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The symmetric solutions for boundary value
problems of second-order singular differential
equation

Li Xiguang

Abstract—In this paper, by constructing a special operator and
using fixed point index theorem of cone, we get the sufficient
conditions for symmetric positive solution of a class of nonlinear
singular boundary value problems with p-Laplace operator, which
improved and generalized the result of related paper.
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I. INTRODUCTION

HE boundary value problems with p-Laplace operator

arises in a variety of applied mathematics and physics,
and they are widely applied in studying for non-newtonian
fluid mechanics, cosmological physics, plasma physics, and
theory of elasticity, etc. In recent years, some important results
have been obtained by a variety of method(see[1-4]). On the
other hand, the study for the symmetric and multiple solutions
to this problem is more and more active (see[5-6]). In paper
[5], Sun study for the problem

{ (u) +a(t)(t)f(t,u(t)) =0,t € (0,1)
u(0) = au(n) = u(l),

where « € (0,1),7n € (0, %], by using spectrum theory, Sun
get the existence of symmetric and multiple solution. But when
p # 2, ¢p(u) is nonlinear, so the method of the paper [5] is
not suitable to p-laplace operator. In paper [6], Tian and Liu
study for the problem

{ (6p()) +a(t)(t)f(t, u(t) = 0,t € (0,1)
u(0) = au(n) = u(1),

where ¢(s) is p-Laplace operator. Motivated by paper [5,6], we
consider the existence of solution for the following problems:

(ép() + ha(t)f (u,0) = 0,

(6p(v") + ha(t)g(u) =0, (1)
u(0) = yu(n) = u(1),
v(0) = yv(n) = v(1),

where ¢ € (0,1),7 €
operator, i.e. ¢p(s) =
then ()" = ¢,
Compare with above paper, our method is different. By
constructing a new operator, and using fixed point index
theorem, we get the sufficient condition of the existence of

(0,1),m € (0, 3], ¢(s) is a p-Laplace
|s[P~2s,p > 1. Obviously, if £+ =1,
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symmetric solution, which improved and generalized the result
of paper [5,6,7].

In this paper, we always suppose that the following condi-
tions hold:

(H) f € C([Ov +00) X [07 +00), [07 +00)),9 €
C([0,+00), [0, +00)).

(HQ) h; € C’((O,l),[O,—i—oo)),hz(t) = hL(l — t),t €
(0,1), for any subinterval of (0,1), h;(t) # 0, and
1
/ hi(t)dt < +o0(i = 1,2).
0
(Hs) There exists « € (0, 1], such that hminf glu ) =400
UuU——+00 UT
and hm+1nf fu, l))) > 0 hold uniformly to v € R™.
(Hy) There exists 8 €  (0,400), such that
: g(u . (u,v)
lim sup = 0 and limsup =1 < +oo hold
u—0t ﬁ v—0t+ U p—1)B
uniformly to v € R™.
(Hs) There exists n € (0,1], such that lim énf gguz =
u— u

400 and lim inf f(u,)

v—0Tt ’U( Dn
(He¢) f(u,v) and g(u) are nondecreasing with re-

spect to u and v, and there eX|sts R > 0, such that
s / ouka (9))ds (R / Gulk())ds x g(R)) <

R, where k;(s) = /2 hi(r)dr,i =1,2.

> 0 hold uniformly to v € R™.

S
For convenience, we list the following definitions and lem-
mas:

Definition 1.1 If u(t) = u(l —¢),¢ € [0, 1], we call u(t)
is symmetric in [0, 1].
Definition 1.2 If (u,v) is a positive solution of problem

(1), and w, v is symmetric in [0, 1], we call (u,v) is symmetric
positive solution of problem (1).

Definition 1.3 If u(A; + (1 — N)t2) > Au(ty) + (1 —
Mu(te), we call u(t) is concave in [0, 1].

Let £ = (C]0,1], define the norm ||u|| = rn[gui lu(t)],

te|o,

obviously (E,|].]|) is a Banach space.

Let K = {u € EJu(t) > 0,u(t) is a symmetric concave
function, ¢ € [0,1]}, then K is a cone in E. By (Hy), (Ha),

the solution of problem (1) is equivalent to the solution of
system of equation (2).
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[ ] * ) Fule),
2 [Cot [ ) ). oanas
u(t) = T 5%

[ o

= [T ou [ s u(e).o())ar)as

v(T))dT)ds+

T),v(T))dr)ds+

= | (7)g(u(r))dr)
oy ={ OSt=2
[ o[ natrigtutrynyas
2 [Cou [ marlgtutrynas
1oper
@)
We define T: K — E
/0 ba [ ha(r) flulr),v(r))dr)ds+
2 [Caul [ M), oinpna
run =1 °5$'53
| o[ s, veparass
= [Mou [T st o)
% S tOS 17 s
3)
where

ﬁ/onaﬁq(/s%hz( Yg(u(r))dr)ds,0 < t %

7 3 1
= [ o[ magturanas. 5 <<
(4)

Obviously Tu € E, it is easy to show if T has fixed point w,
then by (4), problem (1) has a solution (u,v).

Lemma 11 Let (Hy),(H2), then T :
completely continuous.

Proof VYu € K, by (Hi),(H2), we can get (Tu
0,t € [0,1].

, bql ihz(T)g(u(r))dr 0
v (t) = /t L

byl / ha(r)g(u(r))dr),

N}

K — K 'is

)(t) =

t <

)

IN N~

<
1<t 1
2— Y

International Scholarly and Scientific Research & Innovation 7(1) 2013

correspondingly (¢, (v')) = —ha(t)g(u) < 0,0 <t < 1, S0

v is concave in [0, 1].
Next we show v is symmetric in [0, 1].
When t € [0,4],1 -t € [1,1], s0

1-1) = / ol / 2(7)g(u(r))dr)ds-+

- 'v/ ¢q(/% T))dT)ds
- [ e atristutryiryiss

= W/ ¢q(/ ho(T 7))dT)ds
= o(t).
Similarly, we have v(1 — t) o(t),t € [3,1]. So v is a

symmetric concave function in [0, 1].

1

(Tu) (t) =

s0 (¢p((Tw))) = —hi(t)f(u,v) < 0,0 <t <1,ieTuis
concave in [0, 1].

Next we show T'w is symmetric in [0, 1]. when ¢ € [0, 3],1—
tels,1], 50

(Tu)(1 - 1) :/11 (/9

1(7) f(u(r),v(r))dr)ds+

= ¢q / ) (u(r), v(r))dr)ds
- / o ()t o)y +
a2 / b4 / " ha(r)g(u(r), v(r))dr)ds

(Tu (t).

Similarly, we have (Tu)(1 —t) = (Tw)(t),t € [3,1]. s0 Tu
is concave in [0,1], so TK C K. On the other hand, let D is
a arbitrary bounded set of K, then there exist constant ¢ > 0,
such that D C {u € Kl|||u|| < ¢}. Let b = Ig[ax]g(u), SO

Yu € D, we have

Iell =1 [ 6 rariotutraryist

= Loif e
sﬁi;/ ¢q</ ha(r)dr)d

f(u v), S0 Yu € D, we have

(u(T))dr)ds|

Let L = max

u€lo,e],vel0
—| / ¢q</ b (7) £ (u(r), v(r))dr)ds
+ﬁ/n¢q/ ha(T)f(u(T),v(T))dr)ds, |

< 1’_;/0 %(/s ha(r)dr)ds.

[ Tul]
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I(Tw)|| = max{l%(/oé ha(7) f (u(7), v(T))dr)|;

64 / () (), 0(r))dr) }
< Lq71¢q(/: ha(7)dT).

By Arzela-Ascoli theorem, we know T'D is compact set.
By Lebesgue dominated convergence theorem, it is easy to
show T is continuous in K, so T : K — K is completely
continuous.

Lemma 1.2 Forany 0 < ¢ < 1,u € K, we have
(1) u(t) = [lullt(1 =), V¢ € [0,1];

(2) u(t) > e|ul, t € [e,1 — €. ( the proof is elementary,
we omit it.)

Lemma 1.3( see [8]) Let K is a cone of E in Banach
space, €2, and Q0 are open subsets in £, 8 € Q1,Q1 C Qy, and
T : KN(Q\) — K is a completely continuous operator,
and satisfy one of the following conditions:

W[Tz| < fal.ve € KOO, [Tl > Ve €
K (092,

@[Tz| > fol,ve € KOO, [Tl < Ve €
K0y,

then A has at least one fixed point in K ((Q2\1).

Lemma 1.4(see [9]) Let K isa cone of E in Banach space,
K, ={z € K| | = ||[<r} suppose A : K, — K is a
completely continuous, and satisfy Tx # z,Vx € 0K,

1) f | Tz|| < z,Vx € OK,, then i(T, K,, K) =1,

2) If |Tz|| > z,Vz € OK,, then i(T, K,, K) = 0.

Il. CONCLUSION

Theorem 2.1 Suppose (H1) — (H4) hold, then problem (1)
has at least one positive solution.

Proof By (Hs), there exist v and a sufficient large number
M > 0, such that

fu,v) > P P~V vy € RT v > M, (5)

glu) > C’g_lupT_l,Vu > M, (6)

! 1
where Cy = maw{(ﬁ/ ¢q(ka(s))ds)™,

2
( n

et [ o)
if w e KNOKy, by Lemma 2,

€N = M + 1, by (3)-(6) and theisimmetric property, for
any t € [e,1 — ¢

)o}. Let N = (M + 1)e2

. H > 2 _
min u(t) = e |full
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w0 = [ o / " ha(r)gu(r))dr)ds

L / b0 / )g(u(r))dr)ds
z / <z>q</ ha(r)g(u(r))dr)ds
R / bal / ha(7)g(u(r))dr)ds

ff’l/ ¢q/ ha (7) (u() 5= )dr ) ds
1001/ ¢q(/ ha(7))dr)ds(€2||ul|)=

Coy / 6ol / ho(7))dr)ds(M + 1)+
> M +f

~ | / bl / hn(r
= [ / (1) (u(r), v(7)dr)ds.|

=[] ha(7) F(u(r), o) dr)ds,

s [Cou [ e ebeanas,

= ol [ m(rnas

€

(G / bal / a (7)dr)ds)” € Ju]
/ bal / b (r)dr)ds)*Jul

so ||Tul| > ||ul],V € K Kn, by lemma 1.4, we can get

\ V

I \

Y%

Y

| \/

[Tl 7),v(7))dT)ds+

%

= vC§y“e
> 2[ul],

i(T,K(Kn, K) =0. (7)

On the other hand, by the second limit of H,, there exists a
sufficient small number r; € (0, 1) such that

Ciafl — su {f(u,v) ‘

+
S-DB uc R ve

(0,7]} < +o00.  (8)

ri(l—7)

[ o]
o 5

G2 [ o[ mranyany”

0 . -
H,, there exist a sufficient small number ro € (0, 1) such that

rol| =

Let € = min{
hi(T)dr)ds

g(u) < 1TV € (0,7, 9)
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Take r = min{ry,r2}, by (9), we can get
o) = /0 qsq(/ ha(7)g(u(r))dr)ds+

= / ¢q( / ha(7)g(u(r))dr)ds
/ bal / 2(7)g(u(r))dr)ds
= /0 ([ hatryaryasll

1

< T1+E <r,Vue KNOK,,s € [0,1].

IN

By (8), we can get

[Tl <| / b, / (7)), o(r))dr)ds

ﬁ;/ %(/ ha(r

= (bq(/ hi(7)dr)dsx

(= / b0 / ha(7)dr)ds)”ul

=GPl / bl / * by (7)dr)ds)Pul|
<|lul|,Vu € K OK,,t € [0,1].

so(r))dr)ds, |

So ||Tul| < ||ul|,Vu € K () OK,, by lemma 1.4, we get

(T, KK, K) = 1. (10)
By lemma 1.5, T has at least one fixed pointin K (K x\K,),
so problem (1) has at least a system positive solution.

Theorem 2.2 Suppose (H,),(Hx), (Hs), (Hs), (Hs)
hold, then problem (1) has at least two systems positive
solutions.

Proof By (Hs), there exists p > 0 and a sufficient small
number £ € (0, 1), such that

f(u,v) > PP wy e RY 0 < v <, (11)
gu) = (Co)* WO < u <€, (12)
where
n n
Co =242 (2" [ dulha(o)ds [ (@lha(s))"ds) !

since g € C(R+,R+), Eg(O) = 0, so there exists o € 0,¢)
such that Vu € [0, o], we have

g(u)g(li /¢q/ b (7)dr)ds) ",

this imply

o <o [ " ol / ® ha(r)g(u(r)dr)ds

; : (13)
< &,Vue KNOK,.
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By using Jensen inequality, 0 < ¢ < 1, and (11)-(13), we
can get

(Tu)(3) > 1% / q( / %hl(f)dT)dsx
(i V/ ¢q(/ ha(7)g(u(7))d7)ds)"
> gk v/ qzsq(/ ha(7)dr)dsx
(2 [l / ha(Plur))in) s

> 1222 [Mou( [ mryanyasx

/ (6l [ hatryaryyasial
= 2fjul|, Yu'e K NOK,.

N

So ||Tul| > ||ul|, Vu € K (0K, by lemma 1.4, we can get

i(T, K (Ko, K) =0. (14)

We can choose N > R > o, such that (7),(14) hold together.
On the other hand by (3),(4) and Hg we can get

(Tu)(t) < ﬁ/o ¢q(/§ ha (7) £ (ulr), o(r))dr)ds

< %/%%(/éhlmdﬂdsx

s / ou( [ mn(r)ar)dso(R)
< R,Vue K Kg,Vt €[0,1].
So for any u € K () KR, by lemma 1.4, we can get

i(T,K () Kr, K) =1.
By (7),(14),(15), we have

— (T, K N Kn, K) - i(T, K (K, K)
=—1.

(T, KN(Er\K,), K)
= i(T.K (KR, K) — i(T, K (| Ko, K)
=1

So T have at least two fixed points in K ((Kx \ Kr and
KN(Kr\ Ko, by (4), problem (1) has at least two system
solutions.
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