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Curve Cryptographic Processor over GF (2'%)
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Abstract—A new and highly efficient architecture for dliptic
curve scalar point multiplication which is optimized for a binary field
recommended by NIST and is well-suited for éliptic curve
cryptographic (ECC) applications is presented. To achieve the
maximum architectural and timing improvements we have
reorganized and reordered the critical path of the Lopez-Dahab scalar
point multiplication architecture such that logic structures are
implemented in paralel and operations in the critical path are
diverted to noncritical paths. With G=41, the proposed design is
capable of performing a field multiplication over the extension field
with degree 163 in 11.92 us with the maximum achievabl e frequency
of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the
chip area is occupied, where G is the digit size of the underlying
digit-serial finite field multiplier.

Keywor ds—Elliptic Curve Cryptography, FPGA implementation,
Scalar point multiplication

|. INTRODUCTION

LLIPTIC CURVE CRYPTOGRAPHY (ECC) is a public

key cryptography system superior to the well-known RSA
cryptography: for the same key size, it gives a higher security
level than RSA [1, 2]. Intuitively, there are numerous
advantages of using field-programmable gate-array (FPGA)
technology to implement in hardware the computationally
intensive operations needed for ECC. These advantages are
comprehensively studied and listed by Wollinger, et. a. in [3].
In particular, performance, cost efficiency, and the ability to
easily update the cryptographic algorithm in fielded devices
are very attractive for hardware implementations. Several
recent FPGA-based hardware implementations of ECC have
achieved high-performance throughput and efficiency. In this
work we present a new architecture as well as an efficient
ECC FPGA implementation over GF(2'%®) that has
considerable advantages compared to other implementations
as regards to speed and area. The proposed architecture is
based on a modified Lopez-Dahab elliptic curve point
multiplication algorithm [4] in which we have reorganized and
reordered the data path carefully to achieve maximum
performance and efficiency. As we know, the efficiency of an
algorithm is measured by the scarce resources it consumes.
Typically the measure used is time, but sometimes other
measures such as space and number of processors are also
considered. Our basic strategy for architectural timing
improvement is to reorganize the critical path such that logic
structures are implemented in paralel. Usually, this technique
is used whenever a function that currently evaluates through a
serial string of logic can be broken up and evaluated in
parald.
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By using a modified field multiplier and two squarer
modules for separating the paths in which squaring is repeated
severa times we have designed an efficient architecture for
the Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) [5].
In the design of the ECC processor, we have separated
sequentialy executed operations into paralel operations and
have carefully reordered paths to divert operations in the
critica path to noncritical paths in order to minimize the
combinatoria delay of the critical path. The architecture of the
ECC processor has been designed in such a way that the
calculations of point addition are separated and are performed
independent of the key which in turn considerably reduces the
processing delay. The results we obtained show that by using
the mentioned optimization techniques and by implementing a
modified G-bit digit seria finite-field multiplier, with G = 41
our proposed design is able to compute GF(2'%%) dliptic curve
scalar point multiplication operations in 11.92 ps with the
maximum achievable frequency of 251 MHz on Xilinx Virtex-
4 (XC4VLX200) while 19606 dlices or 22% of the chip areais
occupied which makes the design suitable for high speed
applications. The organization of the article is as follows: In
Section 2, a brief introduction of the mathematica background
of ECC is presented. In Section 3, the agorithm optimization
decomposition in paralel and resource occupation for
implementation of the modular arithmetic logic unit and the
finite field arithmetic units in hardware are detailed. In Section
4 the proposed architecture for ECC processor isillustrated. In
section 5, the implementation results and performance
obtained are compared with those in other published works.
Finally, in the conclusions we summarize the results of our
discussions.

II.MATHEMATICAL BACKGROUND

A. Mathematical Background

It has been turned out that the form of cubic equation
appropriate for éliptic curve cryptographic applications which
has been recommended by NIST is[1, 6]

y2+xy = x>+ ax?+ b (mod P(x)) )

where it is understood that the variables x and y and the
coefficients a and b are elements of GF(2™) and calculations
are performed in GF(2"). Let us consider the finite field
GF(2'%®) generated using the irreducible polynomial
P(x)= x93 +x"+x%+x3+1l. This is a NIST
recommended field for ECC applications. An éliptic curve
group over GF(2™) consists of the points on the corresponding
elliptic curve, together with a point at infinity, 0. The set of
points that satisfy the Eqg. (1) together with the element O
forms an addition Abelian group with respect to the dliptic

point addition operation. O serves as the additive identity.
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Thus,0 = -0 and for any poinP onthe curveP + 0 = P and

P + (-P) = 0. It can be shown that a finite Abelian group can

be defined based on the &gt (a,b), provided thab # 0. The
rules for addition can be stated as follows. FbpaintsP, Q
€ E,m(a,b).

1)P+0=P.

2) If P=(xp,yp), then —P + (xp,yp) = O. The point
(xp, xptyp) is the negative aP, denoted asP

3) f P=(xp,yp)and Q = (xQ,yQ) with P # @ and
P #—Q,thenR=P+Q = (xz,Yr) IS

determined by the following rules:

xg =+ A+ x4+ x5+ a
Yr=A(xp + Xxg) +Xg + Yp

)

Yot Yp

xq+ xp

4) If P = (xp,yp) thenR = 2P = (xg,yz) iS determined by
the following rules:

xg= A+ 1+a
Yr =xp+ (A+ Dxg

whered =

3)

where

Y3

A=xp o
B. Elliptic Curve Cryptography
It has been shown that the points on an elliptrvewan be
represented using either two or three coordindtesffine-
coordinate representation, a finite point &{GF(2") is
specified by two coordinates y £ GF(2" satisfying Eqg. (2)
and (3). We can make use of the concept of a pgiregeplane

over the fieldGF(2™ [2]. In this way, one can represent a

point using three rather than two coordinates. Thgven a
point P with affine-coordinate representatiany there exists
a corresponding projective-coordinate represemtaioy and
Z such thatP(x;y) = P(X;Y;Z).As a means of avoiding the
expensive field inversion operation, it is more vament to
work with Lopez-Dahab (LD) projective coordinatehigh is
highly attractive for hardware implementatiorihe Lopez-
Dahab algorithm is shown in Fig. 1.

INPUT: k= (ke1, - - - K, ko)z with ki-1= 1,P = (xe, yp) € E(F2").
OUTPUT:kP.
1. Xy Xp, Zye—1, Xoe—xp +b, Zy—x%. {Compute P2P)}
2. Fori fromt -2 downto O do
2.1 Ifk, = 1 then
Te—Z4, Zy—(X1Zo + XoZ1)?, Xy— Xp Z3 + Xy XoT Zo.
TeXg, Xo—Xo* +bZ*, Zo—T 22,2
2.2 Else
Te—Zs, Zo—(X1Zo + XoZ1)?, Xo— Xp Zot X XoZy T .
TeXu, Xee=Xo* +b2Z7, 2T 222,
3. Xz—X41/Z;.
4. Yo X BXIZ)[(Xat+ X Z)(Ket X Z)+ (xp+Y)(Z1 Z)I( %o
ZiZ)) " + e
5. Return Xg, ys)

Fig. 1 The Lopez-Dahab scalar point multiplicatower GF(2™) [4]
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[1l. HARDWARE ARCHITECTURESFOR FINITE FIELD
OPERATIONSOVER GF(2")
A.Finite Field Reduction
Assuming that we have already computed the product
polynomialD(x)= A(X)B(x)and we want to obtain the modular
product ofC(x) such that

C(x)=D(x) mod P(x) (4)

Recall that the polynomial produ€t and the modular product;
have2m-1andm; coordinates, respectively, i.e.,

D = [dym-2 dam—3, -
C=[Cm-1,Cm—z, -

’ dll d(]]!

Aoty Aoy oo
, €1, Col; 5)

One of the most efficient approaches for hardware
implementation is reduction in finite fields usinfast
reduction algorithm corresponding to the field pagnial.

Fig. 2 represents the implementation of the redacthodulo
P(x) used in this article. It has been assumed that the
maximum degree ob(x) is equal t0162+G in which the
sentences with degre#63 <i<162+G are mappedo the
sentences with degrée 163.

Input: D = [di62+6,d161+6 - » d1, dol,
P(x) =x% +x7 +x% +x3 +1;

Output: C= [C162 1 C161 -+ » CerO];
if G=0 then
C —D;
else
[c162 - Cc] < [di62-G/ - dol;
[cg-1,-:C0] <O

fori from 1 toG do

Cii1 < Cio1 x0T dygzqi1;

C34i—1 < C34i—1XOT dig34i—1;

Coti-1 < Cori-1X0T dig34i-1;

C74ic1 < C74i-1 XOT dygzpiq;
Return C;

Fig. 2 Reduction algorithm faf (x) = D(x) mod P(x).

B.Finite Field Multiplication

Field multiplication is by far the most costly dtetic
operation which directly affects the working frequg and
speed of the ECC processor [2]. One can make adspea
trade-off by using a serial-parallel strategy, ifieh the
multiplication of two arbitrary field elements is@mplished
by using a procedure inspired in the well-known itdig
serial/parallel (LSD) finite field multipliers. Ithis work, we
have designed LSD multiplier directly at digit-lévBased on
[7], LSD multiplication algorithms are classifieds deast
significant digit (LSD) first and most significadigit (MSD)
first algorithms. It has been shown that the LSBtfalgorithm
consumes fewer gates and has shorter critical gatipared
with the MSD first algorithm. Various approachevédeen
proposed for efficient implementation of the LSD Itiplier.
With digit sizeG, the total number of digits iGF (2™) will be

n= [m/G].

Assumed = Y74 a;a) andB = Y7L by’ such that
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G-1
[ bg.ivja’ 0<isn-2
j=0
B; = {m—l—G(n—l) (6)
l Z bG*H_ja'j i=n—1
j=0

C =AxBmodP(x) = Y] ca

BoA + B, (Aa® mod f(x)) + B, (Aa’ - a® mod P(x))

- ( +Bn_1 (A“G*("_Z) -a® mod P(x)) ) mod P(x) (7)

The LSD algorithm is represented in Fig. 3.

Input: AB € GF(2")
Output: C € GF(2™), C= AB over GF(2")
Set: A9=2,D%=0,n = [/]
for i from1tondo
1) A® = AGDa6 mod P(x),
2) DW = 401D, B, + pG-1

Where
AD =yt A}(i)af
D® = yme6-24DqJ and
5 = 20 bouirja? 0<i<n-2
i Z;lgl—c*(n—l) bG*i+jaj i=n—1
end for

3) Return € = D™ mod P(x)

Fig. 3 The LSD multiplication algorithm [ 7]

Consider the two-step classical multiplication in GF(2™)
which involves in a polynomia multiplication and a
reduction modulo an irreducible polynomial. The product of
the polynomias A(x) and B(X), D(X)=AX)xB(x), is a
polynomial with maximum degree 2m—2 and can be written
asfollows.

( k
Z aibk_i;k=0,"‘,m—1
i=0

-]

2m-2
kz ) Ak—ir(m-1)bi—m-1; k =m, -, 2m — 2
i

®)

We implemented the above scheme in a matrix form. Thus,
we put A in a three-section multiplicand matrix. The upper
part is a lower triangular submatrix. The middle part is a
(m—-G+1)x G submatrix. The lower part is an upper
triangular submatrix.
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dy (1] 1] ]

a s @ il

A A = L ]
Th Oy # "
b P

dg g - L ]

1 £ i
Ty Oga - [ (S AR | [ Aot

i e ey (9)
L Ouf  fmz [
i it Tl T2
3 i

] 1t = il a4

By converting Eq. (8) into matrix form Eq. (10), the G"
term of polynomia D(X), dg, can be expressed as Eq. (10).
dg = ag_1bo + ag_1by + agbg_4 (10)
where G is the digit size of the underlying LSD multiplier.
Asitisseenin Fig. 3, there are three steps for implementing

the LSD algorithm. Steps 1 and 2 of the LSD multiplier asis
represented in Eq. (11) can beimplemented in parallél.

AD = AGD 6 mod P(x)
p® = AG-D p_ 4 pl-D

(11

Step 1 of the LSD a gorithm reduces m+ G bits to m bits and
step 2 shows the partia products. The final result is obtained
in step 3 in which m+G-1 bits are reduced to m bits. The
implementation architecture for different stages of the LSD
multiplier is depicted in Fig. 4. Step 1 is performed by the | ft
side of Fig. 4, step 2 is performed by the multiplication
function and step 3 is performed by theright side of Fig. 4.

C.Finite-Field Multiplicative Inversion

Based on Fermat's Little Theorem (FLT) and using an
ingenious rearrangement of the required field operations, the
Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) was
presented in [5]. The main advantage of ITMIA algorithm in
comparison with the Extended Euclidian Algorithm is that it
does not require a separate inversion module. When
computing the multiplicative inverse using ITIMA algorithm,
81 squaring must be iteratively performed in the algorithm’'s
addition chain. These iterative computations are done
sequentialy and therefore further parallelism is not possible
[2]. Now, to design an efficient multiplicative inversion block
based on the ITMIA, it is necessary to think how to reduce its
critical path. In other word, the critical path of the multiplier
and the critical path of the inversion block should be aong
each other. If we use only one sguarer module in theinversion
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A’-(m-l:ll] A(m-1:0)

Bi(m-1:0)
| /-<a— inic inic
| <& shift_right |D-bit shift regislcr]:: «I:ir: right
_V B (D-1:0)
I m-bit register | 3
i Y Y Y
D-1 A m-1:0) L/ *
* y Multiplier Function| Reduction Function
Reduction Function
C'rtm+D-2:0} 0 l
Y .
v | f4— 1MIC Z (m-1:0)
I shift_right

| m+D-1 bit register |

C N m+D-2:0) Jv

Fig. 4 Block diagram of the LSD multiplier implented in this work

D.Finite-Field Multiplicative Inversion TABLE |

Based on Fermat's Little Theorem (FLT) and using an B(4) CORFFICIENTGENERATION FOR M1 =162[2]
ingenious rearrangement of the required field djpmrs, the , [ﬁu- (a)]z B < Bu (@) iy
Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA was bou | rule ° ¢ fu(d)=a
presented in [5]. The main advantage of ITMIA altfon in
comparison with the Extended Euclidian Algorithmthst it 0 1 - - By, (@) = a?' !
does not require a separate inversion module. When Ju0 .
computing the multiplicative inverse using ITIMAgalrithm, 12 2 [g,@] - Bu,@ Bu, (@ =a*™
81 squaring must be iteratively performed in thgosthm's 2 4 2 Bu@ Bu@ Bu, (@) = a®*1
addition chain. These iterative computations arenedo e
sequentially and therefore further parallelism @& possible 3 5 wutw [[fuz(a)]2 ’ * uy (@) By (@) = a?*~
[2]. Now, to design an efficient multiplicative iaxsion block Jus S0y
based on the ITMIA, it is necessary to think howeduce its 4 10 Zu [Bu, @] B, (@) bu(@) = a
critical path. In other word, the critical path e multiplier 5 20 2u, [Bo. @] - o, (@) Buy (@) = a2
and the critical path of the inversion block shoble along * *
each other. If we use only one squarer moduledrirthersion 6 40 24 [g, (@] - fu.(@) B, (@) = a7

block, this module should accomplish squaring lfer input of

2%6 80_
the inversion block, output of the multiplier andaits own 780 o [g @] Bu@ Bu, (@) = a* 7
output (for consecutive squaring) and therefore aneeforced 8 8l wtu, B, (a)]zuo By (@) Buy (@) = a2
to use a 3 to 1 multiplexer at the input of theasqu Output 7 . °
of this squarer together with a number of comboral gates 9 162 2ug [Bug @] - Buy (@ Bu, (@) = a1

such as AND, OR, and NOT gates are connected tonput
of the multiplier. As a result of such architectutiee critical
path will place on the squarer which will creatbattleneck
for reducing the clock cycle time. We can breals ttiitical Inversion_in
path by changing the architecture so that a 2 maultiplexer W s

is used in place of a 3 to 1 multiplexer at thet afsadding IR
another squarer in the inverter architecture. Tis¢ $quarer is P < ‘*
used for squaring at stages 1, 3, and 8 and atsthéofinal

stage squaring, while the other required squaiimdable | is . 7 ]
accomplished with the second squarer, since astdues 1, 3, _—

and 8,u, = 1 and only one squaring need to be performed

while at the other stages several squaring areopeedd (see

appendix for more details). The schematics of tasighed Fig. 5 Schematic of the designed architectureifoteffield
architecture for multiplicative inversion over fiei field multiplicative inversion

GF(2'%¥ is shown in Fig. 5.

Inversion_in

in_sq
mult_sq

e sq
muli_sq

r2

[ start
= sl
= clk

Squarerl

Multiplier

i

done

Squarer

Inversion_out
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IV. THE PROPOSEDARCHITECTURE FOR THEECCPROCESSOR

As was mentioned, the most
architectural timing improvements is to reorgaranel reorder
the critical path such that logic structures arplemented in
parallel and to divert operations in the criticatlp to a
noncritical path. This technique should be usednegker a
function that currently evaluates through a sesiing of
logic can be broken up and evaluated in parallédis
assumption can dramatically speed up the implertientaf a
large design. For the design of architecture forCEStalar
multiplier, two different parts are considered; thist part that
involves in calculations in the affine coordinaystem and the
other part that involves in the calculations fomwerting
projective coordinate to affine coordinates. Fopj@ctive
calculations, parts 1 and 2 of the LD algorithm @residered.
In the design of this part of the processor, thenlmer of
computational units is chosen in such a way th&wal
parallel computations to be performed. Henae, use three
field multipliers to implement the main loop of thaéorithm
in which point addition and doubling are carriedt.o80,
according to section 2.1 of the LD algorithm, a flist stage,
the three multiplicationsX;Z,, X,Z;, TZ, (T— X,) are
performed in parallel by using three multipliersigshown in
Fig. 6, and then, the three other multiplicatioms Z;,

X XoT Z, (T<2y), bZ§ are accomplished in parallel at the

second stage. Hence, the delay of each iteratiardaced
from six field multiplication delay to two field nftiplications.
For this part of the process¢computations in the projective
coordinates) we have used five squarers and tweradds is
shown in Fig. 6. Four squarers are used for comglﬂf, X
Z,* andX,* while the fifth squarer is used f6X,Z,+X,Z,)% In
addition, It is essential after the first field riplication to
save the result diX,Z;+X,Z,)* and &;*+bZ" in the registers

ty and t, respectively for the later calculations. The mosf,

important modules in the design of the scalar poiottiplier

processor are field multiplication, field inversiand field
squaring. The key point here is that the criticalhpmust be
placed on the longest path among these modulese Sire
inverter module was designed such that its critigath is
coincided with the multiplier's critical path andnee the
multiplier's path is larger than the squarer's pdtte critical
path need to be placed on the multiplier. Pleagieenthat if
resource sharing is used in implementing the fégjdarer, the
number of required computational elements will dase;
however, sincdor squaring of different values we aferced

to use multiplexers at the input of this computagiounit that
are controlled with conditional statements, thdical path
length will increase. To avoid long critical pathhe

architecture should be designed synchronous andising

combinational logic. In addition, in the design dfe

projective calculations, separate calculations hage been
performed for using the initial values of part 1 tbie LD

algorithm, since if further computational modules designed
for these calculations, the complexity of the catipath and
the amount of required area will increase. We caaida
additional or unnecessary calculations by usingutations of
part 2 of the algorithm for obtaining the resultis part 1.
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In the proposed design, calculations of part 1 neete

important  strategy tgperformed whenever the most significant bit of Key is 1.

So, whenk; = 1, if the values of Eq. (12) are used in the
calculations of part 2.1, then the required initialues of the
LD algorithm are obtained in accordance with paof the LD
algorithm.
Xp1, Z10, Xoe— Xp, Zo1 (12)
The results of the calculation in section 2.1 oé thD
algorithm are obtained as Eq. (13) by using theueslof
Eq. (13).

Xye— Xp, Zye—1, Xoe— Xp+D, Zpe— % (13)

As it is seen in Fig. 7, whenever the key bit isa@do 1, the
values of ‘1’, ‘0’, andxp are entered into the multiplexers to
connect to the appropriate inputs to make the tesimEgq.
(13). After designing the computational units fawojpctive
coordinates, its input and output ports should benected
together based on the key bits to complete thatiter in the
LD algorithm. When designing the architecture
calculations in the projective coordinate systenpant 2.1 of
the LD algorithm, to set up part 2.2 of the aldurit which
works with zero bits of the key, it is enough toapiX; andZ;

for

with X, andZ, respectively when the key bits change. So, we
need to use a 2 to 1 multiplexer that is controliétth the key
bits. Therefore, in order to avoid long criticaltipaanother
strategy should be considered. As it is seen frdma t
architecture of Fig. 7, in order to prevent furtlbtemplexity
when swappingX; and Z; with X, and Z,, the input-output
paths of point addition and doubling have been rs¢pd from
each other. The idea behind this subject is to echithe
outputs of point addition and doubling to the irguatf the
dder, independent of the values of the key.Bibs example,
if we consider the following point addition opemti for
ki =1, inputs to this operation akg, X,, Z; andZ, and outputs
are saved iiX; andZ;.
T2y, Zy— (XiZotXoZa)’, Xa— XoZi+XaXoTZ, (14)

When a key bit changes frokn= 1 to k; = 0, this change
will lead to change in the term¥;Z,+X,Z; and X;X,TZ.
However, since whenever the value of any key banges
only X; and Z; are swapped withX, and Z,, the terms
X1Zo+X5Z, and Xy X,TZ, will remain unchanged. So, the point
addition operation can be repeated in the itergtiaet of the
algorithm without involvements of the key bits aory after
the end of the loop, the registers are swapped edti other.
The point doubling operation fok, = 1 is performed in
accordance with Eq. (15).

TeXp, Xoe—Xo* +hZ*, Zp—T 22,2 (15)
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Add inZ, X,

IAdd in-X

Add in-X, Add inZ,

sei)  [seic) | seio)  |sen Sel(1)

Dob in-Z, Dob in-X;

star| start

reset

T

W—iniriul

Add outZ3

MUX initial

Add out-Xs

(S ¥
ipli e P ese s
done| Multiplierl 4-"“‘ dond Multiplier2 =] dond Multiplier3
- [ - -
Sel(
T
1= (0,0...0,1) Xp 0= (0,0...0)
$ i Y

| > register o)

1= (0,0..0,1)

MUX imitial initial

Dab out-Z |

Dob out-X;

Fig. 6 The architecture designed for the computatiopoint addition and point doubling in projeigoordinates of the LD
algorithm

This operation fotk, = 0 is done by swappin, and Z,

Dob out-X;  DoboutZ;, Addout-X; Addout-Z, X, Z,

. . . ‘ | B v, | | R S
with X; and Z; respectively. Therefore, output registers are [ 1 [tome | [t} [Roier }+° [Rogsier }° [Regiver 1+

swapped in order to provide proper inputs for thanip
doubling operation based on the key bits in theaitee part of
the LD algorithm. In order to realize that when tinéial
values are entered into the calculations and aléetaware of
the iterations of the LD algorithm based on the kéy, it is
necessary to combine the module designed in RigttBa key
shift register in a new structure. The aim of twsrk is that
the inputs and outputs of the architecture of Bigre properly
connected to each other when all values of the &ey
scanned. The new design is shown in Fig. 7. Therskpart
of the processor involves in calculations that eshv
projective coordinates to affine coordinates. Ibliwious from
the LD algorithm that parts 3 and 4 of this aldurit require
many calculations to be implemented. In additionstof the
calculations are performed in a sequential mangrossible
sequence of the instructions from standard Prejedt affine
coordinates is proposed in [2] in which only oneeirsion unit
is used for converting projective coordinates tdinaf

Add in-X; Add in-Z, Add in-X; Add in-Z; Dob in-X; Dob in-Z,

la— start
g Feset
le— clk
| imitial

Architecture designed in Fig . 10

L%{ Dob out-X, L Add out-Z,

Mlj/L kKm \.1]_\/ km
Xy X2

Fig. 7 Architecture of point addition and doubliikgration based on
the key bits

Dob out-Z;

km

zZ, Z

As was mentioned, in order to keep the criticahpat the
multiplier, we need to design this part of the aildpon with
combinational logic as much as possible. Anothesr@gch

coordinates. As it is seen form the LD algorithmy bfor the implementation is based on step 4 of thealdrithm

calculating %Z:Z,)*, another inversion,X;/Z;, can be

calculated using X6Z,X,)*(x-Z:Z,)*. In this approach, the

number of field inverters is reduced with the coSincrease
in the number of field multipliers. However, congiohg the
sequence of the algorithm and due to repeatedraéfeto
these multipliers, if we use several field multgp$ the length
of the critical path will increase. For implementirthis
algorithm, ten field multiplications should be pmrhed. In
addition, for performing twelfth to seventeenthpstewe need
to wait for the calculation ofxZ;Z,)™* and therefore a long
computational delay will be inevitable. As it isesefrom the
second part of the scalar multiplier processor Whiv/olves
in converting projective coordinates to affine atinates,
there are many computations that should be doneeséqlly.
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as itis seen in Eq. (16).

Ya— (et X/ Z0)[(Xe+XZa) (Xo+XeZo) +( Xo™+Yp) (21 Z2)]
(XpZ1Z5) ™t +yp (16)

There are two field inversions and five field mplittations
in Eq. (17). One way to implement the above functsto use
two field inverter and three parallel field muligd units.
However, this causes that these multipliers to rermaused
in other stages since the results of multiplicatiam the next
steps are dependent to the results of the prewtmps. This
subject will cause an unbreakable delay which foitdi
further speed up. Another design that leads to redfieient

scholar.waset.org/1307-6892/1102


http://waset.org/publication/Efficient-Hardware-Implementation-of-an-Elliptic-Curve-Cryptographic-Processor-Over-GF-(2-163)/1102
http://scholar.waset.org/1307-6892/1102

International Science Index, Computer and Information Engineering Vol:6, No:5, 2012 waset.org/Publication/1102

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:5, 2012

implementation is to entgZ;Z,)* in the square brackets of
Eq. (16). This will result in Eq. (17).

Y3 (%p +XAZ)[( X/ Zo+ Xp)( Kol Zo+ Xp)+(%p 2+Y)] (xp)'1(+ y;
17

Therefore, first we calculatg ™, Z,™* andxe " using three
parallel field inverters concurrently and then iempent five
required multiplications of Eq. (17) by using twaultipliers
that are implemented in parallel in three stagdso Afor this
part of calculations we also need five adder uritse final

calculations for converting projective coordinaties affine
coordinates. In order to decide how efficient aigless, we
Mbit

- .. . h, h; .

utilize the efficiency defined aTsw (=) as a figure of
Area slices .

defined as

merit, where Throughput is
and hardware area can be

working frequency XxNumber of Bits

Number of Cycles
defined as number of four inputs LUTs as well aBGlices.
Table 1l presents performance of the proposed scala
multiplier. The last column in this table shows tigorithmic
efficiency defined as throughput/area. It would b®re

value of variablex in affine coordinate system in accordanceccurate to use throughput/#slices, but slice courmre not

with part 2 of the LD algorithm ig;=X,/Z; for which we have

reported by the authors of some other designs.€efbrer, we

to calculateZ,* by using an inverter and then multiply thehave used throughput/#LUTs. In Table Ill, a numbkhigh

result byX;. SinceX;*Z, " is used for the next multiplication,

speed elliptic curve processors (ECP) are compartidthe

(Xo/Zy+xp)*(Xol Zo+%p), it is necessary to save the result oproposed one. As it is seen from table Ill, theppsed design

X.*Z,"%. However, saving this value in a register and gisin
in next clock cycles will increase the critical paffo avoid
this, this register should be eliminated. Sincéhinconversion
of coordinates, implementation of the multiplieava been
done in a parallel combinational manner (i.e.,
multiplications are performed in three stages ustag
multipliers), in the second stage of multiplicatithre result of
first multiplication will be lost. However, in thihird stage of
multiplication one of the multipliers is unused acould be
used for calculating;*Z,~*. So, the multiplicatiorX;*Z,™* is
repeated in the third stage to eliminate the needdving data
in this section of the processor. Finally, one led tmportant
steps that must be considered in the design o&isoalltiplier
is to select the word lengtls). Due to iterative calculations in
the projective coordinate system (part 2 of thedl§orithm),
fast performing of calculations is very importantthe design
of an efficient ECC processor. So, choosing lasgealues for
the multipliers used in the design of the firsttpaf the
processor (i.e., the multipliers in Fig. 7 or paijee
calculations) will be more appropriate. The wordgths that
were used in this part of the processor@s= 41. Since
calculations of the third and fourth part of the lalyorithm
are used only once at the end of the algorithmthack is no
iteration as part 2 of the algorithm, there is m®chto select

large values folG. Instead, since there are relatively a large

number of computational units in this part of theqessor, a

relatively small value foiG should be chosen to reduce the

required implementation area. The word’s lengthdusethis
part of the processor G,=11.

V. IMPLEMENTATION RESULTS

is more efficient than the other designs reportedhe open
literature expect one of the proposed schemestegpor [15].
Please note that although that design utilizes #4ir@2s less
LUT compared with our design, it is almost 4 tinmstswer

fivéhan our design witls = 41. The design proposed by Kim

et.al. in [19] is almost 15% faster than our deskut in
consumes 25% more resources than our implementation

The ECC processor was implemented using synthdsizaki

VHDL codes on Xilinx XC4VLX200. Performance of the
proposed scalar multiplication for is shown in &ll. The
proposed design completes one scalar point muwigifiin in
326 * (fm/G{])*+12 * ([m/G,])+1509 cycles. The number of
required clock cycles for ECC point multiplicationith
G; = 41 andG, =11 is 2993 cycles. The tern{ni/G;]”
indicates the number of cycles required to perféinite field
multiplication in part 2 of the LD algorithm or callations in
the projective coordinate system. The ternim/G,]”
indicates the number of cycles required to perféinite field
multiplication in parts 3 and 4 of the LD algorithor
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TABLE II
PERFORMANCE OF THE PROPOSED SCALAR MULTIPLIER
Freq. Time No. of Area Area -
G G (MHz)  (us) cCycles (Slices) (LuT) Ereiency
41 11 251.054 11.92 2993 19604 36727 372.1
TABLE 11l
PERFORMANCE OF THESCALAR MULTIPLIERS
Freq. Time Area Area .

Ref. FPGA (MHZ)  (us) (Slices) (LUT) Efficiency
[8] XCV400E 76.7 210 - 3002 265
[9] XCV2000E 66.4 144 20068 56

Vinexl|
[10] V8000 90.2 106 18079 44

18314
[11] XCV2600E 465 63 +24
RAMs

[12] XC2Vv60C-4 54 60 -

Virtex Il
[13] pro 30 100 280 8450

Virtex-4
[14] VLX200 1539 19.55 16209 26364 316
[15] XC2Vv2000 100 46.5 3416 7559 532
[16] XC2v6000 93.3 34.11 13376 2812 340

Virtex
[17] 2000E 66 75 10017 70
[18] Stratix Il 49
[19] XC4VLX80 143 10 24,363

VI. CONCLUSIONS

A high-performance ECC processor was implementatjus
FPGA technology. We used a careful parallel impletaigon
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strategy to reduce the critical path of the Itohyii’s Finite-

Field Inversion. In addition, in the design of tHeCC
processor, by using three parallel multiplier umitsl reducing
the number of unused cycles in each stage we rddiee
processor delay which is mainly related to the walions in
the projective coordinate system. Separation afitpaddubling
path from point addition path and using appropriet&al

values for the initial setup of the processor redldhe
complexity of the processor. The results show the
designed architecture can be well suited to thdicgijpns
that require high performance.
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