual level. In the actual imple-
mentation, unique row identifiers (integers) in each table were added and used as keys to
make the joins between tables more efficient.

CREATE TABLE MAP (TYPE VARCHAR (50), NAME VARCHAR (50) CONSTRAINT

MNAME UNIQUE, POS1 NUMBER, POS2 NUMBER , ANNOTATION VARCHAR (2000),
CHECK (POS1 < POS2));

CREATE TABLE RESULTS(NAME1 VARCHAR (50),NAME2 VARCHAR (50),RESULT

VARCHAR (50),EXPERIMENTTYPE VARCHAR(50),EXPERIMENTSOURCE VARCHAR

(50), CHECK (NAME1 < NAME2));

CREATE TABLE ATTRIBUTES(NAME VARCHAR (50)CONSTRAINT ANAME UNIQUE,
TYPE VARCHAR (50), LENGTH NUMBER);

We use unique object names, following GDB and ExPASy nomenclature for genes, STSs
and YACs, and GenBank and UniGene identifiers for other items. Constraints are used to
ensure the uniqueness of Map and Results entries and the order of coordinates in a map
entry. Indexing all columns allows the database engine to optimise queries. Synonyms
are handled separately from mapping data, and are used in building object clusters, and
in data presentation on the web. Object clusters are represented by one map object, while
relationships between objects in a cluster are kept in the Results table.

Map integration

Our approach to map building is iterative. Reading new data into the database is followed
by map recalculation. Initially, inconsistent results are isolated and in case of lab results
returned to the lab, and for published results, annotated and recorded for future reference.
For instance, new hybridisation results involving cosmids and cDNAs are delivered as a flat
file, and a script generates database insert statements. At that point a check would be made
to find out which cDNAs mapped inconsistently, and lists of inconsistent results would be
produced to go back to the lab, and saved in the database. SectionData discrepanciesgives
example SQL queries used.

We explain our method with an example of adding a contig to an existing chromosome
map as shown in Figure A.1. We use arbitrary small numbers as YAC lengths to simplify the
presentation. In our YAC-STS mapping we excluded some YACs and matches because of
large discrepancies between different data sources, or YAC chimericity. In recording YAC
lengths, we entered all the available lengths initially, but used the shortest one given. Our
example sequence readyContig consists of BAC and PAC clones ordered according to STS
markers:

160

TYPE NAME POS 1 POS 2
STS STS1 0
STS STS2 10
STS STS3 25
STS STS4 30
BAC BAC A 1 12
BAC BAC B 8 25
PAC PAC C 23 28
PAC PAC D 26 30

As the existing map stretches over a longer area, we look only at the section corresponding
to the contig. RelevantMap entries are:

TYPE NAME POS 1 POS 2
STS STS1 200
STS STS3 220
STS STS4 228
YAC YAC 1 210 225
YAC YAC 2 215 232
GENE GENE G 220 222

STS_1 STS_3 STS_4

200 220 228

YAC_2

GENE_G

STS_3 STS_4STS_1

10 25 300

BAC_A
BAC_B

PAC_C

PAC_D

STS_2

YAC_1

existing map

new contig

Figure A.1: A new contig and the original map. Dotted arrows indicate object correspon-
dence.

Integrating the contig with an existing chromosome map can be decomposed into three
logical steps:
� adjustment of markers in the existing map (as the bacterial clone contig is more accurate
than the existing map)
� addition of new clones from the contig to the map
� adjustment of existing mapped clone or gene positions reflecting their relationships to
other map objects.
We assume thatMap and Contig are drawn to the same scale and orientation. If that is
not the case, simple arithmetic operations can align them. We note that small map objects
have an emptypos2, and ignore the existence of objects having more than 2 coordinates (i.e.
somatic cell hybrids). We know thatGENE G was mapped based on positive results against
bothYAC 1 andYAC 2. We have the following experimental data in theResultstable, and
note a positive result for(YAC 1, STS2) but STS2 not being on the map yet.

161

NAME 1 NAME 2 RESULT
YAC 1 GENE G positive
YAC 2 GENE G positive
YAC 1 STS1 negative
YAC 1 STS2 positive
YAC 1 STS3 positive
YAC 2 STS3 positive

We proceed in three steps. We adjust STS positions in the existing map first, to remove
the discrepancy in the distance betweenSTS1 andSTS4. We can shift all existing map
objects to the right ofSTS4, or to the left ofSTS1. Choosing the first option, we move all
objects to the right of or overlapping withSTS4 to the right. Following SQL can perform
this operation:

CREATE TABLE MAPDIST AS SELECT(M1.POS1 - M2.POS1) OFFSET FROM MAP M1,
MAP M2 WHERE M1.NAME =’STS 4’ AND M 2.NAME = ’STS 1’;

CREATE TABLE CONTIGDIST AS SELECT(M1.POS1 - M2.POS1) OFFSET FROM CON-
TIG M1, CONTIG M2 WHERE M1.NAME =’STS 4’ AND M 2.NAME = ’STS 1’;

CREATE TABLE MOVEDIST AS SELECT ABS(C.OFFSET - M.OFFSET) DIST FROM

CONTIGDIST C, MAPDIST M;

CREATE TABLE STS4 AS SELECT POS1 POS FROM MAP WHERE NAME= ’STS 4’;

UPDATE MAP M SET M.POS1 = (SELECT(N.POS1 + DIST) FROM MAP N, MOVEDIST

WHERE M.NAME = N.NAME) WHERE M.POS1 >= (SELECT POS FROM STS4) AND

M.POS2 IS NULL;

UPDATE MAP M SET POS1 = (SELECT (N.POS1 + DIST) FROM MAP N, MOVEDIS

WHERE M.NAME = N.NAME), POS2 = (SELECT (N.POS2 + DIST) FROM MAP N,
MOVEDIST WHERE M.NAME = N.NAME) WHERE POS2>= (SELECT POS FROM STS4);

The second step adds all contig objects to the map. The contig is first aligned with the map,
and then the map updated:

UPDATE CONTIG SET POS1 = POS1 + 200,POS2 = POS2 + 200;

UPDATE MAP M SET POS1 = (SELECT C.POS1 FROM CONTIG C WHERE C.NAME =
M.NAME), POS2 = (SELECT C.POS2 FROM CONTIG C WHERE C.NAME = M.NAME)
WHERE NAME IN (SELECT NAME FROM CONTIG);

INSERT INTO MAP (SELECT* FROM CONTIG WHERE NAME NOT IN(SELECT NAME

FROM MAP));

Lastly, we consider objects which were mapped by inference, or which may be related
(via Results) to newly added objects. This must refer back to the way the existing map
was constructed and may have to be carried out in a few phases. Here,YAC 1, YAC 2 and
GENE G were mapped approximately. YACs were aligned with STSs first, and the gene was

162

subsequently positioned in the YAC overlap. We now adjust the positions of those objects
to reflect the corrected STS positions in the contig area. Objects in the map are only moved
if the additional information provided by the contig contradicts the existing map. We check
for possible conflicts between YAC and STS positions using the following query which will
returnall YACs and theirnon-matchingSTSs where YACs have been placed incorrectly,
i.e. overlapping a negative STS:

SELECT R.RESULT, M1.NAME, M1.POS1, M1.POS2, M2.NAME, M2.POS1 FROM MAP

M1, MAP M2, RESULTS R WHERE M1.TYPE = ’YAC’ AND R.RESULT=’ NEGATIVE’
AND M 2.TYPE = ’STS’ AND ((M1.NAME = R.NAME1 AND R.NAME2 = M2.NAME)
AND (M1.POS1< M2.POS1 AND M 1.POS2> M2.POS1)) OR ((M1.NAME = R.NAME2
AND R.NAME1 = M2.NAME) AND (M1.POS1< M2.POS1 AND M 1.POS2> M2.POS1));

This query may return:

result name pos1 pos2 name pos1
negative X 30 100 Y 50

If such an inconsistency is discovered,YAC X has to be repositioned or the data discrepancy
noted inMap. annotation.

In the map creation process we also take into account clone lengths stored in theAt-
tribute table.

NAME LENGTH
YAC 1 20
YAC 2 20
GENE G null

We compare clone positions to their lengthsMap.pos2 - Map.pos1 - Attribute.length, and add
map annotations or adjust the map accordingly. This problem was most apparent for YACs
showing different lengths and STS content in different data sources. Our solution was to
add YACs to the map only if there were no large discrepancies.

We now show how we positioned smaller objects on the map. We calculated the maxi-
mum extent of the interval in which a gene or cDNA could appear and then positioned the
object in the middle using either a conventional gene length of 20Kb or by extending from
the calculated central position in both directions by 1/2 of the known length. To simplify
the task, we use temporary tables to store gene and cDNA positions:

CREATE TABLE TMP AS SELECT* FROM MAP WHERE TYPE= ’GENE’ OR TYPE =
’ CDNA’;

The tmp table is then updated to reflect the maximum interval that a gene can take. This is
calculated based on all positive objects as shown in Figure A.2.

UPDATE TMP SET POS1 = (SELECT MAX (M2.POS1) FROM MAP M1, MAP M2,
RESULTS R WHERE R. RESULT = ’ POSITIVE’ AND M 1. TYPE = ’GENE’ AND

((M1.NAME = R.NAME1 AND R.NAME2 = M2.NAME) OR (M1.NAME = R.NAME2
AND R.NAME1 = M2.NAME))), POS2 = (SELECT MIN (M2.POS2) FROM MAP M1,
MAP M2, RESULTS R WHERE R.RESULT = ’ POSITIVE’ AND M 1. TYPE = ’GENE’
AND ((M1.NAME = R.NAME1 AND R.NAME2 = M2.NAME) OR (M1.NAME = R.NAME2
AND R.NAME1 = M2.NAME)));

163

scale
direction

yac_1

yac_2

yac_3
yac_4

genemax position 1 min position 2

Figure A.2: Placing a gene in the overlap of positive YACs.

Finally, updates to map are performed based on object length.

UPDATE MAP SET POS1 = (SELECT ((T.POS1 + T.POS2)/2 - A.LENGTH/2) FROM

TMP T, ATTRIBUTES A WHERE T.NAME = A.NAME AND A .LENGTH IS NOT NULL),
POS2 = (SELECT((T.POS1 + T.POS2)/2 + A.LENGTH/2) FROM TMP T, ATTRIBUTES

A WHERE T.NAME = A.NAME AND A .LENGTH IS NOT NULL) WHERE NAME IN (SE-
LECT NAME FROM TMP);

Data discrepancies

Prior to adding a new data set to the map, a check on data quality is performed. We use the
tableDuplicated, see sectionPerformance and Computability to find a relevant subset
of results first. For example, after adding new hybridisation results where cDNAs bear the
prefix ’MPIpl’, we select results relating to those cDNAs:

CREATE TABLE CDNACLONE AS SELECT NAME1, NAME2 FROM DUPLICATED WHERE

RESULT = ’ POSITIVE’ AND NAME 1 LIKE ’MPI PL%’;

We then supplement this data with map positions of features which hybridise to the cDNAs:

CREATE TABLE CDNAMAP AS SELECT* FROM CDNACLONE C, MAP M1 WHERE

M1.NAME = C.NAME1;

And, finally, we produce a table of contradictory results which will give feedback on the
quality of lab data:

SELECT NAME1 NAME, MAX (POS1), MIN (POS2) FROM CDNAMAP GROUP BY NAME1
HAVING MAX (POS1)>MIN (POS2) UNION SELECT NAME2 NAME, MAX (POS1), MIN (POS2)
FROM CDNAMAP GROUP BY NAME2 HAVING MAX (POS1)>MIN (POS2);

Subsequent mapping queries can exclude this data, or reposition the positive features if
appropriate, and add annotations to the map.

164

ACeDB and data integration

We progressively extended the ACeDB data model to accept our data and parsed and im-
ported all data into ACeDB. We used electronically available data where possible, aug-
mented with some map data scanned or typed in from paper publications. Data were tagged
for ownership as appropriate. Data integration, in particular translation of web pages,
was labour-intensive, as the complexity of data formats we encountered required exten-
sive parser programming. Recently available translation tools [193] might simplify data
translation.

After our MTP map was built, we migrated the mapping data into a relational database.
A stored ACeDB query was run first. A script accessed ACeDB via the tace interface,
submitted the query, stored retrieved data in a file, parsed it, wrote database insert statements
to file, submitted them ORACLE and produced an error log. Those steps can be done
manually as well. Exporting data to ACeDB follows a similar route. The map can be
checked visually by clicking one by one on all map objects. ACeDB map display can be set
to show wrongly mapped objects in red. Such visual checking can be satisfying, but is not
reliable for a large number of items, as discrepancies can be easily overlooked. Using SQL
to check the map provides a conclusive proof of correct mapping.

Data export to a web based map browser is done via a script which submits the SQL

statement:

SELECT* FROM Map,

formats the data, and passes the results to a Java applet.

Discussion

Interpretation of published materials

We found that the interpretation of published maps presented considerable problems due
to low resolution of printed maps and also occurrence of possibly conflicting data. Where
electronic data were available, we used SQL to find the discrepancies in experimental re-
sults, and to make a decision regarding our interpretation. It was then possible to document
such decisions as map annotations pointing to the original results. On the other hand, the
interpretation of printed maps was often ambiguous. An apparent contig, including small
gaps, might cover only 60 per cent of a particular interval. Additional difficulties arose from
the fact that map digitisation or manual reading with a ruler are inexact, and an error mar-
gin of up to 20 per cent is to be expected. In retrospect, we wish to have had access to all
original experimental results in electronic form, and to re-compute the map whenever new
data became available. This is the approach to map refinement taken in the Chromosome
21 database, with all new results being made available in the database and used in map
refinement, leading towards the integration of recently built sequence-ready contigs.

Map visualisation

The first attempt to build an ACeDB-based Chromosome 21 database was presented by O.
Ritter at the 4th International Workshop on Chromosome 21 [65]. Our subsequent data
integration work used the ACeDB database and map display to assess the quality of YAC-
based tiling path map. We soon found out that ACeDB itself was not well suited to mapping

165

or to publishing the map on the web, and mapping was moved to ORACLE. When a Java
map applet became available [97], other data were migrated to a relational database to be
retrieved by the applet on demand. The first applet version did not have full functionality,
but later improvements (D. Leader, http://www.biochem.gla.ac.uk/BM B/Res/MBGE/DPL.-
html) resulted in a map browser which generates postscript files for printing, has advanced
zooming and data selection capabilities, and offers a novel approach to the visualisation
of overlapping objects, relying on superimposing objects at low map resolution. The new
applet is fully interactive and has a drill-down facility giving direct access to supporting
database data.

Schema modelling

Our minimum schema suffices for mapping. However, if an integrated map is going to be
used as part of a database system, it may be desirable to perform database normalisation to
ensure data quality and minimise time consuming data cleaning operations which currently
dominate the curation of ACeDB databases.

Performance and computability

Using large data sets may require a combination of query partitioning and database tuning or
data duplication. We discuss logical horizontal data partitioning first, and data duplication
second. In mapping, a multiple join of the map table with the results table containing some
240,000 entries is made, potentially resulting in a very large Cartesian product. We proceed
by concentrating on data subsets. When mapping cDNAs onto cosmids, we exclude other
objects and consider 11,000 cosmids, 8,000 cDNAs and 16,000 cosmid-cDNA matches, as
shown in sectionData discrepancies. If a particular data table join does not fit in memory,
data can be partitioned further, and map sections calculated one at a time.

Data duplication was used to present summary information for each database object,
including the available results. We duplicate theResultsdata, so that for each positive match
between A and B (A,B,positive) we add an entry (B,A,positive). This can be achieved by
the following SQL which is run every timeResultsare updated:

CREATE TABLE DUPLICATED AS ((SELECT NAME1 , NAME2, RESULT, EXPERI-
MENTTYPE, EXPERIMENTSOURCE FROM RESULTS) UNION (SELECT NAME2 , NAME1,
RESULT, EXPERIMENTTYPE, EXPERIMENTSOURCE FROM RESULTS));

The tableDuplicated is subsequently used in mapping. SQL queries become shorter as joins
are performed onDuplicated.obj1 instead of bothResults.obj1andResults.obj2.

Limitations

Relational calculus does not allow for recursive queries of unknown depth. Therefore, data
clustering which we performed for ESTs, STSs, exons and cDNAs, based on BLAST se-
quence matches, can use either PLSQL programs (a procedural extension of SQL) or export
data, create clusters using a script, and insert them into the database. As UniGene data are
already clustered, this was a small operation.

OPM constrained and changed our database management techniques. As an object
oriented layer on top of a relational database, OPM reduced the amount of design work by

166

using inheritance. However, it made data management harder, as it did not support stored
procedures for ORACLE. It guaranteed referential integrity using constraints, but it did not
let us write stored procedures necessary for some data updates.

Conclusion

We conclude that our solution has been very successful in building an integrated chromo-
some map and in minimising the effort required for map refinement. We annotated our
mapping decisions in the database and we can trace the provenance of map object positions
to experiments performed in the lab or to the original data sources used in map construction.

We found a combination of a relational database and ACeDB to be useful. The first
version of the Java map applet could not print maps or display STSs or ESTs satisfacto-
rily. Mapping data were held in both systems, and mapping was performed in a relational
database, while map display was done using ACeDB. Being able to update data in place
in ORACLE outweighed the cost of producing two short scripts. Our initial approach to
use just ACeDB and calculate maps using Perl was not satisfactory as it cost too much
programming effort.

By simplifying database design and using SQL we managed to integrate several maps
into one, and we are prepared to perform further map integration as and when required. We
are also sure of the high quality of our map as we are positioned to find any data discrepan-
cies quickly. Our method of integrating map data is reliable and can be applied in any map
integration project.

We found that using standard database technology lets us improve our maps as new
results become available. We add new contigs to our map efficiently, in particular all the
sequence-ready contigs which have entered the sequencing phase are in the map with links
to sequencing centers. The forthcoming Chromosome 21 genomic sequence produced by
the Chromosome 21 Mapping and Sequencing Consortium (Riken, Tokyo University; IMB-
Jena; Keio University; GBF Braunschweig; MPI-Berlin) will be fully available with corre-
sponding maps in this database. After the sequencing of Chromosome 21 is accomplished,
we will be able to refine our map, integrate genetic and RH maps [209], add new genes, gene
features and SNPs, as a tool to support the shifting focus of genetic research towards gene
functional analysis, and to provide the basic data for further linkage and disease studies.

Acknowledgments

This work was supported by grants BMBF01KW9608 (German Human Genome Project)
and EU grant BMH4-CT96-0554. We wish to thank the bioinformatics team of the Resource
Centre of the German Human Genome Project (RZPD) for their support and advice.

We thank David Leader for giving us access to the recently improved map browser and
Guenter Teltow for his management work for the Chromosome 21 database. We thank
Malcolm Atkinson, Karen Renaud, and the anonymous referees for their comments.

167

Appendix B

Computing resources and software
used in the Human Genome Project

Public consortium Celera
raw sequence produced 23 Gbp 14.8 Gbp + 3-fold coverage of

mouse genome (9 Gbp)
raw sequence used for as-
sembly

23 Gbp 14.8 Gbp + 9 Gbp of public se-
quence

Table B.1: Volume of sequence data.

Public consortium Celera
computing
power

27 node cluster of Alpha Server ES40s
with 108 CPU’s. Final assembly of
400,000 sequence fragments from 30,000
clones resulting in 2.7 Gbp using Gi-
gAssembler takes less than 4 days on a
cluster of 100 800MHz Pentium III CPUs
running Linux. Total Sanger Centre com-
puting resources, some of which were used
in the project, consist of 700 Alpha proces-
sors, 250 PCs, 150-plus network comput-
ers and 250 NT/Mac collection devices for
data produced by ABI sequencers.

LIMS used a Virtual Compute Farm
(VCF) of 440 Alpha CPUs, mem-
ory 2-8 GB per system. VCF was
used for trace file processing and
annotation. Genome assembly used
16 computers with total memory of
96 GB, largest single memory was
64 GB.

disk storage Total file storage and processing used for
sequencing in all centres not accounted for.
A file server with 1 TB of disk used in the
annotation and analysis at the Sanger Cen-
tre.

Total of 100 TB

lab automa-
tion

some labs fully automated, some partiallyLaboratory Information Manage-
ment System (LIMS) used to track
samples

Table B.2: Hardware, storage and automation of human genome sequencing.

168

Public consortium Celera
map preparation FPC (fingerprinted contigs) none
sequencing PHRED for base-calling Paracel’s Trace Tuner and rules in-

corporated into LIMS
sequence assembly for
individual clones

PHRAP see above

filtering of contaminants not specified BLAST
contig assembly GigAssembler 2 strategies attempted: whole

genome assembly (WGA) and com-
partmentalised shotgun assembly
(CSA), the second method pro-
duced better results. Visual inspec-
tion and curation of of scaffolds was
necessary.

alignment of contigs
with chromosomes

ePCR and BLAST ePCR

internal genome duplica-
tion analysis

BLASTN, all-against-all similarity
search in DNA sequence

MUMmer based on suffix trees, us-
ing not DNA but predicted genes

gene prediction Spidey, Acembly, Ensembl using
Genscan, GeneWise, Genie

OTTO, rule-based expert system
based on BLAST and SIM4 com-
parison to sequence databases, in-
cluding Celera’s mouse sequence.
Genscan for gene prediction.

proteome analysis InterPro front-end, BLASTP,
PSI-BLAST, all-against-all Smith-
Waterman, SMART

BLAST, Lek for grouping pro-
teins into families using Smith-
Waterman for all-against-all align-
ment, SMART and Pfam, Celera
Panther Classification

human-mouse mRNA
comparison

megaBLAST not specified, probably from Otto
(based on matches produced by
SIM and BLAST)

Single Nucleotide Poly-
morphism finding

Polybayes, neighbourhood quality
standard (NQS)

PowerBLAST

Table B.3: Software used in the human genome sequencing project.

We present supporting evidence for our analysis of the computing aspects of the Human
Genome Project, presented n Chapter 3. This summary is based on the material from
[226, 57] and various internet resources maintained by the members of the International
Human Genome Sequencing Consortium. In Table B.1 we compare the data volumes used,
produced or managed by the two groups which contributed to the draft sequence of the hu-
man genome. In Table B.2 we summarise the computing resources and in Table B.3 the
software used by both projects. We then present our summaries and extracts from web sites
prepared by the members of the Consortium. Where available, the descriptions of software
are directly quoted from the source websites.

� FPC [204], http://www.sanger.ac.uk/Software/.

FPC V4 (fingerprinted contigs) is an interactive program for building con-
tigs from fingerprinted clones, where the fingerprint for a clone is a set

169

of restriction fragments. FPC has an algorithm to automatically cluster
clones into contigs based on their probability of coincidence score. For
each contig, it builds a consensus band (CB) map which is similar to a
restriction map but it does not try to resolve all the errors. The CB map
is used to assign coordinates to the clones based on their alignment to the
map and to provide a detailed visualization of the clone overlap. FPC
has editing facilities for the user to refine the coordinates and to remove
poorly fingerprinted clones.

FPC was used for instance in the preparation of contigs for chromosome 21 [105],
and relied on input via its graphical user interface.

� PHRED [77, 78] is a base-calling program available from http://www.sanger.ac.uk/-
Software/. PHRED and PHRAP are also available from the authors’ web site http://bozeman.
mbt.washington.edu/. PHRED

is an alternative to the standard ABI base-calling, and in tests makes fewer
errors on average and calls accurately further into the read. Phred also
generates a base-quality index for each base it calls, indicating the like-
lihood the call is correct. The assembly program Phrap can make use of
these quality measures, both in assembly and when assessing the qual-
ity of the contigs’ consensus sequence... It has been shown to make a
fast (around 10-20 mins) and efficient assembly of a normal sized shotgun
(600-800) reads into a reasonably small number of contigs (5-10 over 1
Kbp).

� BLAST [7, 8, 238] family of programs can be downloaded from http://www.ncbi.-
nlm.nih.gov/BLAST/. BLAST stands for basic local alignment search tool and is the
most popular sequence searching tool in biology. BLAST is discussed in the context
of approximate matching, in Chapter 5.

� GigAssembler [133] is available from http://genome.ucsc.edu/goldenPath/algo.html.
It merges human genome sequence fragments into the the human genome draft, based
on mRNA, paired plasmid ends, EST, BAC end pairs, and other information.

� Whole genome assembler (WGA), an earlier version of which was described by My-
ers [165], consists of a Screener (repeat finding), Overlapper (all-against all match-
ing), Unitigger (finding uniquely assembled contigs), Scaffolder (building scaffolds
of contigs), and Repeat Resolver. Overlapper was the most compute-intensive part,
consuming 10,000 CPU hours using 4 GB RAM, elapsed time 4 to 5 days with 40
4-processor alpha machines. Overall, WGA was allowed to use up to 100 GB RAM
and took 20,000 hours.

Compartmentalised shotgun assembly (CSA), applied to clusters of the whole se-
quence stretching over published BAC contigs (multiple megabase regions of the
genome), was a variation on the WGA. Clusters were identified by taking BAC con-
tigs from the public database, aligning those with Celera data and separating them
from other sequence data. This analysis led Celera to conclude that some 240 Mbp
of unique sequence from regions not covered by the public consortium was in their
possession. Assemblies for each locale were performed consecutively, and then used

170

to build larger scaffolds and contigs which were finally placed on the genome maps
using STS information (via electronic PCR) and human curation.

� Spidey, written by S. Wheelan (quoted as private communication in [57]) was used
in gene analysis. No further information is available.

� Acembly is a

graphic interactive program to support shotgun and directed sequencing
projects,

written by Danielle and Jean Thierry-Mieg and Ulrich Sauvage, available at http://
www.infobiogen.fr/doc/ACEDBdoc/Acembly.doc.html. It can also be run in an au-
tomatic mode and itcan use, to generate the assembly, both the sequences of the reads and
various kinds of additional information, like multiple reads from the same subclone, mapping
information or restriction fragment lengths.

� Ensemble is at http://www.ensembl.org/. It is a pipeline of sequence analysis pro-
grams encompassing all types of gene prediction and feature detection. It presents an
interface to a repository of sequence and annotation data, with navigational and query
facilities based on HTML forms and a clickable GIF interface to genome maps. Data
available at the web site are generated for each new sequence release and the full
processing run using a complex combination of software modules takes several days.
Data and software files are also available via FTP. The database used is Mysql [166].
A new genome browser to be used by Ensembl is being developed by the project
Apollo.

� Smith-Waterman [203] is an exhaustive sequence similarity comparison program which
examines the entire dynamic programming matrix in search of the highest similarity
score which is then output along with the alignment. An implementation of this al-
gorithm is available from http://www-hto.usc.edu/software/seqaln/. We refer to this
algorithm in Chapter 5.

� SMART [198]

allows the identification and annotation of genetically mobile domains and
the analysis of domain architectures (http://SMART.embl-heidelberg.de).
More than 400 domain families found in signalling, extra-cellular and
chromatin-associated proteins are detectable. These domains are exten-
sively annotated with respect to phyletic distributions, functional class,
tertiary structures and functionally important residues. Each domain found
in a non-redundant protein database as well as search parameters and
taxonomic information are stored in a relational database system. User
interfaces to this database allow searches for proteins containing specific
combinations of domains in defined taxa.

SMART was used in the annotation of genes.

� ePCR [195, 196] can be used at http://www.ncbi.nlm.nih.gov/STS/. This software,
based on hashing and an underlying database UniSTS, combining all known STS

171

resources, compares a query DNA sequence against the database of known STS am-
plimers (end sequences) and decides on the basis of amplimer distance and orientation
if the genomic sequence contains any known STS sequences. This tool can be used
to check if a piece of sequence in our possession can be placed on the map of known
STSs. In the sequencing context, this is both a mapping and a quality control tool.

� MUMmer [66] is a global alignment tool for entire genomes or longer fragments of
genomic sequence. It uses a suffix tree to find repetitive sequences in two genomes,
and then attempts to create a global alignment where parts of the original sequences
may be reshuffled.

� PolyBayes [150]

is a computer program for the automated analysis of single-nucleotide
polymorphism (SNP) discovery in redundant DNA sequences. The pri-
mary motivation for its development is to provide a general and reliable
tool for the discovery of genetic variations in what is an exponentially in-
creasing volume of sequence data in public and private databases. The
software integrates algorithmic solutions to three of the main challenges
in sequence-based SNP discovery: multiple sequence alignment, paralog
identification and SNP detection.

Software is available at: http://genome.wustl.edu/gsc/Informatics/polybayes/.

� Neighbourhood quality standard (NQS) [191] is an SNP identification program. As
both PolyBayes and NQS combine sequence analysis and statistics, they remain out-
side our focus.

� SIM is an alignment program which finds k best non-intersecting alignments between
two sequences or within a sequence using dynamic programming techniques [109].
This software belongs in the area of multiple sequence alignment which we do not
discuss in our thesis.

172

Appendix C

VLBD Journal invited paper —
Database Indexing for Large DNA
and Protein Sequence Collections

This paper is an invited submission to VLDB Journal in November 2001 by Ela Hunt,
Malcolm P. Atkinson and Robert W. Irving.

Abstract

Our aim is to develop new database technologies for the approximate matching of unstruc-
tured string data using indexes. We explore the potential of the suffix tree data structure in
this context. We present a new method of building suffix trees, allowing us to build trees
in excess of RAM size, which has hitherto not been possible. We show that this method
performs in practice as well as theO(n) method of Ukkonen [224]. Using this method we
build indexes for 200 Mb of protein and 300 Mbp of DNA, whose disk-image exceeds the
available RAM. We show experimentally that suffix trees can be effectively used in approx-
imate string matching with biological data. For a range of query lengths and error bounds
the suffix tree reduces the size of the unoptimisedO(mn) dynamic programming calcula-
tion required in the evaluation of string similarity, and the gain from indexing increases with
index size. In the indexes we built this reduction is significant, and less than0:3% of the ex-
pected matrix is evaluated. We detail the requirements for further database and algorithmic
research to support efficient use of large suffix indexes in biological applications.

Introduction

The potential for indexing

Indexing technologies speed up data searching and have been very successfully applied in
many areas of data processing. Different indexing mechanisms have been developed, each
particularly suited to the type of data it is indexing and the type of search that is required.
Indexes like B-trees [59] are now standard in database systems, and some newer indexing
structures1 are making their way into commercial systems. Text indexing for English text

1http://solutions.altavista.com/

173

is very well advanced [234] but some data types, in particular biological sequence data or
images still elude indexing, and no commercially available database system known to us
can index DNA or protein strings. The challenge in this area is the fact that biological
sequences are searched not exactly, but using approximate matching techniques. Navarro
[168] in his recent survey says that approximate string matching using indexes is an im-
portant but underdeveloped area of research. Our interest lies in this area, and in particular
in the application of string indexing to biological sequences. We investigate the suffix tree
structure, show how to build suffix trees for any size of data, and demonstrate that this data
structure can speed up biological sequence searching.

Biological sequences

DNA sequences, which hold the code of life for every living organism, can be abstractly
viewed as very long strings over a four-letter alphabet ofA, C, GandT. Proteins, which
use an alphabet of 20 symbols, are translations from selected stretches of DNA, using a
predefined translation table where each 3 letters of DNA translate to one amino-acid (AA).

Many projects to sequence the genome of some species are well advanced or concluded.
The very large number of species (and their genetic variations) that are of interest to man,
suggest that many new sequences will be revealed as the improved sequencing techniques
are deployed. At the same time, proteins from those species are also being investigated and
conceptual translations of entire genomes or their parts from DNA to protein are also made.
Consequently, we are at a technical threshold. Techniques that were capable of exploiting
the smaller collections of genetic data, for example via serial search, may require radical
revision, or at least complementary techniques. As the geneticists and medical researchers
with whom we work seek to search multiple genomes to find model organisms for the
gene functions they are studying, we have been investigating the utility of indexes. The
fundamental lack of structure in genetic sequences makes it difficult to construct efficient
and effective indexes.

The length of a DNA sequence is measured in terms of the number of base pairs (bp),
and only one base in each pair is represented, as the other base is its complement (A com-
plements T and C complements G). Because of large genome sizes, gigabase pairs (Gbp)
or megabase pairs (Mbp) are more convenient units. For example, mammalian genomes are
typically 3 Gbp in length. The largest public database of DNA2, which contains over 17
Gbp (October 2001), is an archive which holds indexes to fields associated with each DNA
entry but does not index the DNA itself. In the industrial domain, Celera Genomics3 have
sequenced several small organisms, the human genome, and four different mouse strains.
The volume of protein data is smaller, and the latest release of SWISSPROT and TREMBL
databases4 counts around 200 million AAs, i.e. 200 megabases (Mb), as AAs are stringed
into single strands and not paired helices. However, protein searching dominates because
functional similarities between distant species are best seen at the level of protein, where
similar stretches for amino-acids code for similar spatial structures and chemically active
sites.

2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucle otide
3http://www.celera.com
4http://www.expasy.org

174

Sequential scanning

Both DNA and protein sequences are accessed as flat files. Searching for similar sequences
is usually carried out by sequentially scanning the data using a filtering approach [176, 7, 8],
and discarding areas of low string similarity. Typically, this approach uses a large infras-
tructure of parallel computers. At the Sanger Centre, http://www.sanger.ac.uk, a farm of
over 400 computers is available, and a large proportion of them are used in sequence sim-
ilarity searching. The viability of this approach to searching depends on biologists being
able to localise the searches to relatively small sequences, on skill in providing appropriate
search parameters, and on batching techniques. Even under these circumstances it cannot
always deliver fast and appropriate answers. Using BLAST on the hardware configuration
described in Section C (and all 4 processors), we compared 99 queries5 (predicted human
genes of length between 429 and 5999 bp) to a BLAST “database”6 for 3 human chro-
mosomes (294 Mbp, 10% of the human genome). The search took 62 hours (average 37
minutes per query), with default BLAST parameters, and delivered 6559 hits with an av-
erage of 66.25 hits per query and a median of 34. Some hits spanned only 18 characters
but those had very high similarity. 17 out of 99 queries came from the chromosomes stored
in the BLAST “database” and they produced several exact hits each (corresponding to the
non-contiguous nature of DNA strings contributing to human genes).

As there is a rapid rise in both the volume of data and the demand for searches by
researchers investigating the mechanisms of cancer and inherited diseases like hypertension
and diabetes, it is worth investigating the possibility of accelerating these searches using
indexes.

The indexing potential

The appropriate indexes over large sequences can take many hours to construct, hence it is
infeasible to construct them for each search7. On the other hand, the sequences are relatively
stable, so that it may be possible to amortise this construction cost over many thousand
searches. That depends on developing techniques for storing the indexes persistently, i.e.
on disk. As we will explain, that has not proved straightforward, but we believe that we
now have the prototype of a viable technology. We focus our attention on persistent suffix
trees for reasons given below.

To our knowledge, no existing database technology can support indexed searches over
large DNA strings and the feasibility of indexed searches over large strings is an open re-
search question [26, 168]. Inverted files [234] are not suitable, because DNA cannot be
broken into words. For the same reason the String B-tree [81] and a prefix index [127] may
not be appropriate choices. Approaches based on q-grams [222, 169, 44, 157, 171] are fast
and proven, but cannot deliver matches that have low similarity8 to the query [168]. The
suffix array [148] is the closest competing structure, as it needs less space than a suffix tree.
This structure is under investigation [25] and might deliver fast searching for large sequence
repositories. However, it is not obvious how best to scale it up. Other competing structures

5ftp://ftp.ensembl.org/current/data/fasta/cdna/ensembl. cdna.gz
6BLAST package includes a commandformatbdwhich compresses the sequence and creates indexes of

sequence names and occurrences of non-repetitive and repetitive DNA.
7For example, the most space efficient main-memory index would take 9 hours and 45 Gbytes of RAM to

index the human genome [138].
8Low similarities are often biologically significant.

175

include the LC-trie [11] which is a compressed suffix tree and the suffix binary search tree
(SBST) [125, 126]. The SBST can be viewed as a tree implementation of a suffix array and
is more space efficient than a suffix tree. It performs very well in exact matching tests [120].

It appears that the suffix tree [232, 153, 224, 99] is a good candidate data structure
for this type of indexing, but so far, suffix trees on disk could only be built for small se-
quences, due to the so-called “memory bottleneck” [79] or “thrashing” [36]. Baeza-Yates
and Navarro [25] state that “suffix trees are not practical except when the text size to handle
is so small that the suffix tree fits in main memory”, and use a suffix array instead, which
reduces the storage required for the index. In this paper we respond to this challenge, and
show how to build large suffix trees. We also adapt the algorithm of [25] to the needs of
biological sequence searching, i.e. to the calculation of sequence similarity and not edit
distance. We focus on the indexing gain, i.e. the actual reduction in the size of the ma-
trix comparison problem, which in the worst case isO(mn), and show that for index sizes
of 200-300 million letters, the actual matrix size is reduced frommn to 0:003mn or less,
assuming suitable combinations of query length and error level.

Overview of the paper

The rest of this paper is structured as follows. Section C summarises previous work, and
Section C introduces the suffix tree. Section C presents our new algorithm for the construc-
tion of very large suffix trees. The test data and experiments results with tree construc-
tion and exact matching are described in Section C. Section C discusses our algorithm for
suffix-tree-based string similarity searching using the dynamic programming method (DP),
and Section C presents the approximate matching results. The discussion of our work is in
Section C. The paper closes with plans for further work, in Section C, and Conclusions.

Previous work

We first review persistent suffix tree construction and suffix tree storage optimisations. We
then position the dynamic programming technique in the context of approximate match-
ing. Finally, we focus briefly on biological applications which use approximate matching
techniques.

Persistent trees

Persistent indexes to small sequences have been built previously. Bieganski [33], built per-
sistent suffix trees up to 1 Mbp. Recently, Baeza-Yates and Navarro [170, 25] built persistent
suffix trees for sequences of 1 Mbp using a machine with small memory (64 MB) and con-
cluded that trees in excess of RAM size cannot be built. Farach’s theoretical work to remove
the I/O problem [79] reduces suffix tree creation complexity to that of sorting and extends
the computational model to take into account disk access. The “memory bottleneck” is con-
sidered to lie in random access to the string being indexed. In our opinion, it is not only
the source string itself but the tree data structure and the suffix links which contribute to
the bottleneck. An empirical evaluation of that method has not been reported. The only
recent accounts of large persistent suffix trees representing sequences of 20.5 Mbp are in
our previous work [113, 120].

176

Optimisations

Optimisations of suffix tree structure were undertaken by McCreight [153], and more re-
cently by Kurtz [138]. Kurtz reduced the RAM required to around 13 bytes per character
indexed, for DNA (our measurements using Kurtz’s code), but his storage schemes have not
been tested on disk yet. We believe that some extra space overhead will be inevitable. Since
Kurtz’s tree uses suffix links, it may suffer from the same “memory bottleneck” if moved
into the database world. It appears that further investigation in this direction is warranted.

Compact encodings of the suffix tree, based on a binary representation of the text, have
been investigated by Munro and Clark [54, 55, 164] and Larsson [10, 140], but Munro [164]
states that compact suffix trees will require too many disk accesses to make the structure
viable for secondary memory use.

Approximate matching techniques

Recent overviews of approximate text searching methods [168, 26] are available and present
a full classification of the available techniques. The techniques can be divided into dynamic
programming (DP), automata, bit-parallelism and filtering.

A R N D C Q !

A 4 -1 -2 -2 0 -1
R -1 5 0 -2 -3 1
N -2 0 6 1 -3 0
D -2 -2 1 6 -3 0
C 0 -3 -3 -3 9 -3
#

Table C.1: A fragment of BLOSUM62.

3

3

s u r r yg e

s

v

e

0 0 0 0 0 0 0 0

1

2

3
4

5

6

0

0

0

1 1 1 1 1 1

1 1 2 2 2 2

2 1 2 2 3
3 2 1 1 2 3 3

4 3 2 2 1 2 3

5 4 3 3 2 2 2

s u r r yg e

s
u

r

v

y
e

0 0 0 0 0 0 0 0

0
0

0

0

0
0

1
2u

r 1

y

in the bottom−right corner of the matrix

EDIT COST MATRIX

select minimum cost

SIMILARITY MATRIX

anywhere within the matrix
select maximum similarity

S[0,j] = 0
S[i,0] = 0
S[i,j] = if (Pattern[i] == Text[j]) then
 max (S[i−1,j−1] +1, S[i−1,j] − 1, S[i,j−1] − 1, 0)

else
 max (S[i−1,j−1] −1, S[i−1,j] − 1, S[i,j−1] − 1, 0)

C[0,j] = 0
C[i,0] = i
C[i,j] = if (Pattern[i]== Text[j]) then C[i−1,j−1]
 else 1 + min (C[i−1,j], C[i,j−1], C[i−1,j−1])

0 0 0 0 00
0

0

0

0

1

0

00
0

1

0
1

2

0

2

2

1
0

0 0 0

1 0

1

2 1
2 2

1

0 0

3

using the UNIT cost model

Figure C.1: Edit cost and similarity matrices for the comparison of the patternsurveywith
the textsurgery.

DP is the technique of choice in the biological context. It involves the calculation of a matrix
where one dimension is the text and the other the pattern. By using a cost function which
rewards a match between any two characters, and punishes a mismatch or a character skip
in the text or the pattern, an overall measure of sequence divergence can be calculated. In
most theoretical work an edit cost is calculated which defines the number of transformations
(inserts, deletes and replacements) which will mutate the text into the pattern, and unit edit

177

cost functions are used. In many biological contexts it is the similarity function which is of
interest, and this is calculated in a similar manner but using a matrix which has a similarity
value for each possible match or mismatch, like the BLOSUM62 matrix [104] shown in
Table C.1. We illustrate the difference between the edit cost function and the similarity
function in Figure C.1, where we show unit cost and similarity functions. The edit and
similarity functions are further explained in [142, 203, 99, 177]. The complexity of matrix
calculation isO(mn) and optimisations of the DP calculation which reduce this complexity
are known and widely used [168].

Automata can represent the pattern and be used to find portions of text which match
it [154]. Representing the text as an automaton moves the problem into the area of text
indexing in a database context which is our focus. A suffix tree [232] or a suffix array [148]
can be viewed as such an automaton, and the factor oracle is a recent extension of the use of
automata in text searching [6]. Our work combines an automaton with the DP calculation.

Bit-parallelism can be used in combination with a pattern automaton. This technique
represents the text and the pattern as bit sequences, divides them into computer words, and
performs fast comparisons based on register logic, for instance the SHIFT and OR func-
tions [29]. It is a challenge to find appropriate logic functions to represent the automaton
computation. In comparing biological sequences the cost function itself may be read from
a matrix, so that bit parallelism combined with a pattern automaton is currently of limited
use. Future work may however change this.

Filtering techniques [215] can be used to focus the search on parts of the text which
potentially could harbour a match so that the DP calculation applies to less data and the
overall complexity of text comparison is reduced belowO(mn). This approach can use
different methods of text scanning or partitioning. Filtering used on its own is considered
to deliver efficiently only the matches which are very close to the query [168].

These strictly algorithmic approaches to pattern matching are recently being comple-
mented with approaches borrowed from the area of signal processing and data compres-
sion. Interesting new avenues have been opened by Kahveci and Singh [131] and Ferragina
and Manzini [82]. Kahveci and Singh use the wavelet transform to map genomic strings
to their local frequencies for different resolutions. They develop algorithms for both range
and nearest neighbour queries and present experimental results for up to 30 Mbp of DNA
sequence. Their technique is very promising. It needs to be investigated how to scale it
up, and how to deal with gapped alignments. Ferragina and Manzini combine compression
with a suffix array data structure and show that the performance of exact matching can be
significantly improved. Approximate matching, however, is still a challenge in that context,
and their DNA index is not large (4.6 million base pairs).

Biological applications

Biological applications use different combinations of these methods, and Gusfield [99] pro-
vides an in-depth treatment of most areas of biological string processing. We mention
applications which are close to our focus of interest. BLAST [7, 8] combines a DP calcula-
tion with q-grams, filtering, automata and bit-based comparisons. It is a heuristic approach
which cannot guarantee that all the significant matches are reported. BLAST is used very
widely in many contexts and has been used extensively in human genome analysis [226, 57].
In pattern discovery and gene prediction suffix trees can be used [37, 66, 149, 225], along
with other methods. Rocke [187], for instance, combines Gibbs sampling with a suffix tree

178

index in the area of gapped motif discovery. An application of persistent hash position trees
which are close relatives of suffix trees was reported in the context of sequence assembly
[156]. Persistent suffix arrays have been used in EST analysis [44, 157] and transient suf-
fix trees in repeat finding [139]. Considerably less research has been done in the use of
suffix trees for protein analysis, with the exception of recent work in the area of protein
classification [67]. The constraint in the use of suffix trees so far has been the difficulty of
building them on disk in excess of RAM size. We solve this problem and can therefore test
the indexing gains on large indexes to both DNA and protein data.

Suffix trees

Suffix trees are compressed digital tries. Given a string, we index all suffixes, e.g. for a
string of length 10, all substrings starting at index 0 through 9 and finishing at index 9 will
be indexed. The root of the tree is the entry point, and the starting index for each suffix is
stored in a tree leaf. Each suffix can be uniquely traced from the root to the corresponding
leaf. Concatenating all characters along the path from the root to a leaf will produce the text
of the suffix.

C

T

T

1

A

A

T

A

T

2

T

T

C

A

7

T

ROOT

A

C T

A T AC T C

C
T

TT

4

8

T

A

3

6

A

5

A

T

 A C A T C T T A
1 2 3 4 5 6 7 8

Figure C.2: An example trie onACATCTTA .

An example digital trie representingACATCTTA is shown in Figure C.2. The number of
children per node varies but is limited by the alphabet size. This trie can be compressed to
form a suffix tree, shown in Figure C.3.
To change a trie into a suffix tree, we conceptually merge each node which has only one
child with that child, recursively, and annotate the nodes with the indices of the start and
end positions of a substring indexed by that node. Commonly, a special terminator character
is also added, to ensure a one-to-one relationship between suffixes and leaves (otherwise a
suffix that is a proper prefix of another suffix would not be represented by a leaf — for

179

3
5 4 61

2−8

8

6−8 5−8

ROOT

72

3−8 7−84−8

2−2 4−4

7−8

1−1

 A C A T C T T A
1 2 3 4 5 6 7 8

Figure C.3: An suffix tree onACATCTTA .

instance node number 8 in Figure C.3). The change from a trie to a suffix tree reduces the
storage requirement fromO(n2) toO(n) [232, 153, 224].

Most implementations of the suffix tree also use the notion of the suffix link [224]. A
suffix link exists for each internal node, and it points from the tree node indexingaw to the
node indexingw, whereawandw are traced from the root anda is of length 1. Suffix links
were introduced so that suffix trees could be built inO(n) time. However, in our under-
standing, they are also the cause of the so-called “memory bottleneck” [79]. Suffix links,
shown in Figure C.4, traverse the tree horizontally, and together with the downward links of
the tree graph, make for a graph with two distinct traversal patterns, both of which are used
during construction. Ineluctably, at least one of those traversal patterns must be effectively
random access of the memory. At each level of the memory hierarchy this induces cache
misses. For example, it makes reliance on virtual memory impractical.

As would be expected from this analysis, we have observed very long tree construction
times when using disk with theO(n) suffix-link based algorithms. A first approach is
to attempt to build the trees incrementally, checkpointing the tree after each portion has
been attempted. Here, the suffix-link based algorithm exhibits another form of pathological
behaviour. The construction proceeds by splitting existing nodes, adding siblings to nodes
and filling in suffix-link pointers. As a result of the dual-traversal structure, no matter how
the tree is divided into portions, a large number of these updates apply to the tree already
checkpointed. This has the cost of installation reads and logged writes, if the checkpointed
structure is not to be jeopardised. In addition, the checkpointed portions of the tree are
repeatedly faulted into main memory by the construction traversals.

These effects combine to limit the size of tree that can be constructed and stored on disk
using suffix-link based algorithms to approximately the size of the available main memory.
For example, in Java, using 1.8 Gbytes of available main memory we could build transient
trees for up to 26 Mbp of DNA sequence. Using the suffix-link based algorithm under
PJama, checkpointing trees indexing more than 21 Mbp has not been possible [113, 120]
(the reduction on using PJama is due to two effects: (i) it increases the object header size,
and (ii) it competes for space, e.g. to accommodate the disk buffers and resident object table
[21, 143]). We have therefore investigated incremental construction algorithms in which we
forego the guarantee ofO(n) complexity.

180

9

8

6

42

7

5

3 1

AC

AC

AC$
$

$

$

$

$

$

$

C

child relationship

next suffix

AC

AC

AC$

AC

1 2 3 4 5 6 7 8 9

A C A C A C A C $

Figure C.4: Suffix tree and links onACACACAC$.

Exact matching

Exact pattern matching in a suffix tree involves one partial traversal per query. From the
root we trace the query until either a mismatch occurs, or the query is fully traced. In the
second case, we then traverse all children and gather suffix numbers representing matches.
The complexity of a suffix tree search isO(k + x) wherek is the query length andx the
number of matches in the index. Looking for queries of lengthk may be expected to bring
back a 1

ak
fraction of the whole tree, wherea is here the size of the active alphabet. For

example, a query of length 4 over a DNA index might retrieve1
256

of the tree, on average.
Composite algorithms may be necessary, where short queries are served by a serial scan of
the sequence, and longer queries use the index. The threshold at which indexing for exact
matching begins to show an advantage depends on the precise data structure used, on the
query pattern, and on the size of the sequence. We currently estimate this threshold to be in
the region of minimum query length of 10 to 12 letters for single human chromosomes. For
proteins, with a larger alphabet, much shorter queries can be evaluated efficiently.

The new tree construction algorithm

The new incremental construction algorithm trades idealO(n) performance for locality
of access on the basis of two decisions:

1. to abandon the use of suffix links, and

2. to perform multiple passes over the sequence, constructing the suffix tree for a sub-
range of suffixes at each pass.

These are both necessary, and they result in a fan-like tree structure in which partitions
can be built either consecutively or in parallel, see Figure C.5. Removing the suffix links
means that the construction of a new partition corresponding to a different subrange does
not need to modify previously checkpointed partitions of the tree. Using multiple passes,

181

root

B

C

A C A CB A B C

BA

alphabet of {A, B, C}

Figure C.5: A fan-like structure of the partitioned suffix tree, with 9 partitions, using prefix
length 2.

each dealing with a disjoint subrange of the suffixes, means that it is not necessary to access
or update the previously checkpointed partitions. Data structures for the complete partitions
can be evicted from main memory and will not be faulted back in during the rest of the tree’s
construction. Thus the main memory is available for the next partition and its size is a deter-
minant of the partition size and hence the number of passes needed. An additional benefit of
this partitioned structure is that the probable clustering of contemporaneously checkpointed
data will suit the lookup and search algorithms. Further details of our algorithm are now
presented.

Phased tree construction

SeveralO(n), suffix-link based, tree building algorithms are known [232, 153, 224, 79,
147], but they have not proved appropriate for large persistent tree construction undertaken
by Navarro [170] or ourselves. In contrast, the algorithm we use isO(n2) in the worst case,
but due to the pseudo-random nature of DNA, the average behaviour isO(n logn) for this
application[212].

We base our partitions on the prefixes of each suffix, since the suffixes that have the
prefix AA fall in a different subtree from those starting withAC, AG or AT . The number
of partitions and hence the length of the prefix to be used is determined by the size of the
expected tree and the available main memory. It may be the case that smaller partitions
would be better because their impact on disk clustering would accelerate lookups, but this
has yet to be investigated.

The number of partitions required can be computed by estimating the size of a main-
memory instantiationSmm, available for tree construction, and the number of partitions,p,
is �

Smm

Amm

�
;

whereAmm is the available main memory. The actual partitioning can be carried out using
either of the two approaches we outline. One way is to scan the sequence once, for instance
using a window of size 3 (sufficient for 286 Mbp of DNA and 2 GB RAM), count the
number of occurrences of each 3-letter pattern, and then pack each partition with different

182

prefixes, using a bin-packing algorithm [59]. Alternatively, we can assume that, given the
pseudo-random nature of DNA, the tree is uniformly populated. To uniformly partition, we
calculate a prefix code,Pi, for each prefix of sufficient length,l, using the formula:

Pi =
l�1X
j=0

ci+ja
l�j�1;

whereck is the code for letterk of the sequence, anda is the number of characters in the
alphabet9. The code of a letter is its position in the alphabet, i.e.A codes as 0,C codes as
1, etc. The minimum value forPi is 0 and its maximum isal � 1. So the range of codes for
each partition, r, is given by:

r =

�
al � 1

p

�
:

The suffixes that are indexed during thejth pass of the sequence havejr � Pi < (j + 1)r.
The structure of the complete algorithm is given as pseudocode below:

for j in partitions do
for i in 0..totalLength do
if suffix i is in

partition j
new Node(i);
insert node;

endif
endfor
checkpoint;

endfor

leftIndex

child sibling

Figure C.6: Node of a thin naive tree.

A suffix tree node in our implementation consists of three fields:child reference,
sibling reference and an integer,leftIndex, shown in Figure C.6. A new node repre-
sents a suffix stretching from positioni to the end of the text string. It hasnull child and
sibling fields, and itsleftIndex set toi (its suffix number). Insertion starts from the root,
and as the search for the insertion position proceeds down the tree, the left index is updated.
This downward traversal matches the new suffix to suffixes which are already in the tree,
and which share a prefix with the new suffix. When the place of insertion is determined, the
node will either be added as a sibling to an existing node, or will cause a split of an existing
node, see Figure C.7.

9Combinations of * can be used to denote unknowns, sequence concatenation and end of sequence. Hence
a can be reduced to 5. In this casel set to 8 provides even division of partitions for all likely sequence length to
available memory ratios.

183

1. create root

2. new child
for ANA$

1

2

4 4

5

5. add $ as sibling

INSERTION ORDER
1. root
2. ANA$
3. NA$
4. A$
5. $

3. add NA$ as sibling

A$ as sibling
for ANA$ and add

3

1 32 54, split node

Tree growth

4. split node

letter with ANA$
because A$ shares the first

Figure C.7: Tree creation forANA$.

Space requirements

Our new implementation disposes of suffix links. Further to that, we reduce storage by
not storing the suffix number and the right index into the string for each node. The suffix
number is calculated during tree traversal (during the search). The right pointer into the
string is looked up in the child node, or, in the case of leaves, is equal to the size of the
indexed string. Each tree node consists of two object references costing 4 B each (child,
sibling), one integer taking up 4 B (leftIndex) and the object header (8 B for the header in
a typical implementation of the Java Virtual Machine). The observed space is some 28 B
per node in memory. The difference is due to PJama’s housekeeping structures, such as the
resident object table [143].

PJama’s structure on disk adds another 8 B per object over Java, i.e. 36 B per node. The
actual disk occupancy of our tree is around 65 B per letter indexed, close to that expected.
The observed number of nodes for DNA and proteins remains between1:6n and 1:8n,
wheren is the length of the sequence, giving an expectation of between 58 and 65 bytes
per node. Some of this space may well be free space in partitions, and some is used for
housekeeping [178]. If we wanted to encode the tree without making each node an object,
we would require 12 B per node, that is around 21 B per character indexed. But further
compression could be obtained by using techniques similar to those proposed by Kurtz
[138].

Tree building and exact matching in practice

In this section we summarise our experiments in tree building and exact matching on DNA
strings. Results for protein data were analogous, and we do not report them here. We used
DNA from 6 single chromosomes of the wormC. elegans, of 20.5 Mbp maximum10 and

10ftp://ftp.sanger.ac.uk/pub/C.eleganssequences/CHROMOSOMES/

184

some 286 Mbp merged DNA from human chromosomes 21, 22 and 111. As queries we
used short sequences, from the STS division of Entrez12 for human data, and for the worm
queries, short sequences called cDNAs. From each sequence initial characters were taken
to be used as query strings.

Our alphabet in this experiment consists ofA, C, G, T, a terminal symbol$, and* used
as a delimiter for merged sequences.

Tests were carried out using production Java 1.3 for transient measurements, and PJama,
see Section C, which is derived from Java 1.2 and uses JIT, for the persistence measure-
ments. All timing measurements were obtained using SunOS 5.7 on an Enterprise 450
SUN computer with 2 GB RAM, and data residing on local disks. In this experiment our
algorithm did not use multithreading and therefore only one of the four 300 MHz SPARC
processors was used for the main algorithm. Parts of the Java Virtual Machine, and PJama’s
object store manager, will have made some use of another processor for housekeeping tasks.

The total number of lines of Java code for the 5 data structures examined was 3216,
which includes over 10% lines of comments and print statements. The naive tree accounts
for less than 550 lines of Java code.

The persistence platform

The first set of experimental trials of our algorithms was conducted using the PJama13 plat-
form [21, 17, 22, 23, 20, 23, 179, 100, 178]. We selected PJama to minimise the software
engineering cost of our experiments. PJama enabled easy transitions between different un-
derlying tree representations, and immediate transparent store creation from Java without
any intermediate steps. Both transient and persistent trees can be produced using the same
compiled code, but a different command-line parameter for PJama indicating whether a
persistent store is being used.

Although tuned, purpose-built mechanisms will be appropriate for large-scale indexes,
the cost of implementing them and maintaining them would be an impediment to rapid
experimentation. In addition, a great many index technologies are proposed and tested, in
this area of application, as well as many others. Hence, if we can make the general purpose
persistence mechanism work for indexes, there could be considerable pay offs in reduced
implementation times and more rapid deployment.

We are investigating other persistence mechanisms, including an object-oriented database,
Gemstone/J14, and tailored mapping to files. The latter may ultimately be necessary, given
the data volumes and performance requirements. However, for the present, the general pur-
pose object-caching mechanisms of PJama allow rapid experiments with a variety of index
structures and matching algorithms.

Tree construction in memory

We compared two versions of the tree built using Ukkonen’s algorithm [224], two versions
of the naive tree of our construction, and the suffix binary search tree [125, 126]. The two
trees constructed using Ukkonen’s algorithm, time complexity ofO(n), differed only in

11ftp://ncbi.nlm.nih.gov/genomes/Hsapiens
12ftp://ncbi.nlm.nih.gov/repository/dbSTS/
13http://www.dcs.gla.ac.uk/pjama
14http://www.gemstone.com/products/j/

185

leftIndex

child sibling

SUFFIX BINARY SEARCH TREE

SUFFIX TREES WITH LINKS − Ukkonen

leftIndex
rightIndex
suffixNumber

suffixLink

siblingchild

leftIndex
rightIndex

child sibling

suffixLink

siblingchild

leftIndex

OUR NAIVE SUFFIX TREES

suffixNumber

leftChild rightChild

suffixNumber
direction
maxlcp

Figure C.8: Transient indexes built in memory.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

t
r
e
e

c
r
e
a
t
i
o
n

t
i
m
e

(
m
i
n
u
t
e
s
)

data size (Mbp)

Human DNA

SBST
TNT-naive
NST-naive

 STNSN-Ukkonen
STL-Ukkonen

Figure C.9: Time required to build an index for human DNA, the graph for TNT is super-
imposed on the graph for NST.

one detail: one of them did not explicitly store the suffix number. The two naive trees,
time complexity ofO(n2), had an analogous structural relationship: no suffix number in
one of the trees. The suffix binary search tree [125, 126] which builds inO(n logn) time
had nodes consisting of a left child, right child, suffix number, maximum longest common
prefix and a direction bit. It had the smallest overall space requirement, because per each
text character only one node is needed, while the suffix tree needs up to two nodes per text
character. We show the node layout of the structures we investigated in Figure C.8, and the
comparison of index build times in Figure C.9. Surprisingly, tree creation times seem to be
influenced predominantly by the space complexity of the data structure, and there appears
to be no difference between linear and worse than linear construction algorithms. Our data
for protein trees (not shown) exhibit the same behaviour, except that protein suffix trees are
slightly more compact (have fewer nodes) and the suffix trees and the SBST take a little
longer to construct.

186

A small persistent tree

We carried out tests with our implementation of theO(n) tree building algorithm [224]. A
tree for 20.5 Mbp of DNA was created in memory in 7 minutes on average. However, on
disk, the creation time was around 34 hours, and checkpoints at 12 million and then every
0.5 million nodes were required. We used a 2 GB log file, and one store file of 2 GB. This
was the largest tree of this type that we could build. It fitted mostly in memory (2 GB RAM,
2 GB store, some space needed for the JVM). Table C.2 shows the results obtained for a
batch of 10,000 exact matching queries run on a cold store.

query avg time per total hits
length query (ms) per batch

8 920 8,568,303
9 263 2,553,520

10 142 758,523
15 36 3,687
50 34 394

100 34 305
200 33 107

Table C.2: Cold store, a batch of 10,000 exact queries over 20.5 Mbp of worm DNA using
anO(n) index.

A large persistent tree

We then indexed 286 Mbp of DNA using the new suffix tree construction algorithm pre-
sented in this paper. The store required a 2 GB log and 19 GB in files of 2 GB maximum.
Store creation time was 19 hours in our first run, and later 13.5 hours. Queries of the same
length were sent in batches, without the use of multithreading15.
We carried out exact string matching experiments on a cold store, see Figure C.10, and on
a warm store, see Figure C.11. We observed that large batches produced faster response
times, due to the benefit of objects that had been faulted in for previous queries still being
cached on the heap.

Table C.3 demonstrates why the short queries take long to return results. The time of
query evaluation can be divided intomatchingthe query’s text by descending the tree, and
faulting in and traversing the subtree below the matched node toreport the results. For
short queries, many results are reported and the reporting time dominates because of slower
access to secondary memory. For longer queries, fewer results are found, and the average
query response improves. This observed slow performance for large result sets is partly due
to using Java.lang.Vector class to store the matches. We have now removed this source of
reporting inefficiency.

15In other experiments [120], we have demonstrated a significant speed up by using multiple threads to handle
a batch of queries over a forest of suffix binary search trees.

187

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

query length [chars]

av
g.

 r
es

po
ns

e
[m

s]

100
1,000
10,000
50,000

size of batch [queries]

Figure C.10: Cold store query performance.

0 10 20 30 40 50 60

0

2

4

6

8

10

12

14

query length [chars]

av
g.

 ti
m

e
[m

s]

500 queries
1,500 queries
2,000 queries

Figure C.11: Queries run over a warm store.

Approximate matching algorithm

Approximate searching in a suffix tree has been traditionally optimised based on the tree
with suffix links, see the work by Ukkonen [223] and Cobbs [56]. As the DP calculation is
carried out in a suffix tree with links, the last column of the alignment matrix is preserved
along with a reference to the node it applies to. Following suffix links one can exclude from
calculation all shorter suffixes. The space overhead of this optimisation is considerable as a
record of nodes visited and the relevant matrix column have to be kept, and suffix links are
needed. Baeza-Yates and Navarro [25] show that Cobbs’ implementation of his method is
slower than the depth-first tree traversal which they implement.

The approach we take follows [25], and is closely related to that of [187]. [25] assumes
unit edit costs and uses a suffix array to simulate a suffix tree. A long query is broken into
smaller substrings which are then used as individual queries, and when the index returns
potential matches those will have to assembled into longer string alignments. The top of

188

batch query avg time per total hits
size length query (ms) per batch
100 10 1070 155,007

1000 10 444 1,289,800
10000 10 620 10,217,838

100 50 197 18
1000 50 87 221

10000 50 76 660
50000 50 87 25376

Table C.3: Cold store, batches of queries evaluated over a persistent index to 286 Mbp of
DNA.

the suffix tree is scanned depth-first down to a maximum string lengthk +m wherek is
the number of errors allowed in each small fragment, andm is the query length (a part of
the original query). The DP calculation comparing the indexed text and the query is carried
out. The minimum depth of traversal ism � k. After traversingm � k characters if the
edit cost is still 0, we have matched the query withk errors and can output a match. As
consecutive columns are being calculated, if the edit cost becomes too high (there are not
enough columns left to bring the edit cost down to the required maximumk), the calculation
can stop early. The space overhead of this traversal is small, as the DP matrix has size
(m+ 1) � (m+ k+ 1). The matrix is used as a stack with the index pointing to the current
string depth of a node as measured from the root.

Our work builds on this algorithm but we make the following restrictions and changes.
We use a suffix tree and not a suffix array and build a much larger index. We do not consider
an edit function but a similarity function [203] so that our solution can be extended to deal
with non-unit costs and gaps (i.e. an “an arbitrary score matrix” [187]) This precludes the
use of fast bit arithmetic or an automaton for the pattern. We do not use filtration yet, as
more work is required to refine this approach for use with protein similarity matrices. We
implement the optimisation suggested by the authors which explores only the children of the
root which start with the firstk+1 letters of the query. Our main interest is in measuring the
actual gain from using the suffix tree as opposed to carrying out the full matrix calculation.

We redefine the problem as follows: given the pattern of lengthm find all pattern oc-
currences which reach the thresholdt, given a similarity function (our current function is
+1 for match and -1 for mismatch or character skip). This implies using a matrix of size
(m+ 1) � (2m� t+ 1).

The suffix tree is traversed depth first and the DP calculation carried out using a rectan-
gular matrix. The row and column zero are filled with nulls, as we are interested in finding
local alignments. An index points at a matrix column and reflects current distance from the
root in characters. The matrix is evaluated column-wise. Three conditions limit the depth
of the tree traversal (and matrix calculation). These are:

1. break the DP calculation whenever the required similarity threshold is reached, find
matches by traversing children,

2. stop calculating the matrix whenever we are certain that the current calculation will
never reach the threshold,

3. break on reaching a separator or teminator character.

189

Condition 2 which is evaluated after each matrix column has been calculated is expressed
as follows. currentTextIndex is the array column number (equivalent to the distance in
characters from the root).2m � t is the last text position in the matrix, and we access the
maximum score which was calculated in the current column,maximumScoreInColumn.

if currentTextIndex >= (2m - t) - t
then if (maximumScoreInColumn <=

currentTextIndex - (2m - t) + t
return

endif
endif

This condition, will have to be refined for use with similarity functions used in biology, like
the protein cost matrices PAM or BLOSUM [64, 104].

A full traversal of a suffix tree, down to the depth2m�t, could lead to performing more
DP calculations than needed for the evaluation of the matrix spanning the entire text, i.e.
O(mn2) (or O(mn logn) if we consider the pseudo-randomness of DNA data). This issue
has been approached from the point of view of theory [25, 187] but our work concentrates
on the engineering aspect and clearly distinguishes the gains from indexing from the effects
of efficient matrix calculation or the possible loss of speed due to the use of a disk-resident
index. We aim to discover what query and threshold lengths are appropriate so that we
can guarantee that significantly fewer matrix columns are calculated than would be needed
otherwise. To this aim we experiment with both DNA and protein indexes and with different
query lengths and similarity thresholds.

Approximate matching results

A transient protein tree

Our first test concerns a transient naive tree indexing 36 Mbp of protein, i.e. the entire
SWISSPROT database. We use human genes as queries, and break them into strings of 5
to 11 characters. We measure the number of DP matrix columns calculated during query
evaluation. We take themaximumobserved number of columns calculated in a given query
and threshold combination and derive themaximumof the observed ratios relative to the
DP matrix for the text of length 36 mln. Our results based on a sample of 1425 queries of
varying lengths and thresholds are summarised in Table C.4. We observe that combinations
of query lengthm and a thresholdm � 1 or m � 2 deliver a speed up in comparison to
full matrix calculation. A threshold value ofm � 1 delivers a high efficiency gain and we
observe thatless than 1% of the full matrix is being evaluated. For the threshold ofm� 2

the speed up is limited. We notice approximately two orders of magnitude ratio between the
number of columns reported form� 2 andm� 1. Thresholds ofm� 3 andm� 4 increase
the size of the matrix calculation.

A persistent protein index

A more significant indexing gain obtains for the persistent tree indexing 200 Mb of protein
(all of SWISSPROT and TREMBL data) which we now present. This data is based on
the evaluation of 10-15 queries for each combination of query length and threshold, and

190

threshold query ratio
4 5 0.0015
4 6 0.2489
5 6 0.0022
4 7 2.5200
5 7 0.3222
6 7 0.0033
4 8 6.9729
5 8 2.8402
6 8 0.3770
7 8 0.0039
6 9 2.9439
7 9 0.4234
8 9 0.0052
7 10 3.4541
8 10 0.5437
9 10 0.0062
9 11 0.5786

10 11 0.006

Table C.4: The fraction of 36 mln columns calculated for a range of thresholds and query
lengths over a transient suffix tree index for 36 Mb of protein sequence.

the maximumobserved number of columns evaluated divided by 200 mln, and shown in
Table C.5. The total number of queries executed over this data set was 312. In a larger tree
at the threshold equal tom � 1 an even smaller portion,less than 0:3%, of the full DP
matrix is evaluated. For the threshold ofm�2 the indexing gain is slightly more significant
as well. This leads us to believe that for larger protein indexes the threshold ofm� 2 will
also be beneficial in practice.

A persistent human DNA index

Table C.6 presents the indexing gain for a DNA suffix tree indexing 286 Mbp, i.e. 10% of
the human genome, where both human and yeast DNA sequences16 were used as queries.
Short DNA queries report too many matches to be of use in sequence searching and we
do not show them here. The results are based on 1334 queries of varying lengths and
thresholds. We find that indexing DNA pays off significantly, and queries with the threshold
of m � 2 reduce the size of the DP calculation to 1% of the original matrix or less, while
queries with just one mismatch, i.e. threshold equal tom� 1 evaluate between 0.01% and
0.09% of the matrix. It appears that this behaviour holds irrespective of the origins of the
DNA in the index and in the query. The threshold ofm � 3 also offers some reduction in
matrix size and we expect the indexing gain to increase for larger indexes.
These results demonstrate clearly that the potential of suffix tree indexing might be consid-
erable by delivering the benefits of the full DP calculation at a reduced cost. As the DP
calculation generally dominates the time needed to perform a search, these data point to the
fact that further work in this direction might lead to the development of a more efficient
solution to approximate pattern matching.

16We used yeast chromosome 1 from ftp://genome-ftp.stanford.edu/pub/yeast/.

191

threshold query ratio
3 5 0.0474
4 5 0.0003
4 6 0.0697
5 6 0.0004
5 7 0.0807
6 7 0.0006
6 8 0.1088
7 8 0.0007
6 9 1.4185
7 9 0.1274
8 9 0.0010
7 10 1.6888
8 10 0.1606
9 10 0.0012
9 11 0.1830

10 11 0.0013
10 12 0.2035
11 12 0.0016
10 13 2.4061
11 13 0.2260
12 13 0.0022
12 14 0.2636
13 14 0.0024
13 15 0.3012
14 15 0.0026
14 16 0.3166
15 16 0.0029

Table C.5: Ratio of columns calculated to 200 mln, based on a suffix tree indexing 200 Mb
of protein data.

Indexing performance

We now consider further issues relevant to the performance of index-based approximate
matching.

� Is the prototype index implementation fast enough and how does it compare with
carrying out the same DP calculation in memory without an index?

� Which of the query and threshold combinations deliver manageable numbers of matches,
as all matches for a longer query broken into smaller parts will have to be merged?

We now address these questions.
Our performance comparisons are calculated as follows. We measure the query execu-

tion time and divide it by the size of the DP matrix which represents the product of the text
and query. The formula we use is

time (sec)

text (Mb)� query
:

We use two benchmarks. One is BLAST which is optimised for use with multiprocessor ma-
chines. Running BLAST on the same data set and queries (using protein data) we measure

192

threshold query yeast ratio human ratio
7 8 .0001 .0001
8 9 .0001 .0001
8 10 .0029 .0027
9 10 .0001 .0001
9 11 .004 .003

10 11 .0002 .0002
10 12 .0059 .0055
11 12 .0003 .0003
11 13 .0076 .0073
12 13 .0003 .0003
11 14 .1103 .121
12 14 .0111 .0104
13 14 .0004 .0004
13 15 .0129 .0116
14 15 .0005 .0006
15 16 .0007 .0008
16 17 .0008 na
17 18 .0009 na

Table C.6: Ratio of MAX columns calculated to 286 mln, based on a suffix tree for 286
Mbp indexing human genomic DNA and human and yeast DNA queries.

the size of the data processed (query size� database size in Mb, referring to uncompressed
data sizes) and the time needed to process the query using 4 processors. Analysis of sev-
eral runs on our computer, using protein data, yields the average ratio of time in seconds to
matrix size to be:

2:39 � 10�7 sec=Mb:

The other benchmark is a full DP matrix calculation, using the same data and matrix
evaluation software (but without a suffix tree) and one processor (as in our suffix tree tests).
To calibrate the DP calculation in memory we used a circular buffer twice the query length
and Java version 1.3. This yielded the equation for the same relationship as being

time(sec) = 1:16 �matrixSize(Mb) + 66:0:

The purpose of those two benchmarks is first to measure the gain of our unoptimised
prototype implementation against a similarly unoptimised matrix calculation — i.e. we
are comparing like to like, with both implementations built under similar assumptions in
Java. The second benchmark, BLAST is a comparison with a fully tuned software program
which was developed over the years by a large team of specialists, and uses most of the
known optimisations.

To calibrate the size of the result set returned by the query, we imagine a hypothetical
query of 300 characters broken into short queries. We can then calculate the number of
matches returned for a query of length 300. As our data have a symmetrical distribution
with no outliers, we use theaverage number of results, andquery length, and obtain the
expected result set size as

matches = averageResultSize �
300

query
:

193

We present the expected number of hits for a query of 300 characters and the ratio of time
(seconds) to Mb (query size x database size) in Table C.7, for the protein data set of 200
Mb.

threshold query matches seconds:Mb
3 5 15610540 1.8536
4 5 446953 .0187
4 6 679267 1.2842
5 6 18150 .0178
5 7 52780 .9954
6 7 1719 .0179
6 8 2087 .9773
7 8 258 .0103
7 9 405 .8622
8 9 136 .0137
8 10 273 .9787
9 10 147 .0475
9 11 164 .8038

10 11 67 .0223
10 12 244 .8529
11 12 128 .0352
11 13 185 .7919
12 13 87 .0401
12 14 133 .5443
13 14 62 .0504
13 15 136 .5683
14 15 60 .0468
14 16 135 .6819
15 16 65 .0604

Table C.7: Average expected number of partial matches for a query of length 300, and time
to DP matrix size ratio in seconds per Mb for the index to 200 Mb of protein.

In Table C.8 we present the analogous results for the DNA index over 286 Mbp of the
human genome and human and yeast queries.
A careful examination of both data tables reveals that the performance of the protein index
is much slower than the performance of the DNA index. This mirrors the difference in the
indexing gain observed for both data sets, and is related to the topology of both indexes
which reflects two different alphabets. We believe that this issue requires further analysis.
This could include gathering statistics on the number of nodes present at each string depth,
as measured from the root, and a comparison with the actual number of nodes visited for all
the combinations of query length and threshold.

In this experiment we knew that reaching the speed of BLAST would not be possible,
firstly because we are using Java, and secondly because of the unoptimised matrix cal-
culation. On the other hand, the comparison with the unoptimised DP calculation shows
considerable efficiency gains. Current measurements indicate that the persistent platform
always delivers a faster match for the threshold ofm � 1 for both DNA and proteins. The
threshold ofm� 2 which offers a speed up in DNA matching is currently not attractive for
proteins, but might become so for larger indexes.

We now look at the size of the returned result set. This is a significant consideration,
as partial hits will have to be merged in search for longer string alignments. We assume

194

thres- query human human yeast yeast
hold matches sec:Mb matches sec:Mb

7 8 2212283 .0074 2291426 .0064
8 9 832903 .0029 702183 .0023
8 10 2018651 .0442 1617593 .035
9 10 51945 .0024 179303 .0011
9 11 881884 .0322 599274 .0382

10 11 179075 .0015 45276 .001
9 12 1172425 .9131 na na

10 12 434412 .0448 110891 .0348
11 12 154098 .0021 9846 .001
10 13 448850 1.0419 na na
11 13 130782 .0443 52516 .0386
12 13 85296 .003 74928 .0012
11 14 242862 .9658 221089 .7255
12 14 65970 .0459 7485 .055
13 14 58277 .003 5041 .0011
12 15 676255 .896 na na
13 15 216599 .0549 1820 .05
14 15 53030 .0039 534 .0009
14 16 137673 .0624 na na
15 16 49543 .004 169 .001
16 17 na na 54 .0009
17 18 na na 0 .0013

Table C.8: Average expected number of partial matches for a query of length 300, and time
to DP matrix size ratio in seconds per Mb, for the index to 286 Mbp of human DNA.

here that dealing with results sets larger than 100,000 hits is not feasible, and base our
considerations on a hypothetical query of 300 characters. It turns out that for the current
size of SWISSPROT and TREMBL databases the minimum viable query length is around 7
characters, and this guarantees fewer than 100,000 partial hits. Probably with query length
8 and thresholds 6 and 7 the number of hits returned will be easier to process. However, the
indexing gain for query length 8 and threshold 6 is currently modest, so threshold 7 seems
to be the only viable choice. For the DNA index we tested, useful query and threshold
values are query length 14 and thresholds 12 and 13. For both thresholds the indexing gains
is satisfactory (1% and 0.04%, respectively). For longer queries the indexing gain is more
significant but the sensitivity will descrease.

Discussion

We first discuss the new algorithm for the tree construction, and then turn our attention to
the approximate matching problem. The new incremental algorithm for constructing disk-
resident suffix trees without suffix links appears to have the potential to build arbitrarily
large indexes efficiently. We are optimistic that this construction and the subsequent in-
dex use behaviour can be made sufficiently efficient that it will be a useful component of
biological search systems. Some of the support for this claim is now presented.

Theoretical investigations of suffix tree building indicate that the use of suffix links to
obtain anO(n) algorithm is worthwhile. However, suffix links require space, and generate
a difficult load on memory, with scattered updates and reads. In Figure C.12 we showin-

195

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40 45

t
i
m
e

i
n

s
e
c
o
n
d
s

chromosome size in Mb

without suffix-links
with suffix links

Figure C.12: Tree creation in memory.

memoryperformance comparison of suffix trees with and without suffix links. We show a
close-up of tree creation times for two trees: a modified version of Ukkonen’s algorithm
[224] which does not perform a final tree scan to update the right text pointer in the leaves,
and compare it to our tree without suffix links. We are limited here by 2 GB RAM, and
carry out the tests using Java 1.3 with flags -server -Xmx1900m. The largest suffix-link tree
we can build in this space is for 25 Mbp. Up to that value, no significant difference in tree
construction speed can be observed (times are best times observed over several tree builds).

The incremental partitioned construction algorithm uses a partition size which we select.
So far our experiments suggest that this should correspond to between 5 and 20 Mbp. This
means that we are building the tree in a region where theO(n) suffix-link algorithm offers
no significant advantage.

The comparison of unoptimisedpersistenttree building times shows that our algorithm
outperforms the suffix-link tree in terms of size, and we believe that building times in the
region of 5 hours for the longest human chromosome will be possible. Our algorithm is
scalable and can be adjusted to run on computers with different memory characteristics.
More work is required to optimise the tree building, and to investigate the object placement
on disk and its influence on query performance. Our algorithm opens up the perspective
of building suffix trees in parallel, and the simplicity of our approach can make suffix trees
more popular. In the parallel context, maintaining suffix links between different tree parti-
tions may not be viable or necessary, as further characterisation of the space-time tradeoff
between suffix trees with links and without is needed.

The approximate matching algorithm which we implemented and tested with large bio-
logical data sets shows clearly that indexing of sequence suffixes is beneficial, and can sig-
nificantly reduce the size of the DP matrix calculation needed in query evaluation. We have
no access to similar results for any of the known filtering approaches, including BLAST,
and cannot make an appropriate comparison. Our approach combines filtering and the simi-
larity calculation in one step, and this might also make a comparison with other approaches
difficult, until we develop a fully optimised data structure, a well-tuned database layer, and
a robust implementation of the matrix calculation.

The actual performance of the tree compares well with the analogous matrix calcula-
tion in Java, and future speedups can be delivered by using a combination of optimisation
techniques which we are investigating. Those may include compression of the data struc-

196

ture itself (and departure from our simple object-oriented implementation), data clustering
techniques, caching techniques and algorithmic optimisations.

The BLAST implementation we used as a benchmark shows how far our prototype is
from becoming a product, and that further research is needed. We believe that implementing
BLAST on top of a suffix index, for large datasets like the human genome, could deliver
both faster searches, and, more significantly, would require fewer CPUs to carry them out.
Our work clearly demonstrates that indexing may bring expected benefits in the area of
biological searching.

Future work

Future work can be divided into the following interrelated parts.

� Improvements to the tree representation (data structure compression) and to the in-
cremental construction algorithm.

� Investigation of the interaction between approximate matching algorithms and disk-
based suffix trees.

� Investigation of alternative persistent storage solutions.

� Refinement of the cut-off used in the depth traversal of the tree, reflecting different
similarity functions and gap costs.

� Post-processing of results to build longer alignments including gap costs and overall
similarity measures.

� Integration of the algorithms with biological research tools, and usability studies.

Improving the tree representation is amenable to several strategies. We are investigating the
replacement of the top of each tree with a sparse array indexed byPi. We have also identified
significant savings by specialising nodes (similar to some aspects of Kurtz’s compression)
and we are measuring the gains from storing summaries to accelerate reporting.

At the underlying object store level, we are looking at compressions that remove the
object headers, at placement optimisations, and at improved cache management. We are
experimenting with direct storage strategies.

As the deployed system will need to be trustworthy for biologists, we started field tri-
als using Gemstone/J rather than PJama which is no longer maintained at the PEVM level
[143, 23]. This will enable us to operate on other hardware and operating system platforms
and to verify that the phenomena so far observed are not artifacts of PJama. Gemstone/J
uses a similar implementation strategy to PJama, modifying the JVM to add read and write
barriers. This provides comparable speed for large applications and nearly the same pro-
gramming convenience. We plan to return to research into optimised persistent virtual ma-
chines once an optimised open source VM is available.

We are currently adopting biological measures of sequence similarity [7, 203] and con-
centrating on alternative persistence implementations. Our ultimate aim is to enable com-
parisons of different species based on DNA and protein sequence similarity. Future match-
ing methods will be accompanied by statistical measures of sequence similarity, and will be

197

presented in the context of other biological knowledge. We see that future to lie in a uni-
form database approach to all types of biological data, including sequence, genome maps,
protein structure, protein function, and gene expression data.

We plan to investigate several applications of suffix trees to biological problems. One
of them is the identification of repeating sequence patterns on a genomic scale. Some of
those patterns, positioned outside gene sequences, point to regulatory sequences controlling
gene activity. We will also use our trees in gene comparison within and across species.
Because of the RAM limit on suffix tree size, all-against-all BLAST is traditionally used in
this context [57, 226], and it would necessitate up to

2

�
40000

2

�

gene alignments to perform full gene comparison within the human genome which has
around 40,000 genes17. The use of large suffix trees in this context is likely to be beneficial.
Finally, assembly of genomes can be speeded up using suffix trees [99].

Conclusions

An algorithm has been developed that promises to overcome a long standing problem in the
use of suffix trees. It enables arbitrarily large sequences to be indexed and the suffix tree
built incrementally on disk. Surprisingly, there seems to be no measurable disadvantage to
abandoning the suffix links that have been introduced to achieve linear-time construction
algorithms.

It has also been demonstrated that large suffix trees can reduce the required DP ma-
trix calculation to a small fraction of the matrix. Both DNA and protein data sets benefit
from indexing, and this benefit increases with the size of the index. This means that for
genomic data sets indexing can potentially deliver faster query processing. Much further
experimentation and analysis is required to develop confidence in these early, but intriguing
results.

17Blast is run in both directions because it is an asymmetric matching algorithm.

198

Appendix D

Approximate Matching Test Log and
Analysis

This appendix provides summary data and data analysis performed on the transient suffix
tree index for 36 million bases of AA and a persistent index for 200 Mb of AA, as described
in Chapter 6.

It consists of the following parts.

� The original output from our Java tests for the transient index.

� The output for the persistent index.

� SQL commands used to generate views containing summary results.

� SQL commands executed to retrieve data from the views and their output.

Output files for testing are as originally produced, but for legibility, they have been merged
from individual runs and repetitive headers were removed, as well as some lines where a
null query or query shorter than intended was submitted, due to intervening carriage returns
in the gene file used as queries. SQL data files were produced using ORACLE8.

The transient results

The data format is as follows.

1. Column 1 is the query itself.

2. Column 2 is the threshold.

3. Columns 3-5 consist of 2 numbers and the times symbol. They represent the size of
the DP matrix calculated for this query. For instance11 x 19 signifies that the query
length was 11 and the text dimension of the array was 19. The formula we used was
textDimension = 2 � queryDimension� threshold.

4. Column 6 is the number of matches recorded.

5. Column 7 is the number of nodes visited in this traversal. The contents of this column
may be used in database performance tuning in future work but are not analysed
further in this thesis.

199

6. Column 8 is the number of matrix columns for which a DP calculation was carried
out.

7. Column 9 is the time in ms needed for this traversal. This time measurement is the
total elapsed time for the entire query evelautaion, and contains within it possibly con-
siderable component of garbage collection time. We had to call the garbage collector
usingSystem:gc() Java call after each part of the traversal which found matching
leaves. Without this call we were not able to carry out any queries on the large PJama
store.

Depth tree built in 3637102 ms
query thresh DPsize Matches nodes seen depth calculated timeMs
MASPSRRLQTK 3 11 x 19 478982 13823838 1207106956 1105260
MASPSRRLQTK 4 11 x 18 25877 12410927 924568194 862621
MASPSRRLQTK 5 11 x 17 1244 8782694 537401689 513515
MASPSRRLQTK 6 11 x 16 30 8523042 402341401 394654
MASPSRRLQTK 7 11 x 15 10 6638976 218135500 223989
MASPSRRLQTK 8 11 x 14 8 6089555 113637799 130352
MASPSRRLQTK 9 11 x 13 6 1539977 17755375 23819
MASPSRRLQTK 10 11 x 12 4 19073 211288 279
VITCFKSVLLI 3 11 x 19 572529 15628847 1358461049 1275196
VITCFKSVLLI 4 11 x 18 22908 12107165 903193148 855516
VITCFKSVLLI 5 11 x 17 952 11822442 720004043 692274
VITCFKSVLLI 6 11 x 16 33 9282192 436655208 431402
VITCFKSVLLI 7 11 x 15 9 7144013 235253700 243528
VITCFKSVLLI 8 11 x 14 7 5406208 100125146 115384
VITCFKSVLLI 9 11 x 13 5 1568189 18012852 24570
VITCFKSVLLI 10 11 x 12 2 18938 209561 279
TFIFWITGVIL 3 11 x 19 279711 10233707 883686199 825973
TFIFWITGVIL 4 11 x 18 13353 7990100 588209424 555693
TFIFWITGVIL 5 11 x 17 542 5568270 337938843 325368
TFIFWITGVIL 6 11 x 16 70 5391810 252268302 248479
TFIFWITGVIL 7 11 x 15 31 5164512 168544189 173910
TFIFWITGVIL 8 11 x 14 16 4388298 79405403 92343
TFIFWITGVIL 9 11 x 13 8 1307694 15113879 23451
TFIFWITGVIL 10 11 x 12 4 18707 207691 392
AVGIWGKVSLE 3 11 x 19 479922 13629301 1190063270 1138482
AVGIWGKVSLE 4 11 x 18 19391 11233290 837725152 792468
AVGIWGKVSLE 5 11 x 17 866 10961864 668500074 642507
AVGIWGKVSLE 6 11 x 16 53 8794178 413683754 407646
AVGIWGKVSLE 7 11 x 15 18 8416698 277428305 286420
AVGIWGKVSLE 8 11 x 14 14 7387961 137446474 158147
AVGIWGKVSLE 9 11 x 13 8 1824682 20830898 28407
AVGIWGKVSLE 10 11 x 12 4 18868 209011 281
YFSLLNEKATN 3 11 x 19 732887 16238329 1419041701 1333837
YFSLLNEKATN 4 11 x 18 36559 13683026 1027699277 970312
YFSLLNEKATN 5 11 x 17 2152 11500499 705663750 676313
YFSLLNEKATN 6 11 x 16 67 9179061 435392067 427676

200

YFSLLNEKATN 7 11 x 15 10 7444247 245262776 251986
YFSLLNEKATN 8 11 x 14 8 6832081 128108970 147042
YFSLLNEKATN 9 11 x 13 4 1498991 17326947 23254
YFSLLNEKATN 10 11 x 12 4 19373 214797 290
PFVLIATGTVI 3 11 x 19 714991 17401905 1506901275 1412062
PFVLIATGTVI 4 11 x 18 44715 17294015 1282432382 1211841
PFVLIATGTVI 5 11 x 17 2506 14652845 889693266 855454
PFVLIATGTVI 6 11 x 16 116 12350150 577024657 569079
PFVLIATGTVI 7 11 x 15 10 9572748 312397712 323956
PFVLIATGTVI 8 11 x 14 6 7084101 129973415 150473
PFVLIATGTVI 9 11 x 13 5 1477863 17054180 22927
PFVLIATGTVI 10 11 x 12 1 17448 193424 261
LLGTFGCFATC 3 11 x 19 356390 12072934 1035043933 971204
MASPS4 5 x 6 1354 9188 45865 175
MASPS5 5 x 5 26 101 405 2
MASPS5 5 x 5 26 101 405 2
MASPS5 5 x 5 26 101 405 2
RLQTK 4 5 x 6 1022 10275 51295 109
RLQTK 5 5 x 5 17 99 395 19
RLQTK 5 5 x 5 17 99 395 2
RLQTK 5 5 x 5 17 99 395 2
VITCF 4 5 x 6 256 9091 45415 141
VITCF 5 5 x 5 8 98 390 1
VITCF 5 5 x 5 8 98 390 2
VITCF 5 5 x 5 8 98 390 2
SVLLI 4 5 x 6 3148 9611 47960 101
SVLLI 5 5 x 5 64 101 405 2
SVLLI 5 5 x 5 64 101 405 2
SVLLI 5 5 x 5 64 101 405 1
TFIFW 4 5 x 6 296 8051 40280 84
TFIFW 5 5 x 5 4 101 405 2
TFIFW 5 5 x 5 4 101 405 2
TFIFW 5 5 x 5 4 101 405 1
TGVIL 4 5 x 6 2088 10725 53535 107
TGVIL 5 5 x 5 81 98 390 2
TGVIL 5 5 x 5 81 98 390 1
TGVIL 5 5 x 5 81 98 390 1
AVGIW 4 5 x 6 1228 9346 46660 94
AVGIW 5 5 x 5 24 100 400 1
AVGIW 5 5 x 5 24 100 400 1
AVGIW 5 5 x 5 24 100 400 2
KVSLE 4 5 x 6 293 8077 40290 76
KVSLE 5 5 x 5 0 49 145 1
KVSLE 5 5 x 5 0 49 145 1
KVSLE 5 5 x 5 0 49 145 1
YFSLL 4 5 x 6 1561 8930 44575 91
YFSLL 5 5 x 5 22 100 400 2

201

YFSLL 5 5 x 5 22 100 400 2
YFSLL 5 5 x 5 22 100 400 2
EKATN 4 5 x 6 1091 9485 47345 94
EKATN 5 5 x 5 102 97 385 2
EKATN 5 5 x 5 102 97 385 2
EKATN 5 5 x 5 102 97 385 2
PFVLI 4 5 x 6 535 8554 42700 83
PFVLI 5 5 x 5 24 92 360 2
PFVLI 5 5 x 5 24 92 360 1
PFVLI 5 5 x 5 24 92 360 4
TGTVI 4 5 x 6 1846 10452 52165 105
TGTVI 5 5 x 5 46 139 595 2
TGTVI 5 5 x 5 46 139 595 2
TGTVI 5 5 x 5 46 139 595 2
LLGTF 4 5 x 6 2069 6409 31945 68
LLGTF 5 5 x 5 86 156 680 2
LLGTF 5 5 x 5 86 156 680 2
LLGTF 5 5 x 5 86 156 680 2
CFATC 4 5 x 6 118 6742 33715 66
CFATC 5 5 x 5 0 59 195 1
CFATC 5 5 x 5 0 59 195 1
CFATC 5 5 x 5 0 59 195 1
ASAWM4 5 x 6 231 7764 38790 75
ASAWM5 5 x 5 5 137 585 2
ASAWM5 5 x 5 5 137 585 1
ASAWM5 5 x 5 5 137 585 2
KLYAM 4 5 x 6 361 9254 46185 91
KLYAM 5 5 x 5 0 63 215 1
KLYAM 5 5 x 5 0 63 215 2
KLYAM 5 5 x 5 0 63 215 1
LTLVF 4 5 x 6 1984 10612 52970 110
LTLVF 5 5 x 5 68 135 575 3
LTLVF 5 5 x 5 68 135 575 2
LTLVF 5 5 x 5 68 135 575 2
VELVA 4 5 x 6 2451 9658 48195 107
VELVA 5 5 x 5 92 119 495 6
VELVA 5 5 x 5 92 119 495 17
VELVA 5 5 x 5 92 119 495 2
IVGFV 4 5 x 6 1051 9578 47800 99
IVGFV 5 5 x 5 21 101 405 2
IVGFV 5 5 x 5 21 101 405 1
IVGFV 5 5 x 5 21 101 405 3
RHEIK 4 5 x 6 163 8073 40345 80
RHEIK 5 5 x 5 0 59 195 1
RHEIK 5 5 x 5 0 59 195 1
RHEIK 5 5 x 5 0 59 195 1
SFKNN 4 5 x 6 358 8100 40415 80

202

SFKNN 5 5 x 5 0 69 245 1
SFKNN 5 5 x 5 0 69 245 9
SFKNN 5 5 x 5 0 69 245 1
EKALK 4 5 x 6 3403 9500 47405 103
EKALK 5 5 x 5 151 98 390 1
EKALK 5 5 x 5 151 98 390 6
EKALK 5 5 x 5 151 98 390 1
YNSTG4 5 x 6 786 9200 45920 94
YNSTG5 5 x 5 39 101 405 1
YNSTG5 5 x 5 39 101 405 2
YNSTG5 5 x 5 39 101 405 1
YRSHA4 5 x 6 383 8578 42870 86
YRSHA5 5 x 5 3 97 385 1
YRSHA5 5 x 5 3 97 385 2
YRSHA5 5 x 5 3 97 385 1
DKIQN 4 5 x 6 692 9132 45575 92
DKIQN 5 5 x 5 15 101 405 2
DKIQN 5 5 x 5 15 101 405 1
DKIQN 5 5 x 5 15 101 405 2
LHCCG4 5 x 6 84 6944 34755 69
LHCCG5 5 x 5 4 95 375 1
LHCCG5 5 x 5 4 95 375 1
LHCCG5 5 x 5 4 95 375 1
TDYRD4 5 x 6 362 8482 42360 84
TDYRD5 5 x 5 8 101 405 2
TDYRD5 5 x 5 8 101 405 1
TDYRD5 5 x 5 8 101 405 2
TDTNY 4 5 x 6 414 9089 45375 89
TDTNY 5 5 x 5 3 109 445 2
TDTNY 5 5 x 5 3 109 445 1
TDTNY 5 5 x 5 3 109 445 2
SEKGF 4 5 x 6 1176 9648 48150 96
SEKGF 5 5 x 5 32 98 390 1
SEKGF 5 5 x 5 32 98 390 2
SEKGF 5 5 x 5 32 98 390 1
KSCCK4 5 x 6 283 6183 30905 61
KSCCK5 5 x 5 8 96 380 2
KSCCK5 5 x 5 8 96 380 1
KSCCK5 5 x 5 8 96 380 2
EDCTP 4 5 x 6 217 8438 42205 81
EDCTP 5 5 x 5 6 99 395 1
EDCTP 5 5 x 5 6 99 395 2
EDCTP 5 5 x 5 6 99 395 5
RDADK4 5 x 6 621 8958 44700 88
RDADK5 5 x 5 0 72 260 1
RDADK5 5 x 5 0 72 260 1
RDADK5 5 x 5 0 72 260 1

203

NNEGC4 5 x 6 71 4289 21405 42
NNEGC5 5 x 5 0 107 435 2
NNEGC5 5 x 5 0 107 435 1
NNEGC5 5 x 5 0 107 435 2
IKVMT 4 5 x 6 198 8336 41620 80
IKVMT 5 5 x 5 5 94 370 1
IKVMT 5 5 x 5 5 94 370 1
IKVMT 5 5 x 5 5 94 370 1
IESEM 4 5 x 6 677 8360 41725 84
IESEM 5 5 x 5 10 94 370 1
IESEM 5 5 x 5 10 94 370 1
IESEM 5 5 x 5 10 94 370 1
VVAGI 4 5 x 6 2402 6146 30630 67
VVAGI 5 5 x 5 108 159 695 2
VVAGI 5 5 x 5 108 159 695 3
VVAGI 5 5 x 5 108 159 695 2
FGVAC4 5 x 6 836 9314 46480 92
FGVAC5 5 x 5 5 100 400 2
FGVAC5 5 x 5 5 100 400 5
FGVAC5 5 x 5 5 100 400 1
QLIGI 4 5 x 6 1519 10008 49965 102
QLIGI 5 5 x 5 0 94 370 2
QLIGI 5 5 x 5 0 94 370 1
QLIGI 5 5 x 5 0 94 370 2
LAYCL 4 5 x 6 174 8212 41015 79
LAYCL 5 5 x 5 22 92 360 3
LAYCL 5 5 x 5 22 92 360 1
LAYCL 5 5 x 5 22 92 360 1
RAITN 4 5 x 6 561 9091 45370 87
RAITN 5 5 x 5 0 51 155 1
RAITN 5 5 x 5 0 51 155 1
RAITN 5 5 x 5 0 51 155 1
QYEIV 4 5 x 6 28 7909 39480 76
QYEIV 5 5 x 5 0 43 115 1
QYEIV 5 5 x 5 0 43 115 1
QYEIV 5 5 x 5 0 43 115 2
MAKNP4 5 x 6 51 8464 42265 81
MAKNP5 5 x 5 0 69 245 1
MAKNP5 5 x 5 0 69 245 5
MAKNP5 5 x 5 0 69 245 1
ENCED4 5 x 6 113 6557 32755 64
ENCED5 5 x 5 3 113 465 1
ENCED5 5 x 5 3 113 465 6
ENCED5 5 x 5 3 113 465 1
HILNA 4 5 x 6 360 8763 43755 86
HILNA 5 5 x 5 7 100 400 1
HILNA 5 5 x 5 7 100 400 2

204

HILNA 5 5 x 5 7 100 400 1
AFKSK 4 5 x 6 720 8257 41210 81
AFKSK 5 5 x 5 12 100 400 2
AFKSK 5 5 x 5 12 100 400 1
AFKSK 5 5 x 5 12 100 400 1
ICKSL 4 5 x 6 321 8156 40750 83
ICKSL 5 5 x 5 17 100 400 1
ICKSL 5 5 x 5 17 100 400 1
ICKSL 5 5 x 5 17 100 400 1
ICGLV 4 5 x 6 560 8420 42065 86
ICGLV 5 5 x 5 9 100 400 1
ICGLV 5 5 x 5 9 100 400 3
ICGLV 5 5 x 5 9 100 400 1
GILAL 4 5 x 6 2172 9115 45485 96
GILAL 5 5 x 5 0 61 205 2
GILAL 5 5 x 5 0 61 205 1
GILAL 5 5 x 5 0 61 205 2
LIVLF 4 5 x 6 1944 10145 50635 107
LIVLF 5 5 x 5 60 121 505 2
LIVLF 5 5 x 5 60 121 505 2
LIVLF 5 5 x 5 60 121 505 1
GSKHF4 5 x 6 167 8552 42695 83
GSKHF5 5 x 5 4 98 390 1
GSKHF5 5 x 5 4 98 390 1
GSKHF5 5 x 5 4 98 390 2
MASPSR4 6 x 8 2888 990136 6155862 10860
MASPSR5 6 x 7 74 11581 69630 122
MASPSR6 6 x 6 2 112 552 1
MASPSR6 6 x 6 2 112 552 1
LQTKPV 4 6 x 8 1794 1297462 8003748 14311
LQTKPV 5 6 x 7 38 12436 74892 131
LQTKPV 6 6 x 6 6 104 504 1
LQTKPV 6 6 x 6 6 104 504 2
TCFKSV 4 6 x 8 673 837631 5215386 9335
TCFKSV 5 6 x 7 2 8925 53838 98
TCFKSV 6 6 x 6 1 95 456 2
TCFKSV 6 6 x 6 1 95 456 1
LIYTFI 4 6 x 8 1138 1113732 6889446 12281
LIYTFI 5 6 x 7 21 11458 68928 121
LIYTFI 6 6 x 6 2 107 522 2
LIYTFI 6 6 x 6 2 107 522 1
WITGVI 4 6 x 8 2062 838505 5244606 9253
WITGVI 5 6 x 7 58 10421 62682 114
WITGVI 6 6 x 6 7 100 480 1
WITGVI 6 6 x 6 7 100 480 1
LAVGIW 4 6 x 8 4101 1457875 8960148 16116
LAVGIW 5 6 x 7 119 13228 79446 143

205

LAVGIW 6 6 x 6 3 117 582 1
LAVGIW 6 6 x 6 3 117 582 1
KVSLEN 4 6 x 8 1632 1339814 8251056 14830
KVSLEN 5 6 x 7 20 10020 60186 104
KVSLEN 6 6 x 6 0 49 174 0
KVSLEN 6 6 x 6 0 49 174 1
FSLLNE 4 6 x 8 4813 1270337 7851000 14085
FSLLNE 5 6 x 7 72 11628 69876 123
FSLLNE 6 6 x 6 3 117 582 1
FSLLNE 6 6 x 6 3 117 582 2
ATNVPF 4 6 x 8 1398 1176150 7265982 12927
ATNVPF 5 6 x 7 33 11606 69768 123
ATNVPF 6 6 x 6 3 110 540 1
ATNVPF 6 6 x 6 3 110 540 2
LIATGT 4 6 x 8 4508 1390192 8568768 15506
LIATGT 5 6 x 7 182 13063 78462 139
LIATGT 6 6 x 6 3 116 576 1
LIATGT 6 6 x 6 3 116 576 2
IILLGT 4 6 x 8 6508 866508 5352738 9780
IILLGT 5 6 x 7 154 7350 44142 78
IILLGT 6 6 x 6 6 178 948 2
IILLGT 6 6 x 6 6 178 948 2
GCFATC4 6 x 8 519 753181 4678506 8408
GCFATC5 6 x 7 9 7858 47322 85
GCFATC6 6 x 6 4 103 498 1
GCFATC6 6 x 6 4 103 498 1
ASAWML4 6 x 8 479 711488 4383840 7739
ASAWML5 6 x 7 5 9958 59880 103
ASAWML6 6 x 6 1 158 828 1
ASAWML6 6 x 6 1 158 828 1
LYAMFL 4 6 x 8 920 1052490 6509172 11664
LYAMFL 5 6 x 7 18 10469 63048 111
LYAMFL 6 6 x 6 4 101 486 1
LYAMFL 6 6 x 6 4 101 486 2
LVFLVE 4 6 x 8 3586 1078923 6659526 12079
LVFLVE 5 6 x 7 127 11171 67218 125
LVFLVE 6 6 x 6 3 136 696 2
LVFLVE 6 6 x 6 3 136 696 2
VAAIVG 4 6 x 8 5042 758472 4688496 8433
VAAIVG 5 6 x 7 239 12825 76998 136
VAAIVG 6 6 x 6 11 132 672 2
VAAIVG 6 6 x 6 11 132 672 1
VFRHEI 4 6 x 8 264 1022771 6322050 11277
VFRHEI 5 6 x 7 8 10117 60876 106
VFRHEI 6 6 x 6 4 93 438 1
VFRHEI 6 6 x 6 4 93 438 1
NSFKNN4 6 x 8 1078 879423 5466402 9632

206

NSFKNN5 6 x 7 18 9380 56400 101
NSFKNN6 6 x 6 2 119 594 1
NSFKNN6 6 x 6 2 119 594 2
EKALKQ 4 6 x 8 6647 1221862 7542816 13896
EKALKQ 5 6 x 7 238 12333 74064 130
EKALKQ 6 6 x 6 0 109 534 1
EKALKQ 6 6 x 6 0 109 534 1
NSTGDY4 6 x 8 2028 1166815 7216890 12893
NSTGDY5 6 x 7 42 11291 67884 119
NSTGDY6 6 x 6 3 93 438 1
NSTGDY6 6 x 6 3 93 438 1
SHAVDK4 6 x 8 1436 1072502 6635214 11825
SHAVDK5 6 x 7 14 10854 65310 115
SHAVDK6 6 x 6 1 104 504 1
SHAVDK6 6 x 6 1 104 504 1
QNTLHC4 6 x 8 797 950859 5911284 10477
QNTLHC5 6 x 7 9 10536 63336 111
QNTLHC6 6 x 6 0 96 456 1
QNTLHC6 6 x 6 0 96 456 1
GVTDYR4 6 x 8 1686 1202550 7420620 13378
GVTDYR5 6 x 7 36 12218 73470 127
GVTDYR6 6 x 6 1 111 546 1
GVTDYR6 6 x 6 1 111 546 1
WTDTNY4 6 x 8 602 706865 4434042 7872
WTDTNY5 6 x 7 4 9542 57468 100
WTDTNY6 6 x 6 1 96 462 1
WTDTNY6 6 x 6 1 96 462 1
SEKGFP4 6 x 8 2122 1228909 7571610 13665
SEKGFP5 6 x 7 64 11749 70710 127
SEKGFP6 6 x 6 1 109 534 2
SEKGFP6 6 x 6 1 109 534 1
SCCKLE 4 6 x 8 288 513555 3181482 5732
SCCKLE 5 6 x 7 4 8550 51426 91
SCCKLE 6 6 x 6 0 83 378 2
SCCKLE 6 6 x 6 0 83 378 1
CTPQRD4 6 x 8 584 801119 4997658 9038
CTPQRD5 6 x 7 5 8907 53604 97
CTPQRD6 6 x 6 0 45 150 1
CTPQRD6 6 x 6 0 45 150 1
DKVNNE4 6 x 8 1395 1058249 6537534 11881
DKVNNE5 6 x 7 10 10023 60276 110
DKVNNE6 6 x 6 0 83 378 1
DKVNNE6 6 x 6 0 83 378 1
CFIKVM 4 6 x 8 692 791195 4948116 8929
CFIKVM 5 6 x 7 20 8935 53910 98
CFIKVM 6 6 x 6 2 100 480 1
CFIKVM 6 6 x 6 2 100 480 2

207

IIESEM 4 6 x 8 1611 629852 3917766 7074
IIESEM 5 6 x 7 10 6294 37794 69
IIESEM 6 6 x 6 0 142 732 2
IIESEM 6 6 x 6 0 142 732 2
VVAGIS 4 6 x 8 5190 858552 5296962 9654
VVAGIS 5 6 x 7 162 8241 49482 88
VVAGIS 6 6 x 6 4 191 1026 2
VVAGIS 6 6 x 6 4 191 1026 2
GVACFQ4 6 x 8 674 1168815 7194534 13046
GVACFQ5 6 x 7 23 10771 64752 112
GVACFQ6 6 x 6 3 105 510 1
GVACFQ6 6 x 6 3 105 510 1
IGIFLA 4 6 x 8 2740 804813 4971402 8878
IGIFLA 5 6 x 7 92 12992 78054 136
IGIFLA 6 6 x 6 5 175 930 2
IGIFLA 6 6 x 6 5 175 930 2
CLSRAI 4 6 x 8 2148 1148671 7100070 12894
CLSRAI 5 6 x 7 103 11492 69096 123
CLSRAI 6 6 x 6 2 108 528 2
CLSRAI 6 6 x 6 2 108 528 1
NNQYEI 4 6 x 8 198 568453 3531852 6404
NNQYEI 5 6 x 7 0 5033 30180 54
NNQYEI 6 6 x 6 0 99 474 1
NNQYEI 6 6 x 6 0 99 474 1
MAKNPP4 6 x 8 386 893334 5557062 9965
MAKNPP5 6 x 7 1 9339 56064 102
MAKNPP6 6 x 6 0 69 294 1
MAKNPP6 6 x 6 0 69 294 1
NCEDCH4 6 x 8 208 671497 4173996 7540
NCEDCH5 6 x 7 0 6880 41472 73
NCEDCH6 6 x 6 0 43 138 1
NCEDCH6 6 x 6 0 43 138 0
LNAEAF 4 6 x 8 2836 1255403 7750926 14008
LNAEAF 5 6 x 7 41 12448 74874 130
LNAEAF 6 6 x 6 0 112 552 2
LNAEAF 6 6 x 6 0 112 552 1
SKKICK 4 6 x 8 1536 609735 3772500 6838
SKKICK 5 6 x 7 26 10301 61872 111
SKKICK 6 6 x 6 1 104 504 1
SKKICK 6 6 x 6 1 104 504 1
LKICGL 4 6 x 8 1222 1191374 7340778 13331
LKICGL 5 6 x 7 71 11187 67302 119
LKICGL 6 6 x 6 1 109 534 2
LKICGL 6 6 x 6 1 109 534 1
FGILAL 4 6 x 8 4271 1154385 7154238 12906
FGILAL 5 6 x 7 64 11616 69774 123
FGILAL 6 6 x 6 3 114 564 2

208

FGILAL 6 6 x 6 3 114 564 1
LIVLFW 4 6 x 8 3085 1191880 7366158 13356
LIVLFW 5 6 x 7 88 12334 74148 130
LIVLFW 6 6 x 6 0 156 816 2
LIVLFW 6 6 x 6 0 156 816 2
SKHFWP4 6 x 8 167 858190 5309496 9501
SKHFWP5 6 x 7 5 8497 51150 93
SKHFWP6 6 x 6 0 73 318 1
SKHFWP6 6 x 6 0 73 318 1
VPKKAY 4 6 x 8 2427 1009485 6248052 11213
VPKKAY 5 6 x 7 20 9640 57942 102
VPKKAY 6 6 x 6 0 85 390 1
VPKKAY 6 6 x 6 0 85 390 1
MEHTFY4 6 x 8 594 719195 4512468 8031
MEHTFY5 6 x 7 4 8502 51186 90
MEHTFY6 6 x 6 0 93 438 1
MEHTFY6 6 x 6 0 93 438 1
NGEKKK4 6 x 8 3969 928773 5741436 10283
NGEKKK5 6 x 7 118 9336 56124 102
NGEKKK6 6 x 6 3 114 564 1
NGEKKK6 6 x 6 3 114 564 1
YMEIDP 4 6 x 8 986 859956 5369850 9625
YMEIDP 5 6 x 7 15 10614 63978 118
YMEIDP 6 6 x 6 2 100 480 1
YMEIDP 6 6 x 6 2 100 480 1
TRTEIF 4 6 x 8 1662 686931 4259616 7741
TRTEIF 5 6 x 7 37 12496 75174 135
TRTEIF 6 6 x 6 1 171 906 2
TRTEIF 6 6 x 6 1 171 906 2
SGNGTD4 6 x 8 2760 1096069 6777702 12188
SGNGTD5 6 x 7 66 12210 73362 128
SGNGTD6 6 x 6 0 114 564 1
SGNGTD6 6 x 6 0 114 564 2
MASPSRR4 7 x 10 5550 5920812 63416430 89384
MASPSRR5 7 x 9 240 1011432 7379001 12574
MASPSRR6 7 x 8 5 12577 88459 145
MASPSRR7 7 x 7 2 112 651 2
QTKPVIT 4 7 x 10 3144 5614421 62437074 87051
QTKPVIT 5 7 x 9 93 1115693 8104341 13768
QTKPVIT 6 7 x 8 9 12962 91259 147
QTKPVIT 7 7 x 7 2 112 644 2
FKSVLLI 4 7 x 10 8462 6379387 71792805 100147
FKSVLLI 5 7 x 9 295 1285266 9307501 15713
FKSVLLI 6 7 x 8 10 13537 95130 158
FKSVLLI 7 7 x 7 1 112 644 2
TFIFWIT 4 7 x 10 881 4278128 44425458 62208
TFIFWIT 5 7 x 9 24 797730 5823797 9731

209

TFIFWIT 6 7 x 8 7 10502 73997 125
TFIFWIT 7 7 x 7 2 105 595 1
VILLAVG 4 7 x 10 12084 6158027 66628100 93007
VILLAVG 5 7 x 9 676 1466040 10601822 18074
VILLAVG 6 7 x 8 50 14396 101276 166
VILLAVG 7 7 x 7 5 143 861 2
WGKVSLE4 7 x 10 3978 5509289 62717781 85412
WGKVSLE5 7 x 9 114 1098839 7999614 13415
WGKVSLE6 7 x 8 9 13128 92379 151
WGKVSLE7 7 x 7 2 106 609 1
YFSLLNE 4 7 x 10 7590 6678237 73554789 101135
YFSLLNE 5 7 x 9 161 1118185 8151437 13519
YFSLLNE 6 7 x 8 6 13393 94332 157
YFSLLNE 7 7 x 7 2 115 665 1
ATNVPFV 4 7 x 10 2779 6585557 71652623 99206
ATNVPFV 5 7 x 9 81 1190297 8623447 14476
ATNVPFV 6 7 x 8 5 12556 88340 145
ATNVPFV 7 7 x 7 2 112 644 1
IATGTVI 4 7 x 10 7964 7036351 76090175 105109
IATGTVI 5 7 x 9 309 1245471 9040493 15177
IATGTVI 6 7 x 8 12 14133 99428 165
IATGTVI 7 7 x 7 2 121 707 2
LLGTFGC 4 7 x 10 5404 6095267 63392378 88816
LLGTFGC 5 7 x 9 176 878089 6354306 10735
LLGTFGC 6 7 x 8 7 8964 62993 108
LLGTFGC 7 7 x 7 2 186 1169 2
ATCRASA4 7 x 10 2571 5346182 57519175 79539
ATCRASA5 7 x 9 62 880407 6417369 10675
ATCRASA6 7 x 8 3 11590 81676 133
ATCRASA7 7 x 7 1 146 882 2
MLKLYAM4 7 x 10 2255 5026772 53033904 74071
MLKLYAM5 7 x 9 67 1056127 7684621 12853
MLKLYAM6 7 x 8 5 12911 90811 150
MLKLYAM7 7 x 7 0 73 371 1
LTLVFLV 4 7 x 10 7814 6022650 62295947 87923
LTLVFLV 5 7 x 9 339 834126 6042358 10173
LTLVFLV 6 7 x 8 15 15285 107625 180
LTLVFLV 7 7 x 7 5 192 1204 2
LVAAIVG 4 7 x 10 12600 6540110 69770582 97070
LVAAIVG 5 7 x 9 688 1474137 10645068 18143
LVAAIVG 6 7 x 8 29 15190 106750 175
LVAAIVG 7 7 x 7 2 123 721 1
VFRHEIK 4 7 x 10 678 4833458 55132378 74558
VFRHEIK 5 7 x 9 21 1149060 8313424 13962
VFRHEIK 6 7 x 8 4 11735 82439 136
VFRHEIK 7 7 x 7 4 93 518 1
SFKNNYE4 7 x 10 1519 5835316 64137339 88127

210

SFKNNYE5 7 x 9 50 1099341 7959294 13317
SFKNNYE6 7 x 8 1 11276 79289 129
SFKNNYE7 7 x 7 0 69 343 1
ALKQYNS4 7 x 10 3284 7516527 82862626 113314
ALKQYNS5 7 x 9 105 1543686 11097401 19783
ALKQYNS6 7 x 8 2 14492 101934 168
ALKQYNS7 7 x 7 1 113 658 2
GDYRSHA4 7 x 10 1336 5541911 62510322 84804
GDYRSHA5 7 x 9 13 1131964 8200773 13770
GDYRSHA6 7 x 8 0 11689 82089 137
GDYRSHA7 7 x 7 0 65 315 2
DKIQNTL 4 7 x 10 2826 5790124 66252676 89817
DKIQNTL 5 7 x 9 87 1321694 9546656 16073
DKIQNTL 6 7 x 8 5 12926 91007 148
DKIQNTL 7 7 x 7 2 111 644 2
CCGVTDY4 7 x 10 1761 3855465 41560379 57380
CCGVTDY5 7 x 9 32 535441 3911397 6653
CCGVTDY6 7 x 8 4 5212 36757 60
CCGVTDY7 7 x 7 2 162 1001 2
DWTDTNY4 7 x 10 734 3317188 35304710 48697
DWTDTNY5 7 x 9 7 708996 5203695 8499
DWTDTNY6 7 x 8 1 9378 65975 109
DWTDTNY7 7 x 7 0 104 588 2
SEKGFPK4 7 x 10 3495 6975755 75387207 104331
SEKGFPK5 7 x 9 130 1244867 8992305 15081
SEKGFPK6 7 x 8 5 12666 89229 148
SEKGFPK7 7 x 7 1 109 630 2
CCKLEDC4 7 x 10 2368 4675467 49050288 68776
CCKLEDC5 7 x 9 48 499674 3640049 5996
CCKLEDC6 7 x 8 2 5023 35371 62
CCKLEDC7 7 x 7 1 145 889 1
PQRDADK4 7 x 10 2143 5267591 59032211 80713
PQRDADK5 7 x 9 45 1048635 7620277 12588
PQRDADK6 7 x 8 2 11765 82698 135
PQRDADK7 7 x 7 2 103 588 1
NNEGCFI 4 7 x 10 671 4710920 50331288 70116
NNEGCFI 5 7 x 9 9 674300 4885251 8256
NNEGCFI 6 7 x 8 1 5782 40670 136
NNEGCFI 7 7 x 7 0 109 630 2
VMTIIES 4 7 x 10 2550 5673793 63132076 86479
VMTIIES 5 7 x 9 82 1068884 7769307 13041
VMTIIES 6 7 x 8 4 12096 85148 141
VMTIIES 7 7 x 7 1 105 595 2
MGVVAGI4 7 x 10 6767 4229573 46158952 63557
MGVVAGI5 7 x 9 448 1031686 7530439 12755
MGVVAGI6 7 x 8 21 13311 93667 160
MGVVAGI7 7 x 7 2 108 623 1

211

FGVACFQ4 7 x 10 2262 6626654 70891996 98314
FGVACFQ5 7 x 9 52 1086880 7874083 13320
FGVACFQ6 7 x 8 6 11756 82670 139
FGVACFQ7 7 x 7 2 125 735 2
IGIFLAY 4 7 x 10 4177 4564644 51160837 69958
IGIFLAY 5 7 x 9 163 875570 6339634 10660
IGIFLAY 6 7 x 8 16 14936 105084 174
IGIFLAY 7 7 x 7 2 189 1183 2
LSRAITN 4 7 x 10 5057 8159621 90720238 124548
LSRAITN 5 7 x 9 177 1611594 11597537 19644
LSRAITN 6 7 x 8 7 14238 100023 162
LSRAITN 7 7 x 7 2 120 700 2
MAKNPPE4 7 x 10 1162 5559409 60937331 83659
MAKNPPE5 7 x 9 16 1027974 7476707 12633
MAKNPPE6 7 x 8 0 10883 76314 125
MAKNPPE7 7 x 7 0 69 343 1
CEDCHIL 4 7 x 10 420 3504886 38389554 52805
CEDCHIL 5 7 x 9 14 840045 6096979 10382
CEDCHIL 6 7 x 8 0 9043 63700 109
CEDCHIL 7 7 x 7 0 87 469 2
AEAFKSK 4 7 x 10 4077 4832136 52124023 72584
AEAFKSK 5 7 x 9 154 803351 5820472 9841
AEAFKSK 6 7 x 8 3 13516 95158 159
AEAFKSK 7 7 x 7 1 183 1141 3
ICKSLKI 4 7 x 10 3276 5469366 59421362 82399
ICKSLKI 5 7 x 9 154 890130 6486704 10811
ICKSLKI 6 7 x 8 0 10270 72359 119
ICKSLKI 7 7 x 7 0 108 616 1
GLVFGIL 4 7 x 10 6687 7386380 79207177 110411
GLVFGIL 5 7 x 9 333 1364165 9863154 16724
GLVFGIL 6 7 x 8 14 14889 104713 180
GLVFGIL 7 7 x 7 0 135 805 2
LTLIVLF 4 7 x 10 8039 5965082 63868868 89717
LTLIVLF 5 7 x 9 342 960819 6961381 11769
LTLIVLF 6 7 x 8 18 16958 119357 197
LTLIVLF 7 7 x 7 1 214 1358 3
GSKHFWP4 7 x 10 619 5823829 62968899 87216
GSKHFWP5 7 x 9 13 1164257 8377460 14194
GSKHFWP6 7 x 8 0 10582 74340 122
GSKHFWP7 7 x 7 0 101 567 1
VPKKAYD4 7 x 10 3337 4648157 50804208 69966
VPKKAYD5 7 x 9 52 1138242 8236081 14044
VPKKAYD6 7 x 8 0 11078 77910 127
VPKKAYD7 7 x 7 0 85 455 1
EHTFYSN4 7 x 10 1410 4994558 55853602 76480
EHTFYSN5 7 x 9 39 1003263 7291193 12220
EHTFYSN6 7 x 8 0 9635 67725 115

212

EHTFYSN7 7 x 7 0 55 245 2
EKKKIYM 4 7 x 10 5329 3266742 34207180 48237
EKKKIYM 5 7 x 9 200 678588 4914623 8330
EKKKIYM 6 7 x 8 10 12913 90769 152
EKKKIYM 7 7 x 7 0 111 637 2
IDPVTRT 4 7 x 10 3319 6108132 67351466 93141
IDPVTRT 5 7 x 9 127 1149738 8345232 14031
IDPVTRT 6 7 x 8 12 13481 94983 158
IDPVTRT 7 7 x 7 0 113 651 1
IFRSGNG 4 7 x 10 3497 6028531 66716986 91408
IFRSGNG 5 7 x 9 95 1121997 8151934 13675
IFRSGNG 6 7 x 8 1 12422 87528 147
IFRSGNG 7 7 x 7 0 97 546 2
DETLEVH 4 7 x 10 5747 7513302 81634896 113375
DETLEVH 5 7 x 9 122 1228450 8908298 15085
DETLEVH 6 7 x 8 3 12915 90734 153
DETLEVH 7 7 x 7 0 54 238 1
FKNGYTG4 7 x 10 2784 5711025 62459873 86445
FKNGYTG5 7 x 9 57 1020804 7427847 12427
FKNGYTG6 7 x 8 1 12041 84826 140
FKNGYTG7 7 x 7 0 107 616 2
YFVGLQK4 7 x 10 2622 5580170 63655221 86806
YFVGLQK5 7 x 9 58 1157630 8414301 14165
YFVGLQK6 7 x 8 0 11977 84112 139
YFVGLQK7 7 x 7 0 100 567 1
FIKTQIK 4 7 x 10 2147 5883791 63326403 87905
FIKTQIK 5 7 x 9 64 982754 7130347 11966
FIKTQIK 6 7 x 8 3 10932 77070 127
FIKTQIK 7 7 x 7 0 106 609 1
IPEFSEP 4 7 x 10 3263 5755101 62604262 86757
IPEFSEP 5 7 x 9 64 1052091 7648368 12971
IPEFSEP 6 7 x 8 2 12033 84665 147
IPEFSEP 7 7 x 7 0 82 434 1
EEIDENE 4 7 x 10 5300 4720308 49843906 69736
EEIDENE 5 7 x 9 272 682251 4980521 8427
EEIDENE 6 7 x 8 9 7817 55104 93
EEIDENE 7 7 x 7 0 212 1351 2
ITTTFFE 4 7 x 10 2796 3192247 33492781 47112
ITTTFFE 5 7 x 9 51 644769 4675881 7862
ITTTFFE 6 7 x 8 0 12321 86730 143
ITTTFFE 7 7 x 7 0 99 553 2
MASPSRRL4 8 x 12 8587 6609273 152011552 174378
MASPSRRL5 8 x 11 481 6000150 76353792 102407
MASPSRRL6 8 x 10 10 1189725 9924792 15809
MASPSRRL7 8 x 9 4 14274 114872 177
TKPVITCF 4 8 x 12 4590 8717672 199326888 226678
TKPVITCF 5 8 x 11 132 6240751 78735208 103650

213

TKPVITCF 6 8 x 10 5 1189583 9886616 15462
TKPVITCF 7 8 x 9 4 14166 113944 178
SVLLIYTF 4 8 x 12 11839 8920507 204943496 230077
SVLLIYTF 5 8 x 11 258 6425626 80745672 106138
SVLLIYTF 6 8 x 10 12 1644404 13570984 21566
SVLLIYTF 7 8 x 9 2 15211 122336 189
FWITGVIL 4 8 x 12 7910 7180762 167553272 187877
FWITGVIL 5 8 x 11 334 4720223 62547576 80192
FWITGVIL 6 8 x 10 30 995782 8360512 13057
FWITGVIL 7 8 x 9 12 12227 98568 161
AVGIWGKV4 8 x 12 5377 8360213 189326888 213189
AVGIWGKV5 8 x 11 188 7176464 88594560 115720
AVGIWGKV6 8 x 10 21 1266721 10488736 16516
AVGIWGKV7 8 x 9 4 13244 106672 164
LENYFSLL 4 8 x 12 7732 8570960 197115288 221885
LENYFSLL 5 8 x 11 196 6628766 83552984 109322
LENYFSLL 6 8 x 10 11 1364936 11327888 17900
LENYFSLL 7 8 x 9 4 14447 116280 177
EKATNVPF4 8 x 12 5680 9064778 212184328 238093
EKATNVPF5 8 x 11 236 6993349 90705752 117991
EKATNVPF6 8 x 10 8 1510670 12483160 19800
EKATNVPF7 8 x 9 4 14815 119224 183
LIATGTVI 4 8 x 12 14727 10958402 251024912 283049
LIATGTVI 5 8 x 11 720 8096102 102210144 133499
LIATGTVI 6 8 x 10 23 1609278 13328312 20885
LIATGTVI 7 8 x 9 3 16738 134712 208
LLGTFGCF4 8 x 12 7393 8096922 180040560 203020
LLGTFGCF5 8 x 11 285 6099226 72599832 96646
LLGTFGCF6 8 x 10 12 882068 7317400 11500
LLGTFGCF7 8 x 9 4 9355 75224 117
TCRASAWM4 8 x 12 3637 8055269 181869952 203465
TCRASAWM5 8 x 11 116 5357295 66787608 87466
TCRASAWM6 8 x 10 3 876404 7349144 11493
TCRASAWM7 8 x 9 1 10293 82872 127
KLYAMFLT 4 8 x 12 2985 8872212 202749424 227891
KLYAMFLT 5 8 x 11 123 7273601 90578408 118838
KLYAMFLT 6 8 x 10 10 1314495 10896904 17138
KLYAMFLT 7 8 x 9 6 13650 109624 165
VFLVELVA 4 8 x 12 13319 8141370 184123800 207570
VFLVELVA 5 8 x 11 556 5621432 69380760 91412
VFLVELVA 6 8 x 10 53 1306561 10851856 17245
VFLVELVA 7 8 x 9 3 15061 121400 188
IVGFVFRH 4 8 x 12 4382 6959858 157440424 177029
IVGFVFRH 5 8 x 11 128 6238195 77624376 101828
IVGFVFRH 6 8 x 10 14 1191975 9913016 15640
IVGFVFRH 7 8 x 9 4 14770 118856 191
IKNSFKNN 4 8 x 12 5349 8213382 186902608 210008

214

IKNSFKNN 5 8 x 11 195 6322455 77887056 102381
IKNSFKNN 6 8 x 10 14 1061248 8840944 13897
IKNSFKNN 7 8 x 9 2 12009 96928 150
EKALKQYN4 8 x 12 13456 9010528 205222680 230475
EKALKQYN5 8 x 11 670 8146031 102245968 134168
EKALKQYN6 8 x 10 9 1432314 11860240 18780
EKALKQYN7 8 x 9 1 15765 126752 195
TGDYRSHA4 8 x 12 2783 7911428 185410272 207235
TGDYRSHA5 8 x 11 71 5780173 76046176 98107
TGDYRSHA6 8 x 10 2 1378844 11407144 17891
TGDYRSHA7 8 x 9 1 14197 114032 176
DKIQNTLH 4 8 x 12 4246 7699103 182549576 204866
DKIQNTLH 5 8 x 11 128 5800376 76736224 99013
DKIQNTLH 6 8 x 10 12 1386515 11494848 18156
DKIQNTLH 7 8 x 9 3 14224 114592 181
CGVTDYRD4 8 x 12 3770 7689235 175394880 197515
CGVTDYRD5 8 x 11 119 5477386 69166632 90362
CGVTDYRD6 8 x 10 6 1014172 8471008 13135
CGVTDYRD7 8 x 9 3 12080 97400 156
TDTNYYSE4 8 x 12 1948 5693716 132544232 147679
TDTNYYSE5 8 x 11 31 4284084 54504552 70914
TDTNYYSE6 8 x 10 3 757684 6293528 9665
TDTNYYSE7 8 x 9 2 13249 106600 163
GFPKSCCK4 8 x 12 1988 8561404 192567528 216554
GFPKSCCK5 8 x 11 71 5797430 71851208 94254
GFPKSCCK6 8 x 10 9 1016408 8428872 13171
GFPKSCCK7 8 x 9 3 10669 85664 133
EDCTPQRD4 8 x 12 1619 7120572 163195952 183611
EDCTPQRD5 8 x 11 27 5093444 64395880 83985
EDCTPQRD6 8 x 10 4 918028 7662192 12041
EDCTPQRD7 8 x 9 2 12125 97616 151
DKVNNEGC4 8 x 12 2956 6620985 153457856 172165
DKVNNEGC5 8 x 11 106 6031202 77347328 100749
DKVNNEGC6 8 x 10 6 1252096 10380480 16494
DKVNNEGC7 8 x 9 1 12779 102608 158
IKVMTIIE 4 8 x 12 3073 8010578 183887880 207567
IKVMTIIE 5 8 x 11 102 5657203 71743616 93875
IKVMTIIE 6 8 x 10 5 1199830 9958552 15774
IKVMTIIE 7 8 x 9 1 12269 98616 150
EMGVVAGI4 8 x 12 9738 6620964 151417336 170051
EMGVVAGI5 8 x 11 645 5974716 75807456 99402
EMGVVAGI6 8 x 10 30 1116656 9328840 14681
EMGVVAGI7 8 x 9 6 13947 112352 173
FGVACFQL4 8 x 12 3018 7843521 180423248 201410
FGVACFQL5 8 x 11 83 6714106 85098800 110549
FGVACFQL6 8 x 10 11 1262447 10456680 16462
FGVACFQL7 8 x 9 4 13572 109104 166

215

GIFLAYCL 4 8 x 12 6919 10406636 236248048 266080
GIFLAYCL 5 8 x 11 347 7328265 91937464 119946
GIFLAYCL 6 8 x 10 23 1261954 10485944 16317
GIFLAYCL 7 8 x 9 6 14092 113544 175
RAITNNQY 4 8 x 12 3927 8727897 200563856 224322
RAITNNQY 5 8 x 11 100 6627669 83660160 108568
RAITNNQY 6 8 x 10 4 1281739 10635872 16568
RAITNNQY 7 8 x 9 2 13127 105632 169
MAKNPPEN4 8 x 12 2444 7621471 174284208 194555
MAKNPPEN5 8 x 11 90 5561707 69879328 90738
MAKNPPEN6 8 x 10 0 1039859 8683256 13499
MAKNPPEN7 8 x 9 0 11726 94040 148
EDCHILNA 4 8 x 12 2003 6318919 149450376 166383
EDCHILNA 5 8 x 11 37 4139880 55476032 70817
EDCHILNA 6 8 x 10 0 1045736 8703624 13595
EDCHILNA 7 8 x 9 0 12540 100896 156
AFKSKKIC 4 8 x 12 7044 7322185 165653224 184953
AFKSKKIC 5 8 x 11 248 6595788 81625288 106462
AFKSKKIC 6 8 x 10 10 1132891 9445032 14883
AFKSKKIC 7 8 x 9 0 12776 102856 162
SLKICGLV 4 8 x 12 4614 9156011 211943344 237607
SLKICGLV 5 8 x 11 179 7958412 101159096 131459
SLKICGLV 6 8 x 10 4 1594978 13140632 20641
SLKICGLV 7 8 x 9 0 14825 119104 183
GILALTLI 4 8 x 12 22973 9170085 206913368 232286
GILALTLI 5 8 x 11 1481 8245284 102066224 133581
GILALTLI 6 8 x 10 119 1487742 12368816 19345
GILALTLI 7 8 x 9 0 14919 119920 186
LFWGSKHF4 8 x 12 1586 8797327 199108072 223204
LFWGSKHF5 8 x 11 47 5994684 74937816 97574
LFWGSKHF6 8 x 10 0 1068735 8906840 13940
LFWGSKHF7 8 x 9 0 13121 105488 162
PEVPKKAY4 8 x 12 7081 7054507 160996936 180272
PEVPKKAY5 8 x 11 172 4786076 60094648 78267
PEVPKKAY6 8 x 10 6 1199904 9979896 15684
PEVPKKAY7 8 x 9 0 14570 117272 179
MEHTFYSN4 8 x 12 2007 6305374 147293488 163855
MEHTFYSN5 8 x 11 71 4600205 59783312 76867
MEHTFYSN6 8 x 10 0 896337 7540392 11639
MEHTFYSN7 8 x 9 0 11173 89776 138
EKKKIYME 4 8 x 12 7326 5429228 121101376 136221
EKKKIYME 5 8 x 11 229 3270341 39220096 52103
EKKKIYME 6 8 x 10 11 684574 5690816 8899
EKKKIYME 7 8 x 9 0 13978 112552 173
DPVTRTEI 4 8 x 12 5613 8299260 193097232 215905
DPVTRTEI 5 8 x 11 236 6127024 79494080 102567
DPVTRTEI 6 8 x 10 6 1289090 10702304 16703

216

DPVTRTEI 7 8 x 9 0 13871 111648 170
RSGNGTDE4 8 x 12 6863 7027562 163060344 180398
RSGNGTDE5 8 x 11 276 6371266 82390144 108052
RSGNGTDE6 8 x 10 4 1401680 11616968 18231
RSGNGTDE7 8 x 9 0 15616 125696 192
LEVHDFKN4 8 x 12 2858 9147707 211916736 237038
LEVHDFKN5 8 x 11 60 6841587 87752264 113715
LEVHDFKN6 8 x 10 1 1616535 13308616 21043
LEVHDFKN7 8 x 9 0 14897 119808 186
YTGIYFVG 4 8 x 12 3865 6570377 149956880 167229
YTGIYFVG 5 8 x 11 104 5910730 74667688 96802
YTGIYFVG 6 8 x 10 2 1112676 9275680 14482
YTGIYFVG 7 8 x 9 0 14388 115816 180
QKCFIKTQ 4 8 x 12 1763 6362585 145906720 163036
QKCFIKTQ 5 8 x 11 28 4149584 52944856 68505
QKCFIKTQ 6 8 x 10 0 774003 6497464 9911
QKCFIKTQ 7 8 x 9 0 11345 91200 140
KVIPEFSE 4 8 x 12 6667 8861314 205382160 230398
KVIPEFSE 5 8 x 11 222 6321111 81921632 105874
KVIPEFSE 6 8 x 10 4 1384700 11477656 18082
KVIPEFSE 7 8 x 9 0 13260 106592 161
EEEIDENE 4 8 x 12 11429 5253025 117438016 131957
EEEIDENE 5 8 x 11 526 3303534 39701688 52490
EEEIDENE 6 8 x 10 32 349013 2922120 4439
EEEIDENE 7 8 x 9 3 9264 74808 117
ITTTFFEQ 4 8 x 12 3854 4780342 108495304 121255
ITTTFFEQ 5 8 x 11 66 3202817 39192752 51330
ITTTFFEQ 6 8 x 10 3 715479 5953192 9285
ITTTFFEQ 7 8 x 9 0 14061 113216 177
VIWVPAEK4 8 x 12 3608 5564872 129263664 143821
VIWVPAEK5 8 x 11 89 3710355 48058936 62147
VIWVPAEK6 8 x 10 0 1040216 8697048 13574
VIWVPAEK7 8 x 9 0 14518 116816 181
IENRDFLK 4 8 x 12 6552 8196585 194956056 216984
IENRDFLK 5 8 x 11 331 6077060 81362040 103658
IENRDFLK 6 8 x 10 8 1464375 12128768 19134
IENRDFLK 7 8 x 9 1 14754 118856 183
SKILEICD 4 8 x 12 10082 10648381 244767168 275135
SKILEICD 5 8 x 11 403 7938837 100555432 130996
SKILEICD 6 8 x 10 8 1419077 11741216 18637
SKILEICD 7 8 x 9 0 14675 118032 182
VTMYWINP4 8 x 12 532 5819424 135784392 152847
VTMYWINP5 8 x 11 18 4940743 63849440 82112
VTMYWINP6 8 x 10 0 1083608 9008432 14147
VTMYWINP7 8 x 9 0 12299 99040 153
LISVSELQ 4 8 x 12 11987 8914036 203726728 228462
LISVSELQ 5 8 x 11 614 8062419 101450200 132384

217

LISVSELQ 6 8 x 10 19 1571838 13038920 20648
LISVSELQ 7 8 x 9 0 17278 139040 214
MASPSRRLQ4 9 x 14 13605 8499696 322260966 337727
MASPSRRLQ5 9 x 13 656 6620523 173233602 194032
MASPSRRLQ6 9 x 12 15 6021494 87900804 112349
MASPSRRLQ7 9 x 11 6 1295459 12194379 18442
KPVITCFKS 4 9 x 14 4424 9530174 361139805 384311
KPVITCFKS 5 9 x 13 132 8733991 228522582 253698
KPVITCFKS 6 9 x 12 4 6311238 92075211 122098
KPVITCFKS 7 9 x 11 2 1329794 12414105 19718
LLIYTFIFW 4 9 x 14 6186 9264040 344479140 376089
LLIYTFIFW 5 9 x 13 183 7640763 193986693 223359
LLIYTFIFW 6 9 x 12 12 5251442 72454032 95260
LLIYTFIFW 7 9 x 11 7 924719 8673948 13156
TGVILLAVG 4 9 x 14 32131 11108791 417397716 434892
TGVILLAVG 5 9 x 13 2716 10639612 276993117 302487
TGVILLAVG 6 9 x 12 212 6864967 100926261 126192
TGVILLAVG 7 9 x 11 26 1496261 14035230 20904
WGKVSLENY4 9 x 14 14653 11779651 447165126 458625
WGKVSLENY5 9 x 13 514 8186942 217779102 235797
WGKVSLENY6 9 x 12 19 5545052 83975679 103477
WGKVSLENY7 9 x 11 6 1255126 11828583 17637
SLLNEKATN4 9 x 14 18110 10633981 404905644 417034
SLLNEKATN5 9 x 13 1032 8479101 222949044 243309
SLLNEKATN6 9 x 12 31 6011217 87871905 109589
SLLNEKATN7 9 x 11 4 1243776 11577960 17328
PFVLIATGT 4 9 x 14 19578 12338808 470363454 482777
PFVLIATGT 5 9 x 13 945 9569253 254606580 276181
PFVLIATGT 6 9 x 12 27 7078391 105567813 131145
PFVLIATGT 7 9 x 11 5 1449110 13576068 20359
IILLGTFGC 4 9 x 14 18483 9078007 335449332 345717
IILLGTFGC 5 9 x 13 738 6912719 174446892 192225
IILLGTFGC 6 9 x 12 37 4380585 60256476 76788
IILLGTFGC 7 9 x 11 6 1035363 9717318 14460
ATCRASAWM4 9 x 14 5140 8401965 312165342 320662
ATCRASAWM5 9 x 13 164 5964451 152372898 166543
ATCRASAWM6 9 x 12 7 5360754 75480156 95037
ATCRASAWM7 9 x 11 3 960569 9072531 13447
KLYAMFLTL 4 9 x 14 8096 10537559 395978949 407114
KLYAMFLTL 5 9 x 13 302 8875315 228760164 249465
KLYAMFLTL 6 9 x 12 37 7279325 102469977 129317
KLYAMFLTL 7 9 x 11 8 1339953 12556899 18843
FLVELVAAI 4 9 x 14 24112 8504159 319218273 328902
FLVELVAAI 5 9 x 13 1503 8161137 211464936 232763
FLVELVAAI 6 9 x 12 102 7400095 105980760 134134
FLVELVAAI 7 9 x 11 12 1489188 13942692 21108
GFVFRHEIK 4 9 x 14 2140 7714153 291953034 298261

218

GFVFRHEIK 5 9 x 13 59 6726894 175966101 191036
GFVFRHEIK 6 9 x 12 12 4667956 68323842 85069
GFVFRHEIK 7 9 x 11 8 1341237 12525921 18686
SFKNNYEKA4 9 x 14 4846 7736901 295404453 302804
SFKNNYEKA5 9 x 13 201 6441625 169439517 184655
SFKNNYEKA6 9 x 12 5 5886871 86055732 107218
SFKNNYEKA7 9 x 11 2 1267868 11873628 17687
KQYNSTGDY4 9 x 14 6429 9558755 366421941 375423
KQYNSTGDY5 9 x 13 225 7417275 197671140 213733
KQYNSTGDY6 9 x 12 12 4885309 74310093 91743
KQYNSTGDY7 9 x 11 4 1187541 11164257 16401
SHAVDKIQN4 9 x 14 8110 10689298 408371022 418380
SHAVDKIQN5 9 x 13 200 8514784 225567036 244010
SHAVDKIQN6 9 x 12 16 6299317 93511197 116126
SHAVDKIQN7 9 x 11 3 1395304 13057038 19369
LHCCGVTDY4 9 x 14 3339 8469787 315223974 323806
LHCCGVTDY5 9 x 13 67 6157488 158088537 172144
LHCCGVTDY6 9 x 12 8 3711479 53411094 66883
LHCCGVTDY7 9 x 11 5 1033521 9728937 14484
DWTDTNYYS4 9 x 14 1823 5274230 198105993 202049
DWTDTNYYS5 9 x 13 16 3697373 95033853 103649
DWTDTNYYS6 9 x 12 4 3341372 47241360 59410
DWTDTNYYS7 9 x 11 3 827717 7843284 11421
KGFPKSCCK4 9 x 14 3366 8951382 331020171 338746
KGFPKSCCK5 9 x 13 149 6469402 164505069 179307
KGFPKSCCK6 9 x 12 18 5800750 81141912 101837
KGFPKSCCK7 9 x 11 8 1057719 9908262 14879
EDCTPQRDA4 9 x 14 3071 8693267 330833925 339043
EDCTPQRDA5 9 x 13 115 7136024 187498386 202688
EDCTPQRDA6 9 x 12 5 5140025 75357603 92906
EDCTPQRDA7 9 x 11 4 1036018 9739620 14518
KVNNEGCFI4 9 x 14 3432 9364901 352385271 361009
KVNNEGCFI5 9 x 13 77 6952499 181988829 197919
KVNNEGCFI6 9 x 12 3 4608468 67592106 84296
KVNNEGCFI7 9 x 11 2 1332329 12429495 18674
VMTIIESEM 4 9 x 14 6469 8514736 319450050 328233
VMTIIESEM 5 9 x 13 190 6264171 162711810 177071
VMTIIESEM 6 9 x 12 10 5679263 81746361 102367
VMTIIESEM 7 9 x 11 4 1090950 10282896 16686
VVAGISFGV 4 9 x 14 20303 10555107 394032699 404239
VVAGISFGV 5 9 x 13 853 8013945 206262306 224713
VVAGISFGV 6 9 x 12 38 5581421 79183233 111872
VVAGISFGV 7 9 x 11 9 974769 9145863 13439
CFQLIGIFL 4 9 x 14 10973 10184933 377748594 387604
CFQLIGIFL 5 9 x 13 344 7718087 198318132 215446
CFQLIGIFL 6 9 x 12 23 5325777 75325662 94388
CFQLIGIFL 7 9 x 11 6 804256 7676919 11226

219

YCLSRAITN 4 9 x 14 9422 10853154 413308485 421212
YCLSRAITN 5 9 x 13 364 8148764 216557613 233165
YCLSRAITN 6 9 x 12 17 6012561 89670564 110474
YCLSRAITN 7 9 x 11 8 1298415 12209517 18115
MAKNPPENC4 9 x 14 3247 7942359 298175094 304607
MAKNPPENC5 9 x 13 176 7625871 197025300 213803
MAKNPPENC6 9 x 12 0 5567138 79315272 99197
MAKNPPENC7 9 x 11 0 1077498 10162188 15073
DCHILNAEA 4 9 x 14 6342 9258622 352295235 360708
DCHILNAEA 5 9 x 13 130 7515467 197293320 213544
DCHILNAEA 6 9 x 12 4 4055784 62109180 76029
DCHILNAEA 7 9 x 11 1 858344 8171505 11938
KSKKICKSL 4 9 x 14 7567 6283939 234559476 239708
KSKKICKSL 5 9 x 13 338 5635306 143493966 156364
KSKKICKSL 6 9 x 12 11 3477828 47812275 60338
KSKKICKSL 7 9 x 11 0 766278 7173306 10730
ICGLVFGIL 4 9 x 14 13973 10953892 406571148 417468
ICGLVFGIL 5 9 x 13 675 9239476 234864531 257147
ICGLVFGIL 6 9 x 12 34 6540238 91234782 115409
ICGLVFGIL 7 9 x 11 0 1026091 9696645 14442
LTLIVLFWG 4 9 x 14 13682 8971254 335934477 344088
LTLIVLFWG 5 9 x 13 772 8601701 222198786 242748
LTLIVLFWG 6 9 x 12 38 6023069 85621014 107616
LTLIVLFWG 7 9 x 11 2 1106924 10343673 15378
KHFWPEVPK4 9 x 14 3114 7663100 288031617 294941
KHFWPEVPK5 9 x 13 61 5446893 142742556 153940
KHFWPEVPK6 9 x 12 1 3621752 53626104 65947
KHFWPEVPK7 9 x 11 0 909220 8587314 12814
AYDMEHTFY4 9 x 14 2517 8484309 320458275 326064
AYDMEHTFY5 9 x 13 30 7501691 194572458 208991
AYDMEHTFY6 9 x 12 1 5064508 73776681 91293
AYDMEHTFY7 9 x 11 0 1157261 10838133 16049
NGEKKKIYM4 9 x 14 12665 7335940 274098330 280156
NGEKKKIYM5 9 x 13 654 7034159 180906768 197698
NGEKKKIYM6 9 x 12 30 6341774 90185193 113425
NGEKKKIYM7 9 x 11 0 1220665 11435913 16942
IDPVTRTEI 4 9 x 14 8899 10540388 398910825 409079
IDPVTRTEI 5 9 x 13 395 8558645 223986393 242526
IDPVTRTEI 6 9 x 12 21 6154078 90007650 112694
IDPVTRTEI 7 9 x 11 0 1299608 12205188 18410
RSGNGTDET4 9 x 14 10691 9187549 347542236 355570
RSGNGTDET5 9 x 13 379 7031961 183880089 199300
RSGNGTDET6 9 x 12 4 6373756 93003687 116020
RSGNGTDET7 9 x 11 0 1419341 13287843 19886
EVHDFKNGY4 9 x 14 4645 9416166 359928639 370308
EVHDFKNGY5 9 x 13 101 7284162 193804110 209406
EVHDFKNGY6 9 x 12 2 5505597 82040544 101800

220

EVHDFKNGY7 9 x 11 0 1247673 11698209 17345
GIYFVGLQK 4 9 x 14 7501 8358907 318358044 326270
GIYFVGLQK 5 9 x 13 165 7984940 212340177 229726
GIYFVGLQK 6 9 x 12 4 5513270 83686860 102942
GIYFVGLQK 7 9 x 11 0 1388323 13018293 19392
FIKTQIKVI 4 9 x 14 6588 8068520 303991740 312381
FIKTQIKVI 5 9 x 13 322 7740261 201216960 218731
FIKTQIKVI 6 9 x 12 10 5924073 84726846 106399
FIKTQIKVI 7 9 x 11 0 1138108 10692945 15799
EFSEPEEEI 4 9 x 14 13930 6971190 259117875 264285
EFSEPEEEI 5 9 x 13 708 6693549 170461305 185894
EFSEPEEEI 6 9 x 12 25 4696818 65155041 81761
EFSEPEEEI 7 9 x 11 0 1080748 10174284 15200
ENEEITTTF 4 9 x 14 9269 7101217 264538026 270941
ENEEITTTF 5 9 x 13 204 5051989 129052710 140868
ENEEITTTF 6 9 x 12 9 2944929 41098536 52051
ENEEITTTF 7 9 x 11 2 701534 6615036 9759
EQSVIWVPA4 9 x 14 4450 9684381 368172216 376724
EQSVIWVPA5 9 x 13 114 8938659 234276687 253775
EQSVIWVPA6 9 x 12 3 6495630 94584231 117668
EQSVIWVPA7 9 x 11 0 1347062 12573855 18648
KPIENRDFL 4 9 x 14 6933 10265792 396398151 423054
KPIENRDFL 5 9 x 13 251 8321491 224031816 253175
KPIENRDFL 6 9 x 12 15 6373267 96461316 123680
KPIENRDFL 7 9 x 11 1 1536472 14331195 21874
NSKILEICD 4 9 x 14 15503 12510339 475824366 523115
NSKILEICD 5 9 x 13 744 10124609 266589585 308100
NSKILEICD 6 9 x 12 35 6460880 96818031 124663
NSKILEICD 7 9 x 11 1 1478792 13816656 21234
VTMYWINPT4 9 x 14 1732 7957296 300512394 323311
VTMYWINPT5 9 x 13 23 5820421 152974260 172897
VTMYWINPT6 9 x 12 0 4942056 72016911 89204
VTMYWINPT7 9 x 11 0 1092650 10262376 15132
ISVSELQDF 4 9 x 14 17066 11292250 428638995 439961
ISVSELQDF 5 9 x 13 548 7742717 205334649 222802
ISVSELQDF 6 9 x 12 15 5335194 79505208 98416
ISVSELQDF 7 9 x 11 0 1632017 15241887 22828
EEGEDLHFP4 9 x 14 11598 8985527 333721152 341649
EEGEDLHFP5 9 x 13 447 5506481 142151076 154642
EEGEDLHFP6 9 x 12 8 3521559 49993551 63000
EEGEDLHFP7 9 x 11 0 906896 8496414 12547
NEKKGIEQN4 9 x 14 11009 9211266 344433141 354647
NEKKGIEQN5 9 x 13 399 7032708 180753669 197329
NEKKGIEQN6 9 x 12 23 4566547 65450241 82244
NEKKGIEQN7 9 x 11 1 1217635 11452959 17079
QWVVPQVKV4 9 x 14 3286 5177710 191805228 196316
QWVVPQVKV5 9 x 13 101 4953474 125945667 137239

221

QWVVPQVKV6 9 x 12 5 3132192 43810632 54920
QWVVPQVKV7 9 x 11 1 734904 7012287 10401
KTRHARQAS4 9 x 14 5387 8293395 312369219 319454
KTRHARQAS5 9 x 13 228 7958402 206881362 224120
KTRHARQAS6 9 x 12 4 5192577 76169511 94551
KTRHARQAS7 9 x 11 0 1248075 11696877 17482
EELPINDYT 4 9 x 14 8510 10057308 381189222 392202
EELPINDYT 5 9 x 13 258 8290189 215793189 235276
EELPINDYT 6 9 x 12 3 5851410 84359745 105164
EELPINDYT 7 9 x 11 0 1183846 11021157 16332
MASPSRRLQT 4 10 x 16 17152 8768461 484168430 480841
MASPSRRLQT 5 10 x 15 1015 8513952 362095840 370800
MASPSRRLQT 6 10 x 14 23 6629699 195407370 210335
MASPSRRLQT 7 10 x 13 8 6055247 100502010 120100
PVITCFKSVL 4 10 x 16 8521 11181671 620605400 606537
PVITCFKSVL 5 10 x 15 214 9015099 386944500 389160
PVITCFKSVL 6 10 x 14 10 7401969 221404950 234550
PVITCFKSVL 7 10 x 13 8 6404428 108019320 129816
IYTFIFWITG 4 10 x 16 3285 6629518 360331950 353888
IYTFIFWITG 5 10 x 15 135 6036746 251120810 253757
IYTFIFWITG 6 10 x 14 28 5775190 165704500 176951
IYTFIFWITG 7 10 x 13 9 5225723 82462930 101230
ILLAVGIWGK 4 10 x 16 29489 12005276 651518450 647108
ILLAVGIWGK 5 10 x 15 1903 11632604 485003290 491680
ILLAVGIWGK 6 10 x 14 115 9107449 262935070 282010
ILLAVGIWGK 7 10 x 13 11 6508134 103455170 127497
SLENYFSLLN 4 10 x 16 20076 11464199 624687790 621031
SLENYFSLLN 5 10 x 15 790 11123764 464735910 472412
SLENYFSLLN 6 10 x 14 28 9446479 270362090 288964
SLENYFSLLN 7 10 x 13 6 7625241 118727020 145049
KATNVPFVLI 4 10 x 16 12959 12702330 707362210 697361
KATNVPFVLI 5 10 x 15 524 11034553 473512140 478389
KATNVPFVLI 6 10 x 14 39 9114371 272722440 291641
KATNVPFVLI 7 10 x 13 10 6604648 112386060 135313
TGTVIILLGT 4 10 x 16 32197 11467354 617344450 612247
TGTVIILLGT 5 10 x 15 1150 7872609 326665840 329514
TGTVIILLGT 6 10 x 14 80 7520391 215617930 229503
TGTVIILLGT 7 10 x 13 19 5156369 81578500 99459
GCFATCRASA 4 10 x 16 7244 9981682 541510220 526602
GCFATCRASA 5 10 x 15 217 8045541 334649340 340415
GCFATCRASA 6 10 x 14 22 7684875 221055850 235449
GCFATCRASA 7 10 x 13 14 5311439 85218860 102498
MLKLYAMFLT 4 10 x 16 7587 9544109 518541310 507057
MLKLYAMFLT 5 10 x 15 349 9255202 385444500 387609
MLKLYAMFLT 6 10 x 14 12 6615380 191071550 201429
MLKLYAMFLT 7 10 x 13 6 5075388 80149900 97040
VFLVELVAAI 4 10 x 16 29957 8776115 477466050 470069

222

VFLVELVAAI 5 10 x 15 1879 8516098 355719680 364378
VFLVELVAAI 6 10 x 14 150 8162806 235360270 261786
VFLVELVAAI 7 10 x 13 27 5666856 90329970 116319
GFVFRHEIKN 4 10 x 16 5949 10026032 550365360 597270
GFVFRHEIKN 5 10 x 15 126 7720906 327056230 330118
GFVFRHEIKN 6 10 x 14 17 6734562 197839140 207832
GFVFRHEIKN 7 10 x 13 12 4684271 77676130 92864
FKNNYEKALK 4 10 x 16 15651 7767604 430412220 430529
FKNNYEKALK 5 10 x 15 1033 7542718 322201760 323979
FKNNYEKALK 6 10 x 14 41 5341855 160409950 168253
FKNNYEKALK 7 10 x 13 4 4010632 67356860 80769
YNSTGDYRSH 4 10 x 16 9156 10591269 580184620 583271
YNSTGDYRSH 5 10 x 15 467 10261999 432147150 465290
YNSTGDYRSH 6 10 x 14 23 8251126 240384090 284187
YNSTGDYRSH 7 10 x 13 8 5685894 93686900 113006
VDKIQNTLHC 4 10 x 16 10678 12255928 682873000 689503
VDKIQNTLHC 5 10 x 15 357 10042420 432178610 437777
VDKIQNTLHC 6 10 x 14 23 8280895 247724410 275047
VDKIQNTLHC 7 10 x 13 11 6475658 109129800 142365
GVTDYRDWTD 4 10 x 16 5914 10631974 574884500 588636
GVTDYRDWTD 5 10 x 15 216 10280952 426534890 429800
GVTDYRDWTD 6 10 x 14 5 8280454 236705390 252127
GVTDYRDWTD 7 10 x 13 3 6540308 102419980 124653
NYYSEKGFPK 4 10 x 16 10207 10903239 597823830 599556
NYYSEKGFPK 5 10 x 15 428 8439838 358317740 362332
NYYSEKGFPK 6 10 x 14 18 6366337 187400060 198657
NYYSEKGFPK 7 10 x 13 6 4089832 68356180 81630
CCKLEDCTPQ 4 10 x 16 6194 9379591 511927330 507930
CCKLEDCTPQ 5 10 x 15 196 9102330 381155390 384610
CCKLEDCTPQ 6 10 x 14 9 7160777 205863180 218222
CCKLEDCTPQ 7 10 x 13 5 4743101 75610050 91536
DADKVNNEGC 4 10 x 16 10098 9542464 525171930 520926
DADKVNNEGC 5 10 x 15 478 9264670 392003020 399428
DADKVNNEGC 6 10 x 14 21 7533083 219270990 240399
DADKVNNEGC 7 10 x 13 5 5097655 82746110 101387
IKVMTIIESE 4 10 x 16 7792 8632949 473917050 467620
IKVMTIIESE 5 10 x 15 268 8369499 353415880 356029
IKVMTIIESE 6 10 x 14 17 8026651 234912820 249224
IKVMTIIESE 7 10 x 13 5 5699183 93448740 112239
GVVAGISFGV 4 10 x 16 28527 10898560 590159840 582284
GVVAGISFGV 5 10 x 15 1491 8384696 347692530 354424
GVVAGISFGV 6 10 x 14 88 6215710 176973500 191178
GVVAGISFGV 7 10 x 13 13 5584979 88246190 110648
CFQLIGIFLA 4 10 x 16 16000 10545363 573016980 588282
CFQLIGIFLA 5 10 x 15 815 10206321 426308160 430603
CFQLIGIFLA 6 10 x 14 44 7734973 225125090 239224
CFQLIGIFLA 7 10 x 13 8 5379990 87273140 105115

223

CLSRAITNNQ 4 10 x 16 15196 13966806 769337230 835883
CLSRAITNNQ 5 10 x 15 704 11697575 495207770 538953
CLSRAITNNQ 6 10 x 14 33 9423351 275977710 293178
CLSRAITNNQ 7 10 x 13 6 6521891 107885590 129953
MAKNPPENCE 4 10 x 16 4995 10220693 556116390 553256
MAKNPPENCE 5 10 x 15 236 7943583 331513720 333036
MAKNPPENCE 6 10 x 14 6 7626259 219037850 231999
MAKNPPENCE 7 10 x 13 0 5567531 88222650 106522
CHILNAEAFK 4 10 x 16 15294 12329924 678851700 671123
CHILNAEAFK 5 10 x 15 455 9984473 423278290 433676
CHILNAEAFK 6 10 x 14 2 7313105 217033980 243579
CHILNAEAFK 7 10 x 13 1 5408440 89960710 108244
KKICKSLKIC 4 10 x 16 11042 9808091 527889390 522822
KKICKSLKIC 5 10 x 15 454 6288378 261325410 262454
KKICKSLKIC 6 10 x 14 6 3943528 113556280 120130
KKICKSLKIC 7 10 x 13 0 3588526 57063600 69021
LVFGILALTL 4 10 x 16 43000 13338131 728834230 728701
LVFGILALTL 5 10 x 15 2744 10566342 445027220 462815
LVFGILALTL 6 10 x 14 277 10106862 296115110 356037
LVFGILALTL 7 10 x 13 7 7532131 123244610 170960
VLFWGSKHFW 4 10 x 16 4001 13478942 732962320 774554
VLFWGSKHFW 5 10 x 15 200 11232373 468166690 471073
VLFWGSKHFW 6 10 x 14 2 8645795 249219960 294860
VLFWGSKHFW 7 10 x 13 0 5990697 96635220 119830
EVPKKAYDME 4 10 x 16 11557 11098084 606805230 620716
EVPKKAYDME 5 10 x 15 294 9725326 406879870 411491
EVPKKAYDME 6 10 x 14 5 7070569 205279370 218007
EVPKKAYDME 7 10 x 13 0 6418876 103908220 125829
TFYSNGEKKK 4 10 x 16 17210 12267135 674552830 669388
TFYSNGEKKK 5 10 x 15 746 9910236 420316140 422171
TFYSNGEKKK 6 10 x 14 31 7465681 222418280 234464
TFYSNGEKKK 7 10 x 13 2 5574581 93417220 111451
YMEIDPVTRT 4 10 x 16 10519 11263843 622030070 610839
YMEIDPVTRT 5 10 x 15 407 8901670 380271840 381217
YMEIDPVTRT 6 10 x 14 26 7058247 210589680 221970
YMEIDPVTRT 7 10 x 13 0 5005286 85026390 101146
IFRSGNGTDE 4 10 x 16 14454 10856067 601277330 589331
IFRSGNGTDE 5 10 x 15 576 10523839 449952920 450889
IFRSGNGTDE 6 10 x 14 13 8716366 258892950 273125
IFRSGNGTDE 7 10 x 13 0 6130826 104360780 123898
LEVHDFKNGY 4 10 x 16 7937 13063445 724191240 780418
LEVHDFKNGY 5 10 x 15 224 10850575 463628190 519701
LEVHDFKNGY 6 10 x 14 6 9176523 271998020 287584
LEVHDFKNGY 7 10 x 13 0 6916531 115241030 137607
GIYFVGLQKC 4 10 x 16 11785 11989687 655708550 655976
GIYFVGLQKC 5 10 x 15 266 8364626 354996480 357317
GIYFVGLQKC 6 10 x 14 7 7989185 236985100 251475

224

GIYFVGLQKC 7 10 x 13 0 5519167 93748760 111879
IKTQIKVIPE 4 10 x 16 10397 9089278 497973810 494761
IKTQIKVIPE 5 10 x 15 525 6798159 287427170 287681
IKTQIKVIPE 6 10 x 14 17 6528616 191149780 201777
IKTQIKVIPE 7 10 x 13 0 5955676 97376610 117066
SEPEEEIDEN 4 10 x 16 23215 7797563 423791070 418211
SEPEEEIDEN 5 10 x 15 1420 5699290 236952960 237159
SEPEEEIDEN 6 10 x 14 88 5476119 156259110 165345
SEPEEEIDEN 7 10 x 13 11 4934900 77536420 93882
EITTTFFEQS 4 10 x 16 7836 7199658 391574090 382126
EITTTFFEQS 5 10 x 15 185 6979831 291023480 292347
EITTTFFEQS 6 10 x 14 14 5463381 155812600 164955
EITTTFFEQS 7 10 x 13 0 4928267 77307180 94184
IWVPAEKPIE 4 10 x 16 12847 12345444 672321850 661083
IWVPAEKPIE 5 10 x 15 497 10153401 423871890 427623
IWVPAEKPIE 6 10 x 14 7 7829913 225832170 240392
IWVPAEKPIE 7 10 x 13 0 5054273 82375730 99251
RDFLKNSKIL 4 10 x 16 27339 13596257 751622590 737145
RDFLKNSKIL 5 10 x 15 1373 11022642 469857030 473573
RDFLKNSKIL 6 10 x 14 41 9214905 271850180 289395
RDFLKNSKIL 7 10 x 13 0 6789634 112836030 135377
ICDNVTMYWI 4 10 x 16 3495 10343646 566485740 554496
ICDNVTMYWI 5 10 x 15 84 9214394 386210430 389068
ICDNVTMYWI 6 10 x 14 0 7060638 204697220 219012
ICDNVTMYWI 7 10 x 13 0 4677329 76504790 92264
PTLISVSELQ 4 10 x 16 28803 13116325 723000030 717218
PTLISVSELQ 5 10 x 15 1696 12726248 540604130 557265
PTLISVSELQ 6 10 x 14 60 10276099 303568470 329634
PTLISVSELQ 7 10 x 13 2 7455404 124350020 152407
FEEEGEDLHF 4 10 x 16 20175 7264452 393218310 393081
FEEEGEDLHF 5 10 x 15 1606 5393062 223006380 228691
FEEEGEDLHF 6 10 x 14 95 5150681 146930840 159268
FEEEGEDLHF 7 10 x 13 2 2847834 45713760 56395
ANEKKGIEQN 4 10 x 16 16212 11947400 651941930 658137
ANEKKGIEQN 5 10 x 15 596 9709542 406253010 422064
ANEKKGIEQN 6 10 x 14 35 7288242 211702930 230058
ANEKKGIEQN 7 10 x 13 1 6630483 107052670 133085
QWVVPQVKVE 4 10 x 16 5559 5356908 290593750 290855
QWVVPQVKVE 5 10 x 15 170 5185815 215856580 222406
QWVVPQVKVE 6 10 x 14 6 4962421 142562010 154611
QWVVPQVKVE 7 10 x 13 1 3152945 50478680 63155
TRHARQASEE 4 10 x 16 10197 7973869 437491110 439456
TRHARQASEE 5 10 x 15 498 7731975 326269940 337679
TRHARQASEE 6 10 x 14 13 6210364 180522430 195429
TRHARQASEE 7 10 x 13 2 5629694 91508240 113121
LPINDYTENG 4 10 x 16 10009 13025829 722123160 727137
LPINDYTENG 5 10 x 15 219 10780044 460849150 479919

225

LPINDYTENG 6 10 x 14 0 9350259 277078850 302219
LPINDYTENG 7 10 x 13 0 7082930 118051850 145996
EFDPMLDERG 4 10 x 16 9299 10836263 594548300 597814
EFDPMLDERG 5 10 x 15 442 10509943 443344970 455575
EFDPMLDERG 6 10 x 14 10 6980831 207502320 219284
EFDPMLDERG 7 10 x 13 0 5662061 93992190 113039
CCIYCRRGNR 4 10 x 16 2412 5102125 276647390 269125
CCIYCRRGNR 5 10 x 15 87 4936748 205564340 207157
CCIYCRRGNR 6 10 x 14 0 3181949 92200950 97361
CCIYCRRGNR 7 10 x 13 0 2886036 46553920 56235
CRRVCEPLLG 4 10 x 16 10029 7821890 428030410 421077
CRRVCEPLLG 5 10 x 15 209 6032222 253867510 254805
CRRVCEPLLG 6 10 x 14 4 3878686 113982870 120951
CRRVCEPLLG 7 10 x 13 0 3535647 58521590 70131
YPYPYCYQGG 4 10 x 16 1446 3103529 167366310 163226
YPYPYCYQGG 5 10 x 15 40 2998352 124155670 124304
YPYPYCYQGG 6 10 x 14 0 2461067 69759770 73123
YPYPYCYQGG 7 10 x 13 0 2215691 34430920 41526
MASPSRRLQT 8 10 x 12 6 1418861 14856800 20724
MASPSRRLQT 9 10 x 11 4 17544 176630 243
PVITCFKSVL 8 10 x 12 4 1554192 16146070 22500
PVITCFKSVL 9 10 x 11 2 16474 165810 233
IYTFIFWITG 8 10 x 12 6 1003781 10574990 14729
IYTFIFWITG 9 10 x 11 4 14743 148600 209
ILLAVGIWGK 8 10 x 12 6 1186133 12333110 17301
ILLAVGIWGK 9 10 x 11 2 20719 208550 291
SLENYFSLLN 8 10 x 12 4 1470970 15308080 21549
SLENYFSLLN 9 10 x 11 2 17386 174890 243
KATNVPFVLI 8 10 x 12 6 1716218 17810020 24873
KATNVPFVLI 9 10 x 11 4 17861 179900 250
TGTVIILLGT 8 10 x 12 5 889560 9317810 13032
TGTVIILLGT 9 10 x 11 3 19205 193690 272
GCFATCRASA 8 10 x 12 6 977746 10264850 14378
GCFATCRASA 9 10 x 11 1 12301 123800 177
MLKLYAMFLT 8 10 x 12 4 1314877 13758780 19225
MLKLYAMFLT 9 10 x 11 2 18007 181290 252
VFLVELVAAI 8 10 x 12 10 1506688 15742130 22002
VFLVELVAAI 9 10 x 11 3 19110 192910 271
GFVFRHEIKN 8 10 x 12 6 1451546 15096200 21177
GFVFRHEIKN 9 10 x 11 0 15527 155890 217
FKNNYEKALK 8 10 x 12 3 1256652 13182100 18432
FKNNYEKALK 9 10 x 11 1 16062 161760 224
YNSTGDYRSH 8 10 x 12 5 1248106 13096020 18286
YNSTGDYRSH 9 10 x 11 3 16550 166700 233
VDKIQNTLHC 8 10 x 12 4 1569315 16306370 22931
VDKIQNTLHC 9 10 x 11 2 17210 173380 242
GVTDYRDWTD 8 10 x 12 3 1256013 13071100 18209

226

GVTDYRDWTD 9 10 x 11 2 14877 149900 207
NYYSEKGFPK 8 10 x 12 4 782139 8227830 11291
NYYSEKGFPK 9 10 x 11 2 16817 169800 237
CCKLEDCTPQ 8 10 x 12 3 640475 6719520 9269
CCKLEDCTPQ 9 10 x 11 2 6529 65940 95
DADKVNNEGC 8 10 x 12 3 986478 10274410 14184
DADKVNNEGC 9 10 x 11 2 17977 181230 262
IKVMTIIESE 8 10 x 12 3 1381724 14411790 20221
IKVMTIIESE 9 10 x 11 1 16725 168060 232
GVVAGISFGV 8 10 x 12 6 960402 10037100 14143
GVVAGISFGV 9 10 x 11 4 21380 215760 300
CFQLIGIFLA 8 10 x 12 6 904934 9615430 13401
CFQLIGIFLA 9 10 x 11 4 13746 138640 199
CLSRAITNNQ 8 10 x 12 6 1502579 15646640 21918
CLSRAITNNQ 9 10 x 11 4 16420 165380 236
MAKNPPENCE 8 10 x 12 0 1079967 11344250 15768
MAKNPPENCE 9 10 x 11 0 13222 132760 186
CHILNAEAFK 8 10 x 12 0 982245 10419130 14369
CHILNAEAFK 9 10 x 11 0 12284 123610 177
KKICKSLKIC 8 10 x 12 0 773708 8075710 11329
KKICKSLKIC 9 10 x 11 0 9367 94450 133
LVFGILALTL 8 10 x 12 0 1688553 17634280 24930
LVFGILALTL 9 10 x 11 0 22097 222570 317
VLFWGSKHFW 8 10 x 12 0 1501227 15528050 21813
VLFWGSKHFW 9 10 x 11 0 15145 152400 208
EVPKKAYDME 8 10 x 12 0 1363622 14201700 20024
EVPKKAYDME 9 10 x 11 0 15534 156290 287
TFYSNGEKKK 8 10 x 12 0 1255428 13163100 18250
TFYSNGEKKK 9 10 x 11 0 15766 158730 219
YMEIDPVTRT 8 10 x 12 0 1176339 12393440 17116
YMEIDPVTRT 9 10 x 11 0 16358 164830 235
IFRSGNGTDE 8 10 x 12 0 1498411 15652640 21917
IFRSGNGTDE 9 10 x 11 0 17781 179100 246
LEVHDFKNGY 8 10 x 12 0 1895139 19574720 27516
LEVHDFKNGY 9 10 x 11 0 18310 184210 264
GIYFVGLQKC 8 10 x 12 0 1433234 14978500 21350
GIYFVGLQKC 9 10 x 11 0 18387 185120 267
IKTQIKVIPE 8 10 x 12 0 1376813 14367550 20183
IKTQIKVIPE 9 10 x 11 0 16792 169360 238
SEPEEEIDEN 8 10 x 12 0 1263180 13221700 18542
SEPEEEIDEN 9 10 x 11 0 18571 187010 264
EITTTFFEQS 8 10 x 12 0 1231885 12865090 18140
EITTTFFEQS 9 10 x 11 0 14210 143040 197
IWVPAEKPIE 8 10 x 12 0 1054243 11112330 15563
IWVPAEKPIE 9 10 x 11 0 13537 136600 261
RDFLKNSKIL 8 10 x 12 0 1385224 14531710 20138
RDFLKNSKIL 9 10 x 11 0 18000 181480 251

227

ICDNVTMYWI 8 10 x 12 0 994995 10446650 14407
ICDNVTMYWI 9 10 x 11 0 12825 129180 182
PTLISVSELQ 8 10 x 12 0 1788793 18638020 26280
PTLISVSELQ 9 10 x 11 0 19355 194970 291
FEEEGEDLHF 8 10 x 12 0 770012 8096450 11368
FEEEGEDLHF 9 10 x 11 0 18811 189910 273
ANEKKGIEQN 8 10 x 12 0 1391426 14529060 20390
ANEKKGIEQN 9 10 x 11 0 15042 151260 223
QWVVPQVKVE 8 10 x 12 0 842717 8944630 12543
QWVVPQVKVE 9 10 x 11 0 13085 131940 185
TRHARQASEE 8 10 x 12 0 1113262 11726320 16394
TRHARQASEE 9 10 x 11 0 17241 173610 241
LPINDYTENG 8 10 x 12 0 1762676 18282240 25714
LPINDYTENG 9 10 x 11 0 18085 181860 253
EFDPMLDERG 8 10 x 12 0 1314725 13742910 19250
EFDPMLDERG 9 10 x 11 0 16188 163050 227
CCIYCRRGNR 8 10 x 12 0 510716 5389430 7472
CCIYCRRGNR 9 10 x 11 0 5477 55320 100
CRRVCEPLLG 8 10 x 12 0 611524 6458880 8988
CRRVCEPLLG 9 10 x 11 0 15511 156630 224
YPYPYCYQGG 8 10 x 12 0 503545 5280720 7385
YPYPYCYQGG 9 10 x 11 0 11802 118990 172
MASPSRRLQ8 9 x 10 4 15901 144036 217
MASPSRRLQ9 9 x 9 2 112 855 2
KPVITCFKS 8 9 x 10 1 14643 132552 192
KPVITCFKS 9 9 x 9 0 123 927 2
LLIYTFIFW 8 9 x 10 4 9700 87975 134
LLIYTFIFW 9 9 x 9 2 181 1494 3
TGVILLAVG 8 9 x 10 4 18106 163980 255
TGVILLAVG 9 9 x 9 0 111 819 2
WGKVSLENY8 9 x 10 6 15925 144468 211
WGKVSLENY9 9 x 9 2 106 801 2
SLLNEKATN8 9 x 10 2 19383 175563 252
SLLNEKATN9 9 x 9 0 68 432 1
PFVLIATGT 8 9 x 10 1 15308 138564 200
PFVLIATGT 9 9 x 9 1 105 783 2
IILLGTFGC 8 9 x 10 4 9524 86436 131
IILLGTFGC 9 9 x 9 2 185 1521 4
ATCRASAWM8 9 x 10 2 14625 132678 195
ATCRASAWM9 9 x 9 1 209 1719 3
KLYAMFLTL 8 9 x 10 4 15253 137862 199
KLYAMFLTL 9 9 x 9 0 63 387 1
FLVELVAAI 8 9 x 10 6 18756 170073 245
FLVELVAAI 9 9 x 9 2 114 873 2
GFVFRHEIK 8 9 x 10 0 14017 126603 182
GFVFRHEIK 9 9 x 9 0 59 351 1
SFKNNYEKA8 9 x 10 1 13975 126603 190

228

SFKNNYEKA9 9 x 9 0 69 441 4
KQYNSTGDY8 9 x 10 1 13389 121185 173
KQYNSTGDY9 9 x 9 1 106 792 2
SHAVDKIQN8 9 x 10 2 15189 137664 201
SHAVDKIQN9 9 x 9 1 104 783 2
LHCCGVTDY8 9 x 10 2 13608 123300 176
LHCCGVTDY9 9 x 9 1 99 729 2
DWTDTNYYS8 9 x 10 1 11362 103131 151
DWTDTNYYS9 9 x 9 0 106 783 2
KGFPKSCCK8 9 x 10 5 13694 124020 182
KGFPKSCCK9 9 x 9 1 176 1413 3
EDCTPQRDA8 9 x 10 2 13827 125208 182
EDCTPQRDA9 9 x 9 1 103 774 2
KVNNEGCFI8 9 x 10 1 13498 121941 174
KVNNEGCFI9 9 x 9 0 55 315 1
VMTIIESEM 8 9 x 10 2 13812 125253 182
VMTIIESEM 9 9 x 9 1 105 783 2
VVAGISFGV 8 9 x 10 4 10462 94986 137
VVAGISFGV 9 9 x 9 2 194 1611 3
CFQLIGIFL 8 9 x 10 4 11982 108720 159
CFQLIGIFL 9 9 x 9 2 94 693 2
YCLSRAITN 8 9 x 10 4 13602 123318 181
YCLSRAITN 9 9 x 9 2 105 792 2
MAKNPPENC8 9 x 10 0 12755 115164 165
MAKNPPENC9 9 x 9 0 69 441 2
DCHILNAEA 8 9 x 10 0 11115 100566 148
DCHILNAEA 9 9 x 9 0 96 684 2
KSKKICKSL 8 9 x 10 0 15300 138897 200
KSKKICKSL 9 9 x 9 0 256 2133 4
ICGLVFGIL 8 9 x 10 0 12831 116370 169
ICGLVFGIL 9 9 x 9 0 113 837 2
LTLIVLFWG 8 9 x 10 0 20456 185526 272
LTLIVLFWG 9 9 x 9 0 254 2115 4
KHFWPEVPK8 9 x 10 0 11522 104409 158
KHFWPEVPK9 9 x 9 0 90 639 2
AYDMEHTFY8 9 x 10 0 13542 122409 181
AYDMEHTFY9 9 x 9 0 90 630 1
NGEKKKIYM8 9 x 10 0 13606 123156 180
NGEKKKIYM9 9 x 9 0 117 873 2
IDPVTRTEI 8 9 x 10 0 16054 145692 212
IDPVTRTEI 9 9 x 9 0 113 837 2
RSGNGTDET8 9 x 10 0 16665 150966 220
RSGNGTDET9 9 x 9 0 114 846 2
EVHDFKNGY8 9 x 10 0 14321 129681 186
EVHDFKNGY9 9 x 9 0 103 756 2
GIYFVGLQK 8 9 x 10 0 17058 154557 222
GIYFVGLQK 9 9 x 9 0 164 1296 2

229

FIKTQIKVI 8 9 x 10 0 14226 129114 187
FIKTQIKVI 9 9 x 9 0 106 783 2
EFSEPEEEI 8 9 x 10 0 14913 135189 270
EFSEPEEEI 9 9 x 9 0 236 1953 3
ENEEITTTF 8 9 x 10 0 15098 136971 200
ENEEITTTF 9 9 x 9 0 199 1629 3
EQSVIWVPA8 9 x 10 0 14102 127701 183
EQSVIWVPA9 9 x 9 0 109 801 1
KPIENRDFL 8 9 x 10 0 15397 139329 205
KPIENRDFL 9 9 x 9 0 101 738 4
NSKILEICD 8 9 x 10 0 16237 147006 213
NSKILEICD 9 9 x 9 0 116 864 2
VTMYWINPT8 9 x 10 0 13240 120006 173
VTMYWINPT9 9 x 9 0 98 711 5
ISVSELQDF 8 9 x 10 0 19486 176616 252
ISVSELQDF 9 9 x 9 0 115 855 2
EEGEDLHFP8 9 x 10 0 9734 88164 130
EEGEDLHFP9 9 x 9 0 214 1746 3
NEKKGIEQN8 9 x 10 0 14529 131679 190
NEKKGIEQN9 9 x 9 0 85 585 2
QWVVPQVKV8 9 x 10 0 11249 102060 149
QWVVPQVKV9 9 x 9 0 152 1197 3
KTRHARQAS8 9 x 10 0 13982 126495 184
KTRHARQAS9 9 x 9 0 105 774 2
EELPINDYT 8 9 x 10 0 9213 83538 121
EELPINDYT 9 9 x 9 0 166 1323 2

The persistent results set

file name /local/pj_test_n2/elaTests/Prot/ensemblProteins batch size 10
query thresh DPsize Matches nodes seen
depth calculated timeMs
MASPS3 5 x 7 253556 1482502 7493725 1624480
MASPS4 5 x 6 7705 9957 49690 33372
RLQTK 3 5 x 7 154572 1615771 8146475 1581165
RLQTK 4 5 x 6 4972 8782 43815 15857
VITCF 3 5 x 7 103503 1587286 8021675 1845468
VITCF 4 5 x 6 218 8747 43640 19958
SVLLI 3 5 x 7 551218 1764665 8861480 2583183
SVLLI 4 5 x 6 17526 10220 51005 7522
TFIFW 3 5 x 7 86871 1268109 6436675 1450560
TFIFW 4 5 x 6 551 8607 42950 4151
TGVIL 3 5 x 7 239852 1864335 9385850 1581369
TGVIL 4 5 x 6 11413 9243 46120 26989
AVGIW 3 5 x 7 235654 1761698 8877865 2041409
AVGIW 4 5 x 6 6423 10281 51310 28581

230

KVSLE 3 5 x 7 335204 1886158 9481975 2255924
KVSLE 4 5 x 6 8723 9943 49620 25337
YFSLL 3 5 x 7 381151 1494152 7544075 1718443
YFSLL 4 5 x 6 9512 10065 50230 6083
MASPSR4 6 x 8 17581 1824121 11137368 1588655
MASPSR5 6 x 7 544 13336 80058 28575
LQTKPV 4 6 x 8 9192 1991232 12118554 1548989
LQTKPV 5 6 x 7 156 13021 78144 26689
TCFKSV 4 6 x 8 1444 1566185 9574446 517083
TCFKSV 5 6 x 7 9 10398 62592 1685
LIYTFI 4 6 x 8 4091 1688689 10301442 1543940
LIYTFI 5 6 x 7 103 11068 66432 15296
WITGVI 4 6 x 8 8734 1461500 8956248 1234223
WITGVI 5 6 x 7 302 11575 69534 1966
LAVGIW 4 6 x 8 22116 2296312 13943562 2070834
LAVGIW 5 6 x 7 574 14266 85596 67656
KVSLEN 4 6 x 8 18920 2220637 13493934 1972871
KVSLEN 5 6 x 7 659 13886 83250 27868
FSLLNE 4 6 x 8 31015 2026700 12332538 1838469
FSLLNE 5 6 x 7 739 14341 85980 3686
ATNVPF 4 6 x 8 9175 2120991 12918534 1554119
ATNVPF 5 6 x 7 181 14637 87888 18999
MASPSRR5 7 x 9 1704 1904288 13624331 1163110
MASPSRR6 7 x 8 8 15053 105700 43534
QTKPVIT 5 7 x 9 448 1909837 13640564 1394202
QTKPVIT 6 7 x 8 29 15581 109564 3688
FKSVLLI 5 7 x 9 1172 2225993 15850828 1225658
FKSVLLI 6 7 x 8 29 13659 95711 42469
TFIFWIT 5 7 x 9 64 1344727 9659566 1281364
TFIFWIT 6 7 x 8 5 11663 81907 2871
VILLAVG 5 7 x 9 3798 2267295 16140761 1571327
VILLAVG 6 7 x 8 169 17173 120442 45114
WGKVSLE5 7 x 9 810 1847046 13187356 1139873
WGKVSLE6 7 x 8 36 14400 101164 2052
YFSLLNE 5 7 x 9 1188 2094002 14957040 1507712
YFSLLNE 6 7 x 8 12 16156 113435 3046
ATNVPFV 5 7 x 9 604 2178115 15536913 1556360
ATNVPFV 6 7 x 8 8 16226 114100 19852
IATGTVI 5 7 x 9 1296 2209088 15770174 1701941
IATGTVI 6 7 x 8 65 17413 122206 63256
MASPSRRL6 8 x 10 54 2263244 18515912 1567403
MASPSRRL7 8 x 9 4 17259 138720 42883
TKPVITCF 6 8 x 10 43 2160804 17655928 1523076
TKPVITCF 7 8 x 9 10 16730 134592 16929
SVLLIYTF 6 8 x 10 51 2669988 21718520 2266510
SVLLIYTF 7 8 x 9 6 18239 146472 3863
FWITGVIL 6 8 x 10 103 1838415 15062512 1091421

231

FWITGVIL 7 8 x 9 19 13638 109720 2096
AVGIWGKV6 8 x 10 16 2177875 17755520 1900312
AVGIWGKV7 8 x 9 0 14718 118120 37167
LENYFSLL 6 8 x 10 51 2194416 17901424 1597877
LENYFSLL 7 8 x 9 6 16023 128776 33737
EKATNVPF6 8 x 10 26 2674272 21760960 1673232
EKATNVPF7 8 x 9 5 16522 132592 6155
LIATGTVI 6 8 x 10 108 2597999 21183392 1792756
LIATGTVI 7 8 x 9 5 16942 136032 3425
LLGTFGCF6 8 x 10 49 1280528 10457160 660330
LLGTFGCF7 8 x 9 7 9559 76776 1798
MASPSRRLQ6 9 x 12 112 22918911 283692348 3954111
MASPSRRLQ7 9 x 11 8 2523731 23251338 1773687
MASPSRRLQ8 9 x 10 3 19218 173817 50034
KPVITCFKS 6 9 x 12 26 21432371 266154345 4306590
KPVITCFKS 7 9 x 11 4 2388630 21934359 2016994
KPVITCFKS 8 9 x 10 2 17367 157149 46973
LLIYTFIFW 6 9 x 12 50 16173210 190771353 3362900
LLIYTFIFW 7 9 x 11 8 1422008 13089069 1201663
LLIYTFIFW 8 9 x 10 3 8593 77760 3047
MASPSRRLQ7 9 x 11 8 2523731 23251338 1546242
MASPSRRLQ8 9 x 10 3 19218 173817 59940
KPVITCFKS 7 9 x 11 4 2388630 21934359 1823703
KPVITCFKS 8 9 x 10 2 17367 157149 36305
LLIYTFIFW 7 9 x 11 8 1422008 13089069 1237973
LLIYTFIFW 8 9 x 10 3 8593 77760 4766
TGVILLAVG 7 9 x 11 47 2597780 23900922 1953380
TGVILLAVG 8 9 x 10 9 18341 165825 31476
WGKVSLENY7 9 x 11 12 2202845 20299941 1300038
WGKVSLENY8 9 x 10 9 17748 160821 3319
SLLNEKATN7 9 x 11 10 1956088 17929755 1513786
SLLNEKATN8 9 x 10 6 21284 192555 15681
PFVLIATGT 7 9 x 11 19 2771447 25485219 1697728
PFVLIATGT 8 9 x 10 2 20837 188550 21038
IILLGTFGC 7 9 x 11 8 1615726 14868567 1217626
IILLGTFGC 8 9 x 10 3 11108 100431 6255
ATCRASAWM7 9 x 11 10 1951447 18027882 1341129
ATCRASAWM8 9 x 10 4 19339 175167 17754
MASPSRRLQT 7 10 x 13 11 23250727 326887160 4744493
MASPSRRLQT 8 10 x 12 6 2795725 28639370 2416050
MASPSRRLQT 9 10 x 11 3 21169 212870 182571
PVITCFKSVL 7 10 x 13 7 22975414 327534200 4923826
PVITCFKSVL 8 10 x 12 3 2863418 29201760 2332767
PVITCFKSVL 9 10 x 11 1 18917 190070 117180
IYTFIFWITG 7 10 x 13 9 17795660 237289970 4129212
IYTFIFWITG 8 10 x 12 6 1835094 18927000 1692004
IYTFIFWITG 9 10 x 11 6 17839 179620 55507

232

ILLAVGIWGK 7 10 x 13 61 21878659 294641210 4141784
ILLAVGIWGK 8 10 x 12 18 1843168 18828700 1420536
ILLAVGIWGK 9 10 x 11 6 24165 243360 69731
SLENYFSLLN 7 10 x 13 22 24906281 330786630 5390062
SLENYFSLLN 8 10 x 12 9 2446027 25030800 2268657
SLENYFSLLN 9 10 x 11 6 20430 205440 50340
KATNVPFVLI 7 10 x 13 13 23495631 337762230 4783923
KATNVPFVLI 8 10 x 12 6 3148975 32118120 2199986
KATNVPFVLI 9 10 x 11 3 21540 216410 185122
TGTVIILLGT 7 10 x 13 25 17262695 231382440 5986231
TGTVIILLGT 8 10 x 12 6 1517318 15573770 2570789
TGTVIILLGT 9 10 x 11 3 18849 189600 71548
GCFATCRASA 7 10 x 13 37 18947860 259804970 3873482
GCFATCRASA 8 10 x 12 10 1841140 18940930 1140265
GCFATCRASA 9 10 x 11 4 16024 161180 44954
MLKLYAMFLT 7 10 x 13 21 15143280 204715200 3194328
MLKLYAMFLT 8 10 x 12 18 2100934 21541150 1575215
MLKLYAMFLT 9 10 x 11 12 19992 201260 77794
MASPSRRLQTK 7 11 x 15 16 27657805 808146713 5935127
MASPSRRLQTK 8 11 x 14 9 23541892 371462817 4975578
MASPSRRLQTK 9 11 x 13 6 3059399 34485935 2279079
MASPSRRLQTK 10 11 x 12 3 22985 254265 185881
VITCFKSVLLI 7 11 x 15 7 27189026 797415553 6276299
VITCFKSVLLI 8 11 x 14 4 19070477 299570095 4578039
VITCFKSVLLI 9 11 x 13 2 2826139 31802551 2629181
VITCFKSVLLI 10 11 x 12 0 19405 214368 74616
TFIFWITGVIL 7 11 x 15 31 19479446 564852574 4675691
TFIFWITGVIL 8 11 x 14 14 15209985 232200210 3346721
TFIFWITGVIL 9 11 x 13 9 2376841 26880810 1906652
TFIFWITGVIL 10 11 x 12 3 19445 215347 65010
MASPSRRLQTK 9 11 x 13 6 3059399 34485935 1713060
MASPSRRLQTK 10 11 x 12 3 22985 254265 69025
MASPSRRLQTK 11 11 x 11 3 122 1166 94
VITCFKSVLLI 9 11 x 13 2 2826139 31802551 1887892
VITCFKSVLLI 10 11 x 12 0 19405 214368 49792
VITCFKSVLLI 11 11 x 11 0 126 1166 126
TFIFWITGVIL 9 11 x 13 9 2376841 26880810 1447311
TFIFWITGVIL 10 11 x 12 3 19445 215347 16634
TFIFWITGVIL 11 11 x 11 0 74 594 40
AVGIWGKVSLE 9 11 x 13 6 3263409 36604612 2104211
AVGIWGKVSLE 10 11 x 12 0 22176 244827 68428
AVGIWGKVSLE 11 11 x 11 0 80 660 2
YFSLLNEKATN 9 11 x 13 9 2959200 33386452 1612433
YFSLLNEKATN 10 11 x 12 3 23199 256806 14038
YFSLLNEKATN 11 11 x 11 3 123 1177 71
PFVLIATGTVI 9 11 x 13 5 2887792 32608136 1611608
PFVLIATGTVI 10 11 x 12 2 23893 264539 25650

233

PFVLIATGTVI 11 11 x 11 1 125 1199 41
LLGTFGCFATC 9 11 x 13 6 1541040 17369022 1267862
LLGTFGCFATC 10 11 x 12 6 11415 126247 3078
LLGTFGCFATC 11 11 x 11 3 203 2090 77
ASAWMLKLYAM 9 11 x 13 10 1806105 20351628 1389239
ASAWMLKLYAM 10 11 x 12 5 21565 238788 9130
ASAWMLKLYAM 11 11 x 11 2 191 1980 54
LTLVFLVELVA 9 11 x 13 2 1792422 20221949 1370643
LTLVFLVELVA 10 11 x 12 1 24260 268433 7835
LTLVFLVELVA 11 11 x 11 0 210 2123 21
MASPSRRLQTKP 9 12 x 15 9 23552458 406385340 5150389
MASPSRRLQTKP 10 12 x 14 6 3098043 38171280 2340939
MASPSRRLQTKP 11 12 x 13 3 24046 290232 185079
MASPSRRLQTKP 12 12 x 12 3 122 1284 302
ITCFKSVLLIYT 9 12 x 15 6 17133963 303546864 3771345
ITCFKSVLLIYT 10 12 x 14 2 2541958 31380192 1789035
ITCFKSVLLIYT 11 12 x 13 1 21989 265440 84910
ITCFKSVLLIYT 12 12 x 12 0 99 948 54
IFWITGVILLAV 9 12 x 15 31 11106905 197337984 2379287
IFWITGVILLAV 10 12 x 14 22 2282771 28309116 1312396
IFWITGVILLAV 11 12 x 13 11 24906 300864 98769
IFWITGVILLAV 12 12 x 12 3 260 2964 64
IWGKVSLENYFS 9 12 x 15 18 18014388 323728248 4445064
IWGKVSLENYFS 10 12 x 14 12 2693256 33183336 1638770
IWGKVSLENYFS 11 12 x 13 6 21414 258840 14646
IWGKVSLENYFS 12 12 x 12 3 114 1188 78
LNEKATNVPFVL 9 12 x 15 15 23921346 409506576 5266883
LNEKATNVPFVL 10 12 x 14 9 3076558 37779240 2405323
LNEKATNVPFVL 11 12 x 13 6 24460 295188 115373
LNEKATNVPFVL 12 12 x 12 0 63 516 5
ATGTVIILLGTF 9 12 x 15 7 19725647 329466828 4827025
ATGTVIILLGTF 10 12 x 14 4 3056287 37640856 2362097
ATGTVIILLGTF 11 12 x 13 1 26892 324588 99996
ATGTVIILLGTF 12 12 x 12 1 129 1356 64
CFATCRASAWML 9 12 x 15 16 19364463 328028076 4168845
CFATCRASAWML 10 12 x 14 10 2330488 28798080 1530234
CFATCRASAWML 11 12 x 13 6 19385 234804 4866
CFATCRASAWML 12 12 x 12 2 166 1848 60
LYAMFLTLVFLV 9 12 x 15 33 21529198 352370364 4806001
LYAMFLTLVFLV 10 12 x 14 8 2568901 31686216 2251112
LYAMFLTLVFLV 11 12 x 13 3 22872 276312 48861
LYAMFLTLVFLV 12 12 x 12 1 201 2220 90
LVAAIVGFVFRH 9 12 x 15 22 22728479 374501556 5506253
LVAAIVGFVFRH 10 12 x 14 15 3310026 40709484 2793171
LVAAIVGFVFRH 11 12 x 13 9 27041 326556 108360
LVAAIVGFVFRH 12 12 x 12 3 124 1296 94
MASPSRRLQTKPV 9 13 x 17 12 27708233 974766325 6268957

234

MASPSRRLQTKPV 10 13 x 16 9 23966566 457688608 5252873
MASPSRRLQTKPV 11 13 x 15 6 3388126 45218784 2378682
MASPSRRLQTKPV 12 13 x 14 3 25888 338546 150758
MASPSRRLQTKPV 13 13 x 13 3 122 1404 103
TCFKSVLLIYTFI 9 13 x 17 17 27668266 965991949 6809818
TCFKSVLLIYTFI 10 13 x 16 12 16451737 316912336 3856834
TCFKSVLLIYTFI 11 13 x 15 3 2449287 32897319 1472837
TCFKSVLLIYTFI 12 13 x 14 1 21000 274937 71484
TCFKSVLLIYTFI 13 13 x 13 1 137 1599 69
WITGVILLAVGIW 9 13 x 17 34 29136374 999177712 7549167
WITGVILLAVGIW 10 13 x 16 26 18486944 342918511 4812742
WITGVILLAVGIW 11 13 x 15 14 2354832 31758025 1680974
WITGVILLAVGIW 12 13 x 14 9 24904 326885 110192
WITGVILLAVGIW 13 13 x 13 3 120 1339 49
KVSLENYFSLLNE 9 13 x 17 21 39107922 1321559070 10047181
KVSLENYFSLLNE 10 13 x 16 12 26604031 481226798 6913588
KVSLENYFSLLNE 11 13 x 15 9 2989526 39920712 2795986
KVSLENYFSLLNE 12 13 x 14 6 23970 313599 127741
KVSLENYFSLLNE 13 13 x 13 3 119 1365 56
ATNVPFVLIATGT 9 13 x 17 13 35484938 1236715714 8388798
ATNVPFVLIATGT 10 13 x 16 10 25032262 470054390 5658701
ATNVPFVLIATGT 11 13 x 15 6 3380200 45110832 2464148
ATNVPFVLIATGT 12 13 x 14 2 28727 376025 110412
ATNVPFVLIATGT 13 13 x 13 1 163 1924 60
IILLGTFGCFATC 9 13 x 17 17 23654756 780894959 5895267
IILLGTFGCFATC 10 13 x 16 12 13616118 238134416 3773371
IILLGTFGCFATC 11 13 x 15 6 1877081 25080224 1647758
IILLGTFGCFATC 12 13 x 14 3 13368 174850 82497
IILLGTFGCFATC 13 13 x 13 3 179 2145 75
ASAWMLKLYAMFL 9 13 x 17 41 22784167 765632868 5554953
ASAWMLKLYAMFL 10 13 x 16 26 16268479 289953183 3915069
ASAWMLKLYAMFL 11 13 x 15 10 2019456 26936650 1817662
ASAWMLKLYAMFL 12 13 x 14 5 25193 329797 106322
ASAWMLKLYAMFL 13 13 x 13 2 225 2834 86
LVFLVELVAAIVG 9 13 x 17 16 22363083 758829344 5511472
LVFLVELVAAIVG 10 13 x 16 12 18769693 339359553 4493937
LVFLVELVAAIVG 11 13 x 15 7 2926366 39159055 2438355
LVFLVELVAAIVG 12 13 x 14 2 33186 435175 107123
LVFLVELVAAIVG 13 13 x 13 1 251 3133 69
VFRHEIKNSFKNN 9 13 x 17 20 27914822 963658280 6751226
VFRHEIKNSFKNN 10 13 x 16 14 17713835 335090899 4005942
VFRHEIKNSFKNN 11 13 x 15 11 2634511 35217585 1833897
VFRHEIKNSFKNN 12 13 x 14 3 21584 282867 71293
VFRHEIKNSFKNN 13 13 x 13 1 119 1339 83
MASPSRRLQTKPVI 13 14 x 15 3 27846 392294 97425
MASPSRRLQTKPVI 12 14 x 16 6 3668880 52736376 1706174
CFKSVLLIYTFIFW 13 14 x 15 0 20681 291256 88479

235

CFKSVLLIYTFIFW 12 14 x 16 5 2373934 34398056 947869
TGVILLAVGIWGKV 13 14 x 15 3 26294 370734 181770
TGVILLAVGIWGKV 12 14 x 16 6 3110778 44832788 1891285
LENYFSLLNEKATN 13 14 x 15 6 30706 432782 179169
LENYFSLLNEKATN 12 14 x 16 9 3297642 47428976 1574032
PFVLIATGTVIILL 13 14 x 15 2 28065 395864 126318
PFVLIATGTVIILL 12 14 x 16 5 3107630 44879016 1579834
TFGCFATCRASAWM 13 14 x 15 4 25187 356118 102554
TFGCFATCRASAWM 12 14 x 16 7 2550883 36828442 1490778
KLYAMFLTLVFLVE 13 14 x 15 2 25623 361158 172465
KLYAMFLTLVFLVE 12 14 x 16 5 2829815 40713470 1595049
VAAIVGFVFRHEIK 13 14 x 15 6 34420 485884 184132
VAAIVGFVFRHEIK 12 14 x 16 12 2397103 34489224 1265711
SFKNNYEKALKQYN 13 14 x 15 0 22865 321678 138587
SFKNNYEKALKQYN 12 14 x 16 1 2965029 42742224 1665541
MASPSRRLQTKPVIT 14 15 x 16 3 29299 442275 138379
MASPSRRLQTKPVIT 13 15 x 17 6 3719683 57379770 1893848
MASPSRRLQTKPVIT 12 15 x 18 9 24271792 546638490 5111573
MASPSRRLQTKPVIT 14 15 x 16 3 29299 442275 138712
MASPSRRLQTKPVIT 13 15 x 17 6 3719683 57379770 1689940
FKSVLLIYTFIFWIT 14 15 x 16 3 25125 379230 126822
FKSVLLIYTFIFWIT 13 15 x 17 6 2961877 45801300 1665766
VILLAVGIWGKVSLE 14 15 x 16 6 31835 480990 188278
VILLAVGIWGKVSLE 13 15 x 17 12 3619111 55729710 2176277
YFSLLNEKATNVPFV 14 15 x 16 3 29072 439110 147784
YFSLLNEKATNVPFV 13 15 x 17 9 3529929 54526185 1573808
IATGTVIILLGTFGC 14 15 x 16 2 34252 517530 163508
IATGTVIILLGTFGC 13 15 x 17 4 3405670 52716645 1761034
ATCRASAWMLKLYAM 14 15 x 16 4 30454 460710 68562
ATCRASAWMLKLYAM 13 15 x 17 10 2816028 43632975 1398288
LTLVFLVELVAAIVG 14 15 x 16 1 33904 512700 103292
LTLVFLVELVAAIVG 13 15 x 17 2 2373099 36644295 1325548
VFRHEIKNSFKNNYE 14 15 x 16 3 24565 371685 155089
VFRHEIKNSFKNNYE 13 15 x 17 9 2844224 43970970 1511976
ALKQYNSTGDYRSHA 14 15 x 16 2 29206 440850 174898
ALKQYNSTGDYRSHA 13 15 x 17 4 3924442 60233355 2051614
MASPSRRLQTKPVITC 15 16 x 17 3 30893 497488 144283
MASPSRRLQTKPVITC 14 16 x 18 6 3844508 63316144 1864483
MASPSRRLQTKPVITC 13 16 x 19 9 24315568 588325456 5344261
KSVLLIYTFIFWITGV 15 16 x 17 6 28014 451056 177254
KSVLLIYTFIFWITGV 14 16 x 18 9 3397703 55878400 2724093
KSVLLIYTFIFWITGV 13 16 x 19 12 27173043 622350800 7173091
LLAVGIWGKVSLENYF 15 16 x 17 6 19287 310704 143054
LLAVGIWGKVSLENYF 14 16 x 18 6 3138778 51363936 2316249
LLAVGIWGKVSLENYF 13 16 x 19 9 24065718 566423280 5749267
LLNEKATNVPFVLIAT 15 16 x 17 1 16325 262656 115815
LLNEKATNVPFVLIAT 14 16 x 18 7 2437486 40067808 1635917

236

LLNEKATNVPFVLIAT 13 16 x 19 14 19333665 453640704 4517261
TVIILLGTFGCFATCR 15 16 x 17 6 29904 482432 231766
TVIILLGTFGCFATCR 14 16 x 18 12 3314655 54684752 2581623
TVIILLGTFGCFATCR 13 16 x 19 15 17925122 415554432 4890096
SAWMLKLYAMFLTLVF 15 16 x 17 3 30762 495728 196578
SAWMLKLYAMFLTLVF 14 16 x 18 7 3036962 50165568 2100518
SAWMLKLYAMFLTLVF 13 16 x 19 13 19415239 454845936 4575836
VELVAAIVGFVFRHEI 15 16 x 17 6 36055 581600 264109
VELVAAIVGFVFRHEI 14 16 x 18 16 3527005 58098272 2644039
VELVAAIVGFVFRHEI 13 16 x 19 19 20981552 477206960 5191384
NSFKNNYEKALKQYNS 15 16 x 17 0 29502 476032 177352
NSFKNNYEKALKQYNS 14 16 x 18 0 3039832 50257920 1880065
NSFKNNYEKALKQYNS 13 16 x 19 2 20981809 491634848 4835016
GDYRSHAVDKIQNTLH 15 16 x 17 0 29625 476720 289287
GDYRSHAVDKIQNTLH 14 16 x 18 2 3825949 62846112 1890601
GDYRSHAVDKIQNTLH 13 16 x 19 2 20533157 520957280 4750196

SQL commands used

create table transient (
protein VARCHAR2 (20),
thresh number,
query number,
hits number,
nodesSeen number,
columnsDone number,
timeMs number
);

create table persistent (
protein VARCHAR2 (20),
thresh number,
query number,
hits number,
nodesSeen number,
columnsDone number,
timeMs number
);
====================

TOTAL RUN TIME IN HOURS

select SUM(timeMs)/(1000*60*60)
from persistent;
SUM(TIMEMS)/(1000*60*60)

237

136.407996 i.e 5.7 days

select SUM(timeMs)/(1000*60*60)
from transient;
SUM(TIMEMS)/(1000*60*60)

38.7503706 i.e. 1.5 days
--

set pages 40;
set lin 180;

FIRST COLUMNS based on maxima

create view pCOLUMNS as select
p.query q,
p.thresh th,
min(p.columnsDone) mini,
max(p.columnsDone) maxi,
ROUND(avg(p.columnsDone)) aver,
ROUND(max(p.columnsDone)/200000000,4) maxDIV200M
from persistent p
group by p.query, p.thresh;

create view tCOLUMNS as select
p.query q,
p.thresh th,
min(p.columnsDone) mini,
max(p.columnsDone) maxi,
ROUND(avg(p.columnsDone)) aver,
ROUND(max(p.columnsDone)/200000000,4) maxDIV200M
from transient p
group by p.query, p.thresh;

select * from pcolumns;
select * from tcolumns;
--
NOW HITS based on averages

create view pHITS as select
p.query q,
p.thresh th,
min(p.hits) mini,
max(p.hits) maxi,
ROUND(avg(p.hits)) aver,

238

ROUND(avg(p.hits)*(300/query)) avg_300
from persistent p
group by p.query, p.thresh;

create view tHITS as select
p.query q,
p.thresh th,
min(p.hits) mini,
max(p.hits) maxi,
ROUND(avg(p.hits)) aver,
ROUND(avg(p.hits)*(300/query)) avg_300
from transient p
group by p.query, p.thresh;

select * from thits;
select * from phits;
--
NOW TIMES based on averages

create view pTIMES as select
p.query q,
p.thresh th,
min(p.timeMs) min,
max(p.timeMs) max,
ROUND(avg(p.timeMs)) avg,
ROUND(avg(p.timeMs)*(300/p.query)) avg_300,
ROUND(avg(p.timeMs)/(p.query*1000*200),4) sec2Mb
from persistent p
group by p.query, p.thresh;

create view tTIMES as select
p.query q,
p.thresh th,
min(p.timeMs) min,
max(p.timeMs) max,
ROUND(avg(p.timeMs)) avg,
ROUND(avg(p.timeMs)*(300/p.query)) avg_300,
ROUND(avg(p.timeMs)/(p.query*1000*200),4) sec2Mb
from transient p
group by p.query, p.thresh;

select * from ptimes;
select * from ttimes;

239

SQL output

SQL> select SUM(timeMs)/(1000*60*60)
2 from persistent;

SUM(TIMEMS)/(1000*60*60)

136.407996

SQL> select SUM(timeMs)/(1000*60*60)
2 from transient;

SUM(TIMEMS)/(1000*60*60)

38.7503706

SQL> set pages 40;
SQL> set lin 180;
SQL> select * from pcolumns;

Q TH MINI MAXI AVER MAXDIV200M
---------- ---------- ---------- ---------- ---------- ----------

5 3 6436675 9481975 8249977 .0474
5 4 42950 51310 47598 .0003
6 4 8956248 13943562 11641847 .0697
6 5 62592 87888 77719 .0004
7 5 9659566 16140761 14263059 .0807
7 6 81907 122206 107137 .0006
8 6 10457160 21760960 18001259 .1088
8 7 76776 146472 124644 .0007
9 6 190771353 283692348 246872682 1.4185
9 7 13089069 25485219 19755152 .1274
9 8 77760 192555 150067 .001

10 7 204715200 337762230 283422668 1.6888
10 8 15573770 32118120 23200178 .1606
10 9 161180 243360 199979 .0012
11 7 564852574 808146713 723471613 4.0407
11 8 232200210 371462817 301077707 1.8573
11 9 17369022 36604612 28906699 .183
11 10 126247 268433 230633 .0013
11 11 594 2123 1351 0
12 9 197337984 409506576 336096871 2.0475
12 10 28309116 40709484 34184200 .2035
12 11 234804 326556 285869 .0016
12 12 516 2964 1513 0
13 9 758829344 1321559070 974136247 6.6078
13 10 238134416 481226798 363482077 2.4061

240

13 11 25080224 45218784 35699910 .2261
13 12 174850 435175 316965 .0022
13 13 1339 3133 1898 0
14 12 34398056 52736376 42116508 .2637
14 13 291256 485884 378641 .0024
15 12 546638490 546638490 546638490 2.7332
15 13 36644295 60233355 50801498 .3012
15 14 371685 517530 448736 .0026
16 13 415554432 622350800 510104411 3.1118
16 14 40067808 63316144 54075435 .3166
16 15 262656 581600 448268 .0029

36 rows selected.

SQL> select * from tcolumns;

Q TH MINI MAXI AVER MAXDIV200M
---------- ---------- ---------- ---------- ---------- ----------

5 4 21405 53535 42959 .0003
5 5 115 695 384 0
6 4 3181482 8960148 6045120 .0448
6 5 30180 79446 62425 .0004
6 6 138 1026 536 0
7 4 33492781 90720238 60637158 .4536
7 5 3640049 11597537 7548249 .058
7 6 35371 119357 84012 .0006
7 7 238 1358 678 0
8 4 108495304 251024912 178571276 1.2551
8 5 39192752 102245968 75437310 .5112
8 6 2922120 13570984 9841472 .0679
8 7 74808 139040 108745 .0007
9 4 191805228 475824366 343272622 2.3791
9 5 95033853 276993117 193006027 1.385
9 6 41098536 105980760 78171406 .5299
9 7 6615036 15241887 10962888 .0762
9 8 83538 185526 128722 .0009
9 9 315 2133 957 0

10 4 167366310 769337230 562480802 3.8467
10 5 124155670 540604130 371848620 2.703
10 6 69759770 303568470 210464641 1.5178
10 7 34430920 124350020 89022147 .6218
10 8 5280720 19574720 12701967 .0979
10 9 55320 222570 160751 .0011
11 3 883686199 1506901275 1228614912 7.5345
11 4 588209424 1282432382 927304596 6.4122
11 5 337938843 889693266 643200278 4.4485
11 6 252268302 577024657 419560898 2.8851

241

11 7 168544189 312397712 242837030 1.562
11 8 79405403 137446474 114782868 .6872
11 9 15113879 20830898 17682355 .1042
11 10 193424 214797 207629 .0011

33 rows selected.

SQL> select * from thits;

Q TH MINI MAXI AVER AVG_300
---------- ---------- ---------- ---------- ---------- ----------

5 4 28 3403 896 53759
5 5 0 151 24 1465
6 4 167 6647 2048 102398
6 5 0 239 53 2642
6 6 0 11 2 101
7 4 420 12600 3888 166649
7 5 7 688 143 6141
7 6 0 50 7 288
7 7 0 5 1 47
8 4 532 22973 6035 226300
8 5 18 1481 244 9165
8 6 0 119 12 449
8 7 0 12 2 73
9 4 1732 32131 9354 311799
9 5 16 2716 408 13584
9 6 0 212 20 666
9 7 0 26 3 109
9 8 0 6 1 46
9 9 0 2 0 16

10 4 1446 43000 13488 404628
10 5 40 2744 633 18982
10 6 0 277 33 990
10 7 0 27 5 143
10 8 0 10 2 67
10 9 0 4 1 33
11 3 279711 732887 516487 14086021
11 4 13353 44715 27134 740014
11 5 542 2506 1377 37555
11 6 30 116 62 1677
11 7 9 31 15 400
11 8 6 16 10 268
11 9 4 8 6 164
11 10 1 4 3 86

33 rows selected.

242

SQL> select * from phits;

Q TH MINI MAXI AVER AVG_300
---------- ---------- ---------- ---------- ---------- ----------

5 3 86871 551218 260176 15610540
5 4 218 17526 7449 446953
6 4 1444 31015 13585 679267
6 5 9 739 363 18150
7 5 64 3798 1232 52781
7 6 5 169 40 1719
8 6 16 108 56 2088
8 7 0 19 7 258
9 6 26 112 63 2089
9 7 4 47 12 406
9 8 2 9 4 136

10 7 7 61 23 687
10 8 3 18 9 273
10 9 1 12 5 147
11 7 7 31 18 491
11 8 4 14 9 245
11 9 2 10 6 164
11 10 0 6 2 66
11 11 0 3 1 36
12 9 6 33 17 436
12 10 2 22 10 244
12 11 1 11 5 128
12 12 0 3 2 44
13 9 12 41 21 490
13 10 9 26 15 341
13 11 3 14 8 185
13 12 1 9 4 87
13 13 1 3 2 46
14 12 1 12 6 133
14 13 0 6 3 62
15 12 9 9 9 180
15 13 2 12 7 136
15 14 1 6 3 60
16 13 2 19 11 198
16 14 0 16 7 135
16 15 0 6 3 65

36 rows selected.

SQL> select * from ptimes;

Q TH MIN MAX AVG AVG_300 SEC2MB
---------- ---------- ---------- ---------- ---------- ---------- ----------

243

5 3 1450560 2583183 1853556 111213340 1.8536
5 4 4151 33372 18650 1119000 .0187
6 4 517083 2070834 1541020 77051017 1.2842
6 5 1685 67656 21380 1069000 .0178
7 5 1139873 1701941 1393505 59721652 .9954
7 6 2052 63256 25098 1075629 .0179
8 6 660330 2266510 1563657 58637154 .9773
8 7 1798 42883 16450 616887 .0103
9 6 3362900 4306590 3874534 129151122 2.1525
9 7 1201663 2016994 1551996 51733192 .8622
9 8 3047 59940 24716 823856 .0137

10 7 3194328 5986231 4574149 137224470 2.2871
10 8 1140265 2570789 1957363 58720897 .9787
10 9 44954 185122 94972 2849157 .0475
11 7 4675691 6276299 5629039 153519245 2.5587
11 8 3346721 4975578 4300113 117275800 1.9546
11 9 1267862 2629181 1768264 48225389 .8038
11 10 3078 185881 49093 1338902 .0223
11 11 2 126 58 1594 0
12 9 2379287 5506253 4480121 112003033 1.8667
12 10 1312396 2793171 2047009 51175214 .8529
12 11 4866 185079 84540 2113500 .0352
12 12 5 302 90 2253 0
13 9 5511472 10047181 6975204 160966254 2.6828
13 10 3773371 6913588 4742562 109443736 1.8241
13 11 1472837 2795986 2058922 47513587 .7919
13 12 71293 150758 104202 2404672 .0401
13 13 49 103 72 1667 0
14 12 947869 1891285 1524030 32657793 .5443
14 13 88479 184132 141211 3025950 .0504
15 12 5111573 5111573 5111573 102231460 1.7039
15 13 1325548 2176277 1704810 34096198 .5683
15 14 68562 188278 140532 2810648 .0468
16 13 4517261 7173091 5225156 97971683 1.6329
16 14 1635917 2724093 2181954 40911642 .6819
16 15 115815 289287 193278 3623954 .0604

36 rows selected.

SQL> select * from ttimes;

Q TH MIN MAX AVG AVG_\300 SEC2MB
---------- ---------- ---------- ---------- ---------- ---------- ----------

5 4 42 175 89 5346 .0001
5 5 1 19 2 117 0
6 4 5732 16116 10869 543447 .0091
6 5 54 143 111 5537 .0001

244

6 6 0 2 1 65 0
7 4 47112 124548 83872 3594513 .0599
7 5 5996 19783 12734 545756 .0091
7 6 60 197 141 6036 .0001
7 7 1 3 2 70 0
8 4 121255 283049 200358 7513423 .1252
8 5 51330 134168 98365 3688685 .0615
8 6 4439 21566 15459 579707 .0097
8 7 117 214 168 6309 .0001
9 4 196316 523115 354320 11810657 .1968
9 5 103649 308100 211009 7033630 .1172
9 6 52051 134134 98294 3276467 .0546
9 7 9759 22828 16402 546735 .0091
9 8 121 272 189 6307 .0001
9 9 1 5 2 77 0

10 4 163226 835883 563602 16908063 .2818
10 5 124304 557265 379482 11384457 .1897
10 6 73123 356037 227065 6811953 .1135
10 7 41526 170960 108653 3259584 .0543
10 8 7385 27516 17774 533213 .0089
10 9 95 317 230 6885 .0001
11 3 825973 1412062 1151716 31410444 .5235
11 4 555693 1211841 874742 23856595 .3976
11 5 325368 855454 617572 16842868 .2807
11 6 248479 569079 413156 11267891 .1878
11 7 173910 323956 250632 6835405 .1139
11 8 92343 158147 132290 3607914 .0601
11 9 22927 28407 24405 665582 .0111
11 10 261 392 297 8100 .0001

33 rows selected.

SQL> spool off

245

Bibliography

[1] ISO/IEC 8824-1:1995. Information technology – Abstract Syntax Notation One
(ASN.1): Specification of basic notation, 1995.http://www.iso.ch/cate/d16289.html.

[2] P. Ferragina A. Crauser. On constructing suffix arrays in external memory. InESA’99.
7th Annual European Symposium. Proceedings, pages 224–235, 1999.

[3] S. Abiteboul, P. Buneman, and D. Suciu.Data on the web: from relations to
semistructured data and XML. Morgan Kaufmann Publishers, Los Altos, CA 94022,
USA, 1999.

[4] M.D. Adams et al. The Genome Sequence of Drosophila melanogaster.Science,
287:2185–2195, 2000.

[5] A.V. Aho, B.W. Kernighan, and P.J. Weinberger.The AWK Programming Language.
Addison-Wesley, 1988.

[6] C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: a new structure for
pattern matching. InSOFSEM’99, LNCS 1725, pages 291–306, 1999.

[7] S.F. Altschul et al. Basic local alignment search tool.J. Mol. Biol., 215:403–10,
1990.

[8] S.F. Altschul, T.L. Madden, A.A. Schaeffer, J. Zhang, Z. Zhang, W. Miller, and D.J.
Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs.Nucleic Acids Research, 25:3389–3402, 1997.

[9] A. Marian amd S. Abiteboul, G. Cobena, and L. Mignet. Change-Centric Man-
agement of Versions in an XML Warehouse. InProc. 27th Conf. on Very Large
Databases, pages 581–590. Morgan Kaufmann, 2001.

[10] A. Andersson, N. J. Larsson, and K. Swanson. Suffix trees on words.Algorithmica,
23(3):246–260, 1999.

[11] A. Andersson and S. Nilsson. Efficient implementation of suffix trees.Software
Practice and Experience, 25(2):129–141, 1995.

[12] S. Andrews. Design and Implementation of a Relational Database and Graphical
User Interface to Store Microarray Data. Master’s thesis, Department of Computing
Science, University of Glasgow, 2001.

[13] M. Annamalai et al. Indexing Images in Oracle8i. InSIGMOD 2000, pages 539–547,
2000.

246

[14] A. Apostolico and Z. Galil, editors.Pattern Matching Algorithms. OUP, 1997.

[15] Artemis, 1999.http://www.sanger.ac.uk/Software/Artemis/index.shtml.

[16] M. Ashburner et al. Gene ontology: tool for the unification of biology.Nat Genet,
25:25–9, 2000.

[17] M. Atkinson and M. Jordan. Providing Orthogonal Persistence for Java.Lecture
Notes in Computer Science, 1445, 1998.

[18] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Morrison. An
approach to persistent programming.Computer Journal, 26(4):360–365, 1983.

[19] M. P. Atkinson, K. Chisholm, and P. Cockshott. PS-algol: An algol with a persistent
heap. InACM SIGPLAN Notices, volume 17, July 1982.

[20] M.P. Atkinson. Persistence and Java — a Balancing Act. InProceedings of the
ECOOP Symposium on Objects and Databases, Sophia Antipolis, France June 2000,
number 1944 in Lecture Notes in Computing Science, pages 1–32. Springer-Verlag,
2000.

[21] M.P. Atkinson, L. Daynes, M.J. Jordan, T. Printezis, and S. Spence. An Orthogonally
Persistent Java.ACM Sigmod Record, 25(4), 1996.

[22] M.P. Atkinson and M.J. Jordan. Issues Raised by Three Years of Developing PJama.
In Database Theory - ICDT’99, volume 1540 ofLecture Notes in Computer Science,
1999.

[23] M.P. Atkinson and M.J. Jordan. A Review of the Rationale and Architectures of
PJama: a Durable, Flexible, Evolvable and Scalable Orthogonally Persistent Pro-
gramming Platform. Technical Report TR-2000-90, Sun Microsystems Laboratories
Inc and Department of Computing Science, University of Glasgow, 901 San Antonio
Road, Palo Alto, CA 94303, USA and Glasgow G12 8QQ, Scotland, 2000.

[24] M.P. Atkinson and R. Welland, editors.Fully Integrated Data Environments.
Springer-Verlag, 1999.

[25] R. Baeza-Yates and G. Navarro. A Hybrid Indexing Method for Approximate String
Matching.Journal of Discrete Algorithms, JDA, 1:205–239, 2001.

[26] R. Baeza-Yates, G. Navarro, E. Sutinen, and J. Tarhio. Indexing Methods for Ap-
proximate Text Retrieval. Technical report, University of Chile, 1997.

[27] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison Wes-
ley, Reading, US, 1999.

[28] R. A. Baeza-Yates. Text retrieval: Theory and practice. In Jan van Leeuwen, editor,
Proceedings of the IFIP 12th World Computer Congress. Volume 1: Algorithms, Soft-
ware, Architecture, pages 465–476, Amsterdam, The Netherlands, September 1992.
Elsevier Science Publishers.

[29] R. A. Baeza-Yates and G. Navarro. Faster approximate string matching.Algorith-
mica, 23(2):127–158, 1999.

247

[30] R.A. Baeza-Yates and G.H. Gonnet. All-against-all sequence matching.
Technical report, Dept. of Computer Science, Universidad de Chile, 1990.
ftp://sunsite.dcc.uchile.cl/pub/users/rbaeza/papers/all-all.ps.gz.

[31] P.G. Baker, C.A. Goble, S. Bechhofer, N.W. Paton, R. Stevens, and A. Brass. An
ontology for bioinformatics applications.Bioinformatics, 15:510–520, 1999.

[32] J. B.L. Bard, R. A. Baldock, and D. R. Davidson. Elucidating the Genetic Networks
of Development: A Bioinformatics Approach.Genome Research, 8:859–863, 1998.
http://genex.hgu.mrc.ac.uk/.

[33] P. Bieganski.Genetic Sequence Data Retrieval and Manipulation based on Gener-
alised Suffix Trees. PhD thesis, University of Minnesota, USA, 1995.

[34] M. Bishop, editor.Guide to Human Genome Computing. Academic Press Inc., 1998.

[35] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. I. Seiferas.
The Smallest Automaton Recognizing the Subwords of a Text.TCS, 40:31–55, 1985.

[36] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete
inverted files for efficient text retrieval and analysis.Journal of the ACM, ; ACM CR
8810-0785, 34(3), July 1987.

[37] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting Gene Regulatory Ele-
ments in Silico on a Genomic Scale.Genome Research, 8:1202–1215, 1998.

[38] A. Brazma, A. Robinson, G. Cameron, and M. Ashburner. One-stop shop for mi-
croarray data.Nature, 403:699–700, 2000.

[39] S.E. Brenner, C. Chothia, and T.J.P. Hubbard. Assessing sequence comparison meth-
ods with reliable structurally identified distant evolutionary relationships.PNAS,
95:6073–6078, 1998.

[40] A. L. Brown, R. Morrison, D. S. Munro, A. Dearle, and J. Rosenberg. A Layered Per-
sistent Architecture for Napier88. In J. Rosenberg and J. L. Keedy, editors,Proceed-
ings of the International Workshop on Computer Architectures to Support Security
and Persistence of Information, Workshops in Computing, pages 155–172, London,
May 8–11 1990. Springer Verlag.

[41] P. Buneman, S. B. Davidson, K. Hart, G. C. Overton, and L. Wong. A data transfor-
mation system for biological data sources. In U. Dayal, P. M. D. Gray, and S. Nishio,
editors,VLDB’95, Proceedings of 21th International Conference on Very Large Data
Bases, pages 158–169, Zurich, Switzerland, 11–15 September 1995. Morgan Kauf-
mann.

[42] P. Buneman, S.B. Davidson, and A. Watters. A semantics for complex objects and ap-
proximate queries. InProceedings of the Seventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 305–314, Austin, Texas, 21–23
March 1988.

[43] P. Buneman, S. Khanna, and W. C. Tan. Why and Where: A Characterization of Data
Provenance. InICDT 2001, LNCS 1973, pages 316–330, 2001.

248

[44] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vingron.q-
gram Based Database Searching Using a Suffix Array. In S. Istrail, P. Pevzner, and
M. Waterman, editors,Proceedings of the 3rd Annual International Conference on
Computational Molecular Biology (RECOMB), pages 77–83, Lyon, France, 1999.
ACM Press.

[45] M. J. Carey, D. J. Dewitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F. Naughton,
D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and M. J.
Zwilling. Shoring up persistent applications.SIGMOD Record (ACM Special Interest
Group on Management of Data), 23(2):383–394, June 1994.

[46] L. Carr, W. Hall, S. Bechhofer, and C.A. Goble. Conceptual linking: ontology-based
open hypermedia. InWWW 2001, pages 334–342, 2001.

[47] R. G. G. Cattell and D. K. Barry, editors.The Object Database Standard: ODMG
2.0. Morgan Kaufmann, San Francisco, 1997.

[48] C. Charras and T. Lecroq. Exact String Matching Algorithms. http://www-igm.univ-
mlv.fr/ lecroq/string/.

[49] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. InPro-
ceedings of the 7th ACM PODS, pages 34 – 43, 1998.

[50] I. Chen, A. Kosky, V. Markowitz, and E. Szeto. Developing and accessing scientific
databases with the OPM data management tools. InProceedings of the 13th Inter-
national Conference on Data Engineering (ICDE’97), pages 580–580, Washington -
Brussels - Tokyo, April 1997. IEEE.

[51] I. A. Chen and V. M. Markowitz. An Overview of the Object-Protocol Model (OPM)
and OPM data management tools. Technical Report LBL-33706, Lawrence Berkeley
national Laboratory, 1995.

[52] J. M. Cheng, N. M. Mattos, D. D. Chamberlin, and L. G. DeMichiel. Extending re-
lational database technology for new applications.IBM Systems Journal, 33(2):264–
279, 1994. G321-5542.

[53] I. Chumakov et al. Continuum of overlapping clones spanning the entire human
chromosome 21q.Nature, 359:380–386, 1992.

[54] D. R. Clark.Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

[55] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage (extended
abstract). InProceedings of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 383–391, Atlanta, Georgia, 28–30 January 1996.

[56] A. L. Cobbs. Fast approximate matching using suffix trees. In Zvi Galil and E. Ukko-
nen, editors,Combinatorial Pattern Matching, 6th Annual Symposium, volume 937
of Lecture Notes in Computer Science, pages 41–54, Espoo, Finland, 5-7 July 1995.
Springer.

[57] International Human Genome Sequencing Consortium. Initial sequencing and anal-
ysis of the human genome.Nature, 409:860–921, 2001.

249

[58] B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A fast
index for semistructured data. InProc. 27th Conf. on Very Large Databases, pages
341–350. Morgan Kaufmann, 2001.

[59] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT
Press, 1990.

[60] S.D. Cox. A PJama Implementation of Efficient DNA or Protein Sequence Storage
and Retrieval. Master’s thesis, Department of Computing Science, University of
Glasgow, 1999.

[61] S. Davidson, J. Crabtree, B. Brunk, J. Schug, V. Tannen, C. Overton, and C. Stoeck-
ert. K2/kleisli and gus: Experiments in integrated access to genomic data sources.
IBM Systems Journal, March 2001, 2001. http://http://db.cis.upenn.edu.

[62] S. Davidson and A. Kosky. WOL: A language for Database Transformations and
Constraints. InProc. 13th Int. Conf. Data Eng. (ICDE’97), pages 55–66, Washington
- Brussels - Tokyo, 1997. IEEE.

[63] S. Davidson, G. C. Overton, V. Tannen, and L. Wong. BioKleisli: a digital library
for biomedical researchers.Int. Journal on Digital Libraries, 1:36–53, 1997.

[64] M. Dayhoff, R. Eck, and C. Park. A model of evolutionary change in proteins.
In M. Dayhoff, editor,Atlas of Protein Sequence and Structure, volume 5. Silver
Springs, MD: National Biomedical Research Foundation, 1972.

[65] J.M. Delabar, N. Creau, P.M. Sinet, O. Ritter, S.E. Antonarakis, M. Burmeister,
A. Chakravarti, D. Nizetic, M. Ohki, and D. Patterson. Report of the fourth inter-
national workshop on human chromosome 21.Genomics, 18:735–745, 1993.

[66] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg.
Alignment of Whole Genomes.Nucleic Acids Research, 27:2369–2376, 1999.

[67] B. Dorohonceanu and C. G. Nevill-Manning. Accelerating protein classification us-
ing suffix trees. InProc. Intl. Conf. on Intelligent Systems for Molecular Biology
ISMB00, pages 128–133, 2000.

[68] E. Dunning.Finding Structure In Text, Genome And Other Symbolic Sequences. PhD
thesis, Department of Cmputer Science, University of Sheffield, 1998.

[69] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Biological Sequence Analysis.
Probabilistic models of proteins and nucleic acids.CUP, 1998.

[70] R. Durbin and J. T. Mieg. A C. elegans Database, 1991.http://www.acedb.org.

[71] B. Eckel. Thinking in Java. Prentice-Hall PTR, 1998.

[72] M.B. Eisen, n P.T. Spellma, P.O. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns.Proc Natl Acad Sci U S A, 95:14863–8, 1998.

250

[73] T. Eki, M. Abe, K. Furuya, I. Ahmad, N. Fujishima, H. Kishida, A. Shiratori,
T. Onozaki, K. Yokoyama, D. Le Paslier, D. Cohen, F. Hanaoka, and Y. Murakami.
A long-range physical map of human Chromosome 21q22.1 band from the YAC con-
tinuum. Mammalian Genome, 7:303–311, 1996.

[74] A.J. Enright and C.A. Ouzounis. Functional associations of proteins in entire
genomes by means of exhaustive detection of gene fusion.Genome Biology, 2(9),
2001. http://genomebiology.com/2001/2/9/research/0034.

[75] D. Ensor and I. Stevenson.Oracle8 Design Tips. O’Reilly & Associates, Inc., 1997.

[76] T. Etzold, A. Ulyanov, and P. Argos. SRS: Information retrieval system for molecular
biology data banks.Methods in Enzymology, 266:114–128, 1996.

[77] B. Ewing and P. Green. Base-calling of automated sequencer traces using Phred. II.
Error probabilities.Genome Res, 8(3):186–94, 1998.

[78] B. Ewing, L. Hillier, M.C. Wendl, and P. Green. Base-calling of automated sequencer
traces using Phred. I. Accuracy assessment.Genome Res, 8(3):175–85, 1998.

[79] M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the memory bottlenect
in suffix tree construction. InFOCS: IEEE Symposium on Foundations of Computer
Science (FOCS), 1998.

[80] L. Fernando, B. Seibel, and S. Lifschitz. A Genome Databases Framework. InDEXA
2001, pages 319–329, 2001.

[81] P. Ferragina and R. Grossi. The string B-tree: a new data structure for string search
in external memory and its applications.Journal of the ACM, 46(2):236–280, March
1999.

[82] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
IEEE, editor,41st Annual Symposium on Foundations of Computer Science: pro-
ceedings: 12–14 November, 2000, Redondo Beach, California, pages 390–398, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. IEEE Computer
Society Press.

[83] R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R.
Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, J.M. Merrick, K. McKenney,
G. Sutton, W. FitzHugh, C. Fields, J. D. Gocayne, J. Scott, R. Shirley, L.-I. Liu,
A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phillips, T. Spriggs, E. Hedblom,
M. D. Cotton, T. R. Utterback, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C.
Brandon, L. D. Fine, J. L. Fritchman, J. L. Fuhrmann, N. S. M. Geoghagen, C. L.
Gnehm, L. A. McDonald, K. V. Small, C. M. Fraser, H. O. Smith, and J. C. Ven-
ter. Whole-genome random sequencing and assembly of Haemophilus influenzae
Rd. Science, 269(5223):496–512, 1995.

[84] L. Florea, G. Hartzell, Z. Zhang, G. Rubin, and W. Miller. A computer program for
aligning a cdna sequence with a genomic dna sequence.Genome Research, 8:967–
974, 1998.

251

[85] I. Foster and C. Kesselman (eds.).The Grid: Blueprint for a new Computing Infras-
tructure. Morgan Kaufmann Publishers, 1998.

[86] William B. Frakes and R. Baeza-Yates.Information Retrieval Data Structures and
Algorithms.Prentice Hall, 1992.

[87] H. Fraser. Genome Annotation and Comparison System, M.Res. Dissertation, Uni-
versity of Glasgow, Institute of Biomedical and Life Sciences and Department of
Computing Science, 2000.

[88] K. Gardiner, S. Graw, H. Ichikawa, M. Ohki, A. Joetham, P. Gervy, I. Chumakov,
and D. Patterson. Yac analysis and minimal tiling path construction for chromosome
21q. Somat. Cell Mol. Genet., pages 399–414, 1995.

[89] S. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: a unifying view
of linear-time suffix tree construction.Algorithmica, 19(3):331–353, 1997.

[90] D. Gilbert. Readseq sequence conversion program, 1999. http://bimas.cit.nih.gov/-
molbio/readseq/.

[91] R. Goldman and J. Widom. Approximate DataGuides. InProceedings of the Work-
shop on Query Processing for Semistructured Data and Non-Standard Data Formats,
1999.

[92] G. H. Gonnet.Handbook of Algorithms and Data Structures. Addison-Wesley, New
York, 1 edition, 1984.

[93] J. Gosling, B. Joy, G. Steele, and G. Brancha.The Java Language Specification.
Addison-Wesley, 2000.

[94] O. Gotoh. An improved algorithm for matching biological sequences.J. Mol. Biol.,
162:705–708, 1982.

[95] E. Grant. A Microarray Database. Master’s thesis, Department of Computing Sci-
ence, University of Glasgow, 2001.

[96] S.L. Graw, K. Gardiner, K. Halljohnson, I. Hart, A. Joetham, K. Walton, D. Donald-
son, and D. Patterson. Molecular analysis and breakpoint definition of a set of human
chromosome 21 somatic cell hybrids.Somat. Cell Mol. Genet., pages 415–428, 1995.

[97] A. Grigoriev, A. Levin, and H. Lehrach. A distributed environment for physical map
construction.Bioinformatics, 14(3):252–258, 1998.

[98] J. Groet et al. Bacterial contig map of the 21q11 region associated with Alzheimer’s
disease and abnormal myelopoiesis in Down syndrome.Genome Research, 8:385–
98, 1998.

[99] D. Gusfield. Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, 1997.

[100] C. G. Hamilton. Recovery Management for Sphere: Recovering A Persistent Object
Store. Technical Report TR-1999-51, University of Glasgow, Department of Com-
puting Science, December 1999.

252

[101] N.J. Harding. Software to search a protein sequence database and automatically
update a local cache of data for a biological e-laboratory. Master’s thesis, Department
of Computing Science, University of Glasgow, 2001.

[102] E. Harley, A.J. Bonner, and N. Goodman. Revealing hidden interval graph structure
in STS-content data.Bioinformatics, 15(4):278–288, 1999.

[103] M. Hattori et al. The DNA sequence of human chromosome 21.Nature Genetics,
405:311–319, 2000.

[104] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc Natl Acad Sci U S A, 89(22):10915–9, 1992.

[105] T. Hildmann et al. A contiguous 3-Mb sequence-ready map in the S3-MX region on
21q22.2 based on high-throughput nonisotopic library screenings.Genome Research,
9:360–72, 1999.

[106] D.W. Hood, M.E. Deadman, T. Allen, H. Masoud, M. A Masoud, J.R. Brisson,
R. Fleischmann, J.C. Venter, J.C. Richards, and E.R. Moxon. Use of the complete
genome sequence information of Haemophilus influenzae strain Rd to investigate
lipopolysaccharide biosynthesis.Mol Microbiol, 22(5):951–65, 1996.

[107] A.L. Hosking and J. Chen. PM3: An Orthogonally Persistent Systems Programming
Language - Design, Implementation, Performance.Proceedings VLDB99, 1999.

[108] R.A. Hoskins et al. A BAC-based physical map of the major autosomes of Drosophila
melanogaster.Science, 287:2271–4, 2000.

[109] X. Huang and W. Miller. A Time-Efficient, Linear-Space Local Similarity Algorithm.
Advances in Applied Mathematics, 12:337–357, 1991.

[110] D.A. Huffman. A method for the construction of minimim redundancy codes.Proc.of
the IRE, 40, September 1952.

[111] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and G. Zhou. Declarative
Workflows that Support Easy Modification and Dynamic Browsing. InInternational
Joint Conference on Work Activities Coordination and Collaboration (WACC) 1999,
pages 69–78, 1999.http://www-db.research.bell-labs.com/project/ vortex/index.html.

[112] K. Humphreys, G. Demetriou, and R. Gaizauskas. Two Applications of Information
Extraction to Biological Science Journal Articles: Enzyme Interactions and Protein
Structures. InProceedings of the Pacific Symposium on Biocomputing (PSB-2000),
Honolulu, Hawaii, USA, January 4-9, pages 505–516, 2000.

[113] E. Hunt. PJama Stores and Suffix Tree Indexing for Bioinformatics Applica-
tions, 2000. 10th PhD Workshop at ECOOP’00, http://www.inf.elte.hu/�phdws/-
timetable.html.

[114] E. Hunt and M. Atkinson. Design and Implementation of a Genetics Database using
Java and Orthogonal Persistence, August 3-4 1998. Poster at Objects in Bioinformat-
ics, Cambridge, Hinxton, 1998.

253

[115] E. Hunt and M. Atkinson. Design and Implementation of a Genetics Database using
Java and Orthogonal Persistence, June25-26 1998. Poster at the BBSCRC Workshop:
Technologies for Functional Genomics, Warwick 1998.

[116] E. Hunt and M. Atkinson. PJama: Databases of Indexed Sequence and Map-
ping Data, April26-28 2000. Poster at Genes, Proteins and Computers Conference,
Chester College of Higher Education.

[117] E. Hunt, M. Atkinson, and R. Irving. Indexing the whole genome, 2001. Poster and
oral presentation at Workshop 9 (Genome Informatics) at Human Genome Meet-
ing 2001 (HGM2001), April 19-22, 2001, Edinburgh, http://dcs.gla.ac.uk/˜ela/HGM-
abstract.html.

[118] E. Hunt, M. Atkinson, R.W. Irving, I. Darroch, and D. Leader. Visual data explo-
ration and editing using Java, 1999. Poster at the Conference on Datamining in
Bioinformatics, Towardsin silico Biology, Hinxton, Cambridge, 10-12 November
1999.

[119] E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large biological
sequences. InProc. 27th Conf. on Very Large Databases, pages 139–148. Morgan
Kaufmann, 2001.

[120] E. Hunt, R. W. Irving, and M. Atkinson. Persistent Suffix Trees and Suf-
fix Binary Search Trees as DNA Sequence Indexes. Technical report, Univer-
sity of Glasgow, Department of Computing Science, October 2000. TR-2000-63,
http://www.dcs.gla.ac.uk/�ela.

[121] E. Hunt, H. Lehrach, and M-L. Yaspo. Physical map integration using a relational
database: the example of the Human Chromosome 21 DB, 2000. Unpublished
manuscript, reproduced in Appendix A.

[122] E. Hunt, M-L. Yaspo, I. Szulzedsky, M. Nguyen, X. Kong, J. O’Brian, and
H. Lehrach. Creating an integrated Chromosome 21 map using ACEDB and OR-
ACLE, 1997. Poster, Chromosome 21 Workshop, Berlin, 1997.

[123] H. Ichikawa, F. Hosoda, Y. Arai, K. Shimizu, M. Ohira, and M. Ohki. A noti re-
striction map of the entire long arm of human chromosome 21.Nature Genetics,
4:361–366, 1993.

[124] Y. Ioannidis and V. Poosala. Histogram-based approximation of set-valued query-
answers. InProceedings of the 25th International Conference on Very Large Data
Bases (VLDB ’99), pages 174–185, San Francisco, September 1999. Morgan Kauf-
mann.

[125] R.W. Irving and L. Love. The Suffix Binary Search Tree and Suffix AVL Tree.
Technical Report TR-2000-54, University of Glasgow, Department of Comput-
ing Science, 2000. http://www.dcs.gla.ac.uk/research/algorithms/sbst/publications/-
SBSTreport.ps.

[126] R.W. Irving and L. Love. Suffix Binary Search Trees and Suffix Arrays. Techni-
cal Report TR-2001-82, University of Glasgow, Department of Computing Science,
2001. http://www.dcs.gla.ac.uk/research/algorithms/sbst/publications/SAreport.ps.

254

[127] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective multi-dimensional index-
ing for strings. InProceedings of the ACM SIGMOD Conference on Management of
Data, pages 403–414, 2000.

[128] R. Japp. First Year Report, July 2001. Department of Computing Science, University
of Glasgow.

[129] T.K. Jenssen, A. Laegreid, J. Komorowski, and E. Hovig. A literature network of
human genes for high-throughput analysis of gene expression.Nat Genet., 28(1):21–
28, 2001.

[130] A. Jones. A Database for Storing the Results of 2D-PAGE Experiments. Master’s
thesis, Department of Computing Science, University of Glasgow, 2001.

[131] T. Kahveci and A.K. Singh. An Efficient Index Structure for String Databases. In
VLDB’01, pages 351–360. Morgan and Kaufmann, 2001.

[132] R. Kanth. Indexing Medium-dimensionality Data in Oracle. InSIGMOD 1999, pages
521–522, 1999.

[133] W. J. Kent and D. Haussler. GigAssembler: An Algorithm for the Ini-
tial Assembly of the Human Genome Working Draft. Technical report, De-
partment of Biology and Howard Hughes Medical Institute, Department of
Computer Science, University of California at Santa Cruz, Santa Cruz, CA
95064 USA, 2000. Technical Report UCSC-CRL-00-17, December 27, 2000,
http://genome.ucsc.edu/goldenPath/algo.html.

[134] M. Knox. Genetic Map Browser. Master’s thesis, Department of Computing Science,
University of Glasgow, 1999.

[135] D. Knuth. The Art of Computer Programming, volume 3, Sorting and Searching.
Addison-Wesley, 1973.

[136] E.V. Koonin, R.L. Tatusov, and M.Y. Galperin. Beyond complete genomes: from
sequence to structure and function.Curr Opin Struct Biol, pages 355–63, 1998.
http://www.ncbi.nlm.nih.gov/COG/.

[137] R.N. Kostoff and R.A. DeMarco. Extracting information from the literature by text
mining. Anal Chem, 73(13):370A–378A, 2001.

[138] S. Kurtz. Reducing the space requirement of suffix trees.Software Practice and
Experience, 29:1149–1171, 1999.

[139] S. Kurtz and C. Schleiermacher. REPuter: fast computation of maximal repeats in
complete genomes.Bioinformatics, pages 426–427, 1999.

[140] N. J. Larsson.Structures of String Matching and Data Compression.PhD thesis,
Department of Computer Science, Lund University, 1999.

[141] C. Letondal. Pise, a tool to generate Web interfaces for Molecular Biology programs.
http://www-alt.pasteur.fr/�letondal/Pise/.

255

[142] V. I. Levenstein. Binary codes capable of correcting insertions and reversals.Sov.
Phys. Dokl., 10:707–10, 1966.

[143] B. Lewis, B. Mathiske, and N. Gafter. Architecture of the PEVM: A High-
Performance Orthogonally Persistent Java Virtual Machine. InProceedings of the
Nineth International Workshop on Persistent Object Systems, LNCS 2135, pages 19–
34. Springer-Verlag, September 2000.

[144] K. Loney and G. Koch.Oracle 8i: The Complete Reference. Osborne McGraw-Hill,
2000.

[145] A. Louis, E. Ollivier, J-C. Aude, and J-L. Risler. Massive Sequence Comparisons as
a Help in Annotating Genomic Sequences.Genome Research, 11, 2001. June 12th
2001, published online in advance of paper publication.

[146] N.M. Luscombe, D. Greenbaum, and M. Gerstein. What is bioinformatics? A pro-
posed definition and overview of the field.Methods Inf Med, 40(4):346–58, 2001.

[147] M.G. Maass. Linear Bidirectional On-Line Construction of Affix Trees. In R. Gi-
ancarlo and Sankoff D., editors,Proceedings of the 11th Annual Symposium on
Combinatorial Pattern Matching, CPM 2000, LNCS 1848, pages 320–334. Springer-
Verlag, 2000.

[148] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, October 1993.

[149] L. Marsan and M-F. Sagot. Extracting structured motifs using a suffix tree – Al-
gorithms and application to promoter consensus identification. InProceedings of
the fourth annual international conference on Computational molecular biology RE-
COMB00, 2000. to appear.

[150] G.T. Marth, I. Korf, M.D. Yandell, R.T. Yeh, Z. Gu, H. Zakeri, N.O. Stitziel,
L. Hillier, P.Y. Kwok, and W.R. Gish. A general approach to single-nucleotide poly-
morphism discovery.Nat Genet, 23(4):452–6, 1999.

[151] S.M. Maurer, R.B. Firestone, and C.R. Scriver. Science’s neglected legacy.Nature,
405:117–120, 2000.

[152] R. McCool.The Common Gateway Interface. NCSA, 1.1 edition, 1994.

[153] E.M. McCreight. A space-economic suffix tree construction algorithm.Journal of
the A.C.M., 23(2):262–272, April 1976.

[154] R. McNaughton. Elementary Computability, Formal Languages, and Automata.
Prentice-Hall, 1982.

[155] G.P. McSorley. Design and Implementation of Improvements to the Sphere System,
October 2000. manuscript.

[156] H.W. Mewes and K. Heumann. Genome Analysis: Pattern Search in Biological
Macromolecules. InLNCS, volume 937, pages 261–285, 1995.

256

[157] C. Miller, J. Gurd, and A. Brass. A RAPID algorithm for sequence database com-
parisons: application to the identification of vector contamination in the EMBL
databases.Bioinformatics, 15:111–121, 1999.

[158] W. Miller. Comparison of genomic dna sequences: solved and unsolved problems.
Bioinformatics, 17(5):391–397, 2001.

[159] T. Milo and S. Zohar. Using Schema Matching to Simplify Heterogeneous Data
Translation. InProc. 24th VLDB Conf., pages 122–133, 1998.

[160] K. Monostori, A. Zaslavsky, and H. Schmidt. Suffix Vector: Space- and Time-
Efficient Alternative to Suffix Trees. InProceedings of the Twenty-Fifth Australasian
Computer Science Conference (ACSC2002), 2002. to appear.

[161] D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded in
alphanumeric.Jrnl. A.C.M., 15(4):514–534, October 1968.

[162] D. W. Mount. Bioinformatics. Sequence and Genome Analysis.Cold Spring Harbor
Laboratory Press, 2001.

[163] J. I. Munro and V. Raman. Succinct representation of balanced parentheses, static
trees and planar graphs. In38th Annual Symposium on Foundations of Computer
Science: October 20–22, 1997, Miami Beach, Florida, pages 118–126. IEEE Com-
puter Society Press, 1997.

[164] J. I. Munro, V. Raman, and S.S. Rao. Space Efficient Suffix Trees.Journal of
Algorithms, 39:205–222, 2001.

[165] E.W. Myers et al. A whole-genome assembly of drosophila.Science, 287:2196–
2204, 2000.

[166] http://www.mysql.com/.

[167] P. Nadkarni. Mapmerge: merge genomic maps.Bioinformatics, 14(4):310–316,
1998.

[168] G. Navarro. A Guided Tour to Approximate String Matching.ACM Computing
Surveys, 33(1):31–88, 2000.

[169] G. Navarro and R. Baeza-Yates. A practicalq-gram index for text retrieval allowing
errors.CLEI Electonic Journal, 1(2), 1998.

[170] G. Navarro and R. Baeza-Yates. A new indexing method for approximate string
matching. In M. Crochemore and M. Paterson, editors,Proceedings of the 10th An-
nual Symposium on Combinatorial Pattern Matching, number 1645 in Lecture Notes
in Computer Science, pages 163–185, Warwick University, UK, 1999. Springer-
Verlag, Berlin.

[171] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing Text with Approximate
q-grams. In Giancarlo R. and Sankoff D., editors,Combinatorial Pattern Matching
2000, 11th Annual Symposium, LNCS 1848, pages 350–365. Springer, 2000.

257

[172] D. Nizetic, L. Gellen, R.M.J. Hamvas, R. Mott, A. Grigoriev, R. Vatcheva, G. Ze-
hetner, M-L. Yaspo, A. Dutriaux, C. Lopes, J. Delabar, C. Van Broeckhoven, M.C.
Potier, and H. Lehrach. An integrated yac-overlap and cosmid-pocket map of the
human chromosome 21.Hum. Mol. Genet., 3:759–770, 1994.

[173] Object Protocol Method.http://gizmo.lbl.gov/opm.html.

[174] I. Ounis and M. Pasca. Modeling, indexing and retrieving images using conceptual
graphs. InProceedings of the 9th DEXA International Conference on Database and
EXpert Systems Applications, pages 226–239, Vienna, Austria, August 1998.

[175] P. Buneman and A. Deutsch and W. Fan and H. Liefke and A. Sahuguet and W.C.
Tan. Beyond XML Query Languages. InQuery Language Workshop (QL’98), Nov
1998.

[176] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.
Proc Natl Acad Sci U S A, 85:2444–8, 1988.

[177] P.A. Pevzner.Computational Molecular Biology: An Algorithmic Approach. The
MIT Press, Cambridge, MA, 2000.

[178] T. Printezis. Management of Long-Running High-Performance Persistent Object
Stores. PhD thesis, Department of Computing Science, University of Glasgow, 2000.

[179] T. Printezis and M. P. Atkinson. An Efficient Promotion Algorithm for Persistent
Object Systems, 2000. Submitted toSoftware – Practice and Experience.

[180] T. Printezis, M. P. Atkinson, L. Dayn`es, S. Spence, and P. Bailey. The Design of a
new Persistent Object Store for PJama. InProceedings of the Second International
Workshop on Persistence and Java (PJW2), Half Moon Bay, CA, USA, August 1997.

[181] K.D. Pruitt and D.R. Maglott. RefSeq and LocusLink: NCBI gene-centered re-
sources.Nucleic Acids Res, 29:137–140, 2001.

[182] M. R. Pullan, M. F. Watson, J.B. Kennedy, C. Raguenaud, and R. Hyman. The
Prometheus Taxonomic Model: a practical approach to representing multiple tax-
onomies.Taxon, 49:55–75, 2000.

[183] E. Pustułka-Hunt and D. Jack. Case study: Use of computer tools in locating a human
disease gene. Technical report, University of Glasgow, Department of Computing
Science, March 1999. TR-1999-28,http://www.dcs.gla.ac.uk/�ela.

[184] E. Pustułka-Hunt, D. Jack, G. F. Hogg, and D. G. Monckton. Case study: CGT repeat
expansion modeling using a Java applet and its PJama extension providing persistent
storage for genetics data. Technical report, University of Glasgow, Department of
Computing Science, April 1999. TR-1999-28,http://www.dcs.gla.ac.uk/�ela.

[185] S. Quicke. Gene machine.Computer Weekly, 2001. 11th January 2001.

[186] P. Riley. Suffix tree optimisation. Technical report, Department of Computing Sci-
ence, University of Glasgow, April 2001. Department of Computing Science, Uni-
versity of Glasgow.

258

[187] E. Rocke. Using Suffix Trees for Gapped Motif Discovery. In R. Giancarlo and
D. Sankoff, editors,CPM00, LNCS 1848, pages 335–349, Montr´eal, Canada, 2000.
Springer-Verlag, Berlin.

[188] P. Ross-Macdonald et al. Large-scale analysis of the yeast genome by transposon
tagging and gene disruption.Nature, 402:413–418, 1999.

[189] G. M. Rubin. Around the Genomes. The Drosophila Genome Project.Genome Re-
search, pages 71–79, 1996.http://www.fruitfly.org/publications/ Aroundthe Genomes.-
html.

[190] K. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice, M-A. Rajandream, and
B. Barrell. Artemis: sequence visualisation and annotation.Bioinformatics, 16:944–
945, 2000.

[191] .R Sachidanandam et al. A map of human genome sequence variation containing
1.42 million single nucleotide polymorphisms.Nature, 409(6822):928–33, 2001.

[192] Sahuguet, A. and Azavant, F. Looking at the Web through XML glasses. In
CoopIs’99, 1999.

[193] Sahuguet, A. and Azavant, F. Web Ecology: Recycling HTML pages as XML docu-
ments using W4F. InWebDB’99, 1999.

[194] J. W. Schmidt. Some high level language constructs for data of type relation.ACM
Transactions on Database Systems, 2(3):247–261, September 1977.

[195] G.D. Schuler. Sequence Mapping by Electronic PCR.Genome Res, 7(5):541–550,
1997.

[196] G.D. Schuler. Electronic PCR: bridging the gap between genome mapping and
genome sequencing.Trends Biotechnol, 16(11):456–9, 1998.

[197] G.D. Schuler et al. A Gene map of the Human Genome.Science, 274:540–558,
1996.

[198] J. Schultz, R.R. Copley, T. Doerks, C.P. Ponting, and P. Bork. SMART: a web-based
tool for the study of genetically mobile domains.Nucleic Acids Res., 28(1):231–4,
2000. http://smart.embl-heidelberg.de/.

[199] S. Schwartz, Z. Zhang, K.A. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs,
R. Hardison, and W. Miller. PipMaker–a web server for aligning two genomic DNA
sequences.Genome Res., 10(4):577–86, 2000.

[200] M. Senger. AppLab, CORBA-Java based Application Wrapper.http://-
industry.ebi.ac.uk/applab/.

[201] P. Seshadri. PREDATOR: A resource for database research.SIGMOD Record (ACM
Special Interest Group on Management of Data), 27(1):16–20, 1998.

259

[202] T. Shibuya. Generalization of a Suffix Tree for RNA Structural Pattern Matching.
In Algorithm theory — SWAT 2000: 7th Scandinavian Workshop on Algorithm The-
ory, Bergen, Norway, July 5–7, 2000: proceedings, volume 1851, pages 393–406.
Springer-Verlag Inc., 2000.

[203] T.A. Smith and M.S. Waterman. Identification of common molecular subsequences.
J. Mol. Biol., 284, 1981.

[204] C. Soderlund, S. Humphrey, A. Dunhum, and L. French. Contigs built with
fingerprints, markers and FPC V4.7.Genome Research, 10:1772–1787, 2000.
http://www.sanger.ac.uk/Software/fpc/.

[205] E. L. L Sonnhammer and R. Durbin. A workbench for large scale sequence homology
analysis.Comput. Applic. Biosci., 10:301–307, 1994.

[206] N. Spring and R. Wolski. Application level scheduling of gene sequence comparison
on metacomputers. InProceedings of the International Conference on Supercomput-
ing (ICS-98), pages 141–148, New York, July 13–17 1998. ACM press.

[207] J. Srinivasan et al. Extensible Indexing: A Framework for Integrating Domain-
Specific Indexing Schemes into Oracle8i. InICDE 2000, pages 91–100, 2000.

[208] R. Stevens and C. Miller. Wrapping and Interoperating Bioinformatics Resources
Using CORBA.Briefings in Bioinformatics, 2000. To appear.

[209] E.A Stewart et al. An STS-based radiation hybrid map of the human genome.
Genome Res., pages 422–433, 1997.

[210] N.E. Stone, Fan J.B, N. Willour, L.A. Pennacchio, J.A. Warrington, A. Hu, A. de la
Chapelle, A.E. Lehesjoki, D.R. Cox, and R.M. Myers. Construction of a 750-kb
bacterial clone contig and restriction map in the region of human chromosome 21
containing the progressive myoclonus epilepsy gene.Genome Res., pages 218–225,
1997.

[211] S. Sundara, Y. Hu, T. Chorma, and J. Srinivasan. Developing an Indexing Scheme
for XML Document Collections using the Oracle8i Extensibility Framework. In
VLDB’01, pages 701–702. Morgan and Kaufmann, 2001.

[212] W. Szpankowski. Asymptotic properties of data compression and suffix trees.
IEEETIT: IEEE Transactions on Information Theory, 39, 1993.

[213] I. Szulzewsky, E. Hunt, M. Nguyen, B. Korn, B. Roehrdanz, H. Lehrach, and M-L.
Yaspo. An integrated transcript map for the whole human chromosome 21, 1997.

[214] A. Tanner. Genetic Map Browser. Master’s thesis, Department of Computing Sci-
ence, University of Glasgow, 1999.

[215] J. Tarhio and E. Ukkonen. Boyer-Moore approach to approximate string matching. In
J. R. Gilbert and R. Karlsson, editors,Proceedings of the 2nd Scandinavian Workshop
on Algorithm Theory, LNCS 447, pages 348–359, 1990.

260

[216] R.L. Tatusov, D.A. Natale, I.V. Garkavtsev, T.A. Tatusova, U.T. Shankavaram, B.S.
Rao, B. Kiryutin, M.Y. Galperin, N.D. Fedorova, and E.V. Koonin. The cog database:
new developments in phylogenetic classification of proteins from complete genomes.
Nucleic Acids Res, pages 22–28, 2001.http://www.ncbi.nlm.nih.gov/COG/.

[217] T.A. Tatusova and T.L. Madden. BLAST 2 Sequences, a new tool for comparing
protein and nucleotide sequences.FEMS Microbiol Lett., 174(2):247–50, 1999.

[218] K. Thompson. Regular expression search algorithm.Comm. ACM, 11:419–422,
1968.

[219] W.F. Tichy. Should computer scientists experiment more? 16 reasons to avoid exper-
imentation.IEEE Computer, 31(5):32–40, 1998.

[220] W.F. Tichy, P. Lukowicz, L. Precht, and E.A. Heinz. Experimental Evaluation in
Computer Science: A Quantitative Study.Journal of Systems and Software, 28(1):9–
18, 1995.

[221] T. Troup. Integrated Map Display Applet. Master’s thesis, Department of Computing
Science, University of Glasgow, 1999.

[222] E. Ukkonen. Approximate string matching withq-grams and maximal matches.
Theor. Comput. Sci., 92(1):191–212, 1992.

[223] E. Ukkonen. Approximate string matching over suffix trees.CPM93, 684:228–242,
1993.

[224] E. Ukkonen. On-line construction of suffix-trees.Algorithmica, 14(3):249–260,
1995. TR A-1993-1, Department of Computing Science, University of Helsinki,
Finland.

[225] A. Vanet, L. Marsan, A. Labigne, and M-F. Sagot. Inferring Regulatory Elements
from a Whole genome. An Analysis ofHeliobacter pylori�80 Family of Promoter
Signals.J. Mol. Biol., 297:335–353, 2000.

[226] J. C. Venter et al. The Sequence of the Human Genome.Science, 291:1304–1351,
2001.

[227] J. Viksna and D. Gilbert. Pattern matching and pattern discovery algorithms for
protein topologies. InAlgorithms in Bioinformatics: First International Workshop,
WABI 2001 Proceedings, LNCS 2149, pages 98–111, 2001.

[228] L. Wall, R.L. Schwartz, T. Christiansen, and S. Potter.Programming Perl. Nutshell
Handbook. O’Reilly & Associates, 2nd edition, 1996.

[229] B.C. Warboys, P. Kawalek, I. Robertson, and R.M. Greenwood.Business Information
Systems: a Process Approach. McGraw-Hill, 1999.

[230] M. Waterman. Introduction to Computational Biology. Maps, sequences and
genomes. Chapman & Hall, 1995.

261

[231] M.S. Waterman and M. Eggert. A new algorithm for best subsequence align-
ments with application to tRNA–rRNA comparisons.Journal of Molecular Biology,
197:723–728, 1987.

[232] P. Weiner. Linear pattern matching algorithm. InProceedings of the 14th Annual
IEEE Symposium on Switching and Automata Theory, pages 1–11, Washington, DC,
1973.

[233] S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapner.JDBC(TM) API Tu-
torial and Reference, Second Edition: Universal Data Access for the Java(TM) 2
Platform (Java Series). Addison-Wesley, 1999.

[234] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufmann Publishers, Los Altos, CA
94022, USA, second edition, 1999.

[235] M-L. Yaspo, L. Gellen, R. Mott, B. Korn, D. Nizetic, A-M. Poustka, and H. Lehrach.
Model for a transcript map of human chromosome 21 - isolation of new coding se-
quences from exon and enriched cdna libraries.Hum. Mol. Genet., pages 1291–1304,
1995.

[236] M-L. Yaspo, I. Szulzewsky, E. Hunt, M. Nguyen, X. Kong, J. O’Brian, and
H. Lehrach. The Chromosome 21 transcript map - How far from completion with
more than 3000 potential coding sequences. Impact for the Molecular Genetics of
Down’s syndrome. 1997. Poster at the Genome Mapping and Sequencing Confer-
ence, Cold Spring Harbour, New York, 1997.

[237] B.E. Young. Suffix Binary Search Trees in Java. Master’s thesis, Department of
Computing Science, University of Glasgow, 2000.

[238] J. Zhang and T.L. Madden. PowerBLAST: a new network BLAST application for
interactive or automated sequence analysis and annotation.Genome Res, 7(6):649–
56, 1997.

[239] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A Greedy Algorithm for Aligning
DNA Sequences.Journal of Computational Biology, 7:203–214, 2000.

262

