
 

 

  
Abstract—This work presents a fusion of Log Gabor Wavelet 

(LGW) and Maximum a Posteriori (MAP) estimator as a speech 
enhancement tool for acoustical background noise reduction. The 
probability density function (pdf) of the speech spectral amplitude is 
approximated by a Generalized Laplacian Distribution (GLD). 
Compared to earlier estimators the proposed method estimates the 
underlying statistical model more accurately by appropriately 
choosing the model parameters of GLD. Experimental results show 
that the proposed estimator yields a higher improvement in 
Segmental Signal-to-Noise Ratio (S-SNR) and lower Log-Spectral 
Distortion (LSD) in two different noisy environments compared to 
other estimators.  

 
Keywords—Speech Enhancement, Generalized Laplacian 

Distribution, Log Gabor Wavelet, Bayesian MAP Marginal 
Estimator.  

I. INTRODUCTION 
PEECH enhancement attempts to improve one or more 
perceptual aspects of voice communication systems when 

the signal is corrupted by noise.  
Among the one-channel approaches, the statistical spectral 

estimation methods [1] [2] are shown to be effective for the 
noise reduction and to produce less speech distortion [2]. The 
Gaussian modeling of speech and noise spectral components 
have been reported in the literatures and it was successfully 
combined with the Minimum Mean Square Error (MMSE) 
estimator in speech enhancement systems [2]. The Gaussian 
assumption is indeed true in the asymptotic case of large 
Discrete Fourier Transform (DFT) frames when the span of 
correlation of the signal under consideration is much shorter 
than the DFT frame size. In last decade, the number of 
research on non-Gaussian modeling of speech has been 
increased, where the approaches are carried out in different 
ways [3]–[7]. In [3], an implementation of Gaussian model 
based Ephraim-Malah filter was reported. This is achieved by 
spectral amplitude estimation based on the generalized gamma 
modeling of speech and MAP estimator. In [4], [5] authors 
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proposed MMSE spectral components estimation approaches 
using Laplacian or a special case of the gamma modeling of 
speech and noise spectrum. However, the estimation presented 
in [5] is given just for the particular cases of the gamma 
modeling, where the distribution parameters are fixed, and 
therefore it limits the application in general cases. Alternative 
solutions were explored in [6]–[9]. For instance, in [6] the 
authors approximated the pdf of the amplitude and phase of 
the DFT coefficients with a parametric function to derive a 
joint MAP estimator. Martin et al. also use the super-Gaussian 
speech priors for MMSE Estimation of Magnitude-Squared 
DFT Coefficients [7]. In [8], a new algorithm for statistical 
speech feature enhancement in the cepstral domain is 
presented. The algorithm exploits joint prior distributions (in 
the form of Gaussian mixture) in the clean speech model, 
which incorporate both the static and frame-differential 
dynamic cepstral parameters. A noncausal estimator for the a 
priori SNR and a corresponding noncausal speech 
enhancement algorithm is proposed in [9]. A Multiband 
Spectral subtraction with adjusting subtraction factor method 
is given in [10]. On the other hand E. Zavarehei et al. enhance 
the speech using Kalman Filtering for restoration of short time 
DFT trajectories [11].  

It is well known that the pdf of speech samples in the time 
domain and DFT domain is much better modeled by a 
Laplacian or a Gamma density rather than a Gaussian density 
[4], [5]. The proposed work presents a new speech 
enhancement algorithm, based on the decomposition of a 
noisy speech signal using LGW coefficients. A method to 
automatically determine the appropriate shrinkage rule from 
the statistics of the squared amplitude response is proposed 
that uses Bayesian MAP Marginal Model. The pdf of the 
speech spectral amplitude is modeled with a simple GLD, 
which allows a high approximation accuracy for Laplace 
distributed real and imaginary parts of the speech wavelet 
coefficients. The pdf of the noise spectral amplitude is 
modeled with a zero mean Gaussian distribution. The 
statistical model is designed so that it fits the distribution of 
the speech spectral amplitudes to improve the quality of the 
enhanced speech signal. The proposed method is compared 
against four different estimators for YOHO speech corpus and 
POLYCOST speech corpus in two different noisy 
environments. 
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II. PROPOSED FRAMEWORK 

A. Log Gabor Wavelet Scheme 
 

 
 

Fig. 1 Log Gabor Transfer functions viewed on linear and 
logarithmic frequency scales 

 
Gabor showed [12] how to represent time varying signals in 

terms of functions that are localized in both time and 
frequency. The LGW transform is used to obtain localized 
frequency information in a signal. To preserve such frequency 
information we must use non-orthogonal wavelets that are in 
symmetric/antisymmetric quadrature pairs. Here we follow the 
approach of Morlet et al. [13], but, rather than using Gabor 
filters, we prefer to use Logarithmic Gabor functions as 
suggested by Field [14]. These are filters having a Gaussian 
transfer function when viewed on the linear and logarithmic 
frequency scale (Fig. 1). Log Gabor filters allow arbitrarily 
large bandwidth filters to be constructed while still 
maintaining a zero DC component in the even-symmetric 
filter. A zero DC value cannot be maintained in Gabor 
functions for bandwidths over one octave. It has a frequency 
response described by:  

⎥
⎦

⎤
⎢
⎣

⎡ −
= 2

0

2
0

))/(log(2
))/(log(exp)(

fk
fffG                     (1) 

where, f0 is the filter’s centre frequency. To obtain constant 
shape ratio filters (i.e. filters that are all geometric scaling of 
some reference filter) the term k/f0 must also be held constant 
for varying f0. For example, a k/f0 value of 0.75 will result in a 
filter bandwidth of approximately one octave and a value of 
0.55 will result in a two-octave bandwidth. 

B. Importance of Log Gabor Wavelet 
The LGW is used to obtain localized frequency 

information. The use of the Wavelet Transform for frequency 
analysis was developed by Morlet et al. [13]. The basic idea 
behind wavelet analysis is to use a bank of filters to analyze 
the signal. The filters are all created from rescaling of the one 
wave shape, each scaling designed to pick out a particular 
band of frequencies from the signal being analyzed. An 
important point is that the scales of the filters vary 
geometrically, giving rise to a logarithmic frequency scale. 
Since we are interested in calculating local frequency in 
signals, we follow the approach of Morlet, that is, using 
wavelets based on complex valued Gabor functions - sine and 
cosine waves, each modulated by a Gaussian. Using two 
filters in quadrature enables one to calculate the squared 
amplitude of the signal for a particular frequency. 

The important aspect of Log Gabor function is that, unlike 

the Gabor function, the frequency response of the Log Gabor 
is symmetric on a log axis. Indeed, the log axis is the standard 
method for representing the frequency response. Gabor 
functions miss in this fit primarily because they fail to capture 
the relative symmetry on a log axis. The advantage of the Log 
Gabor is its use in which the bandwidths increase with 
frequency. With the constant bandwidths, the Gabor functions 
over-represent the low frequencies. In contrast, mapping the 
information into the Log Gabor spreads the information 
equally across the scales. At bandwidths of > 1 octave, the 
redundancy at the low frequencies becomes apparent. Since 
all the Gabor filters receive a significant and redundant input 
from the low frequencies, the responses represent a smaller 
fraction of the total energy. The frequency responses of the 
Log Gabor filter permits a more compact representation than 
the Gabor filter when the bandwidths are > 1 octave. 

 

 
 

Fig. 2 Three quadrature pairs of LGWs all tuned to the same 
frequency, but having different bandwidths 1, 2 and 3 octaves 

respectively 
 

C. Log Gabor filters in the Frequency Domain 
The Fig. 2 shows three quadrature pairs of log Gabor filters 

of different bandwidths all tuned to the same centre frequency. 
It can be noted that as bandwidth increases, the sharpness of 
the filter also increases. Therefore, one constraint might be 
imposed by the maximum sharpness of the filter that we can 
effectively represent and a useful objective might be to 
minimize the width of filters in order to get maximal 
localization of signal’s frequency information.  

In the frequency domain the even symmetric filter is 
represented by two real-valued log-Gaussian functions 
symmetrically placed on each side of the origin (Fig. 3(a)) and 
the odd-symmetric filter by two imaginary valued log-
Gaussian functions anti-symmetrically placed on each side of 
the origin (Fig. 3(b)). Exploiting the linearity of the Fourier 
Transform where FFT (A + B) = FFT (A) + FFT (B) we can 
do the following: Multiply the FFT of the odd-symmetric filter 
by i = √−1 (to make it real valued) and add it to the FFT of the 
even symmetric filter. The anti-symmetric function from the 
odd-symmetric filter will cancel out the corresponding 
symmetric function from the even-symmetric filter. This 
leaves a single function (multiplied by 2) on the positive side 
of the frequency spectrum. Thus, if we construct a filter in the 
frequency domain with a single log-Gabor function on the 
positive side of the frequency spectrum we can consider this 
filter to be the sum of the FFT of the even and odd symmetric 
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filters (with the odd symmetric filter multiplied by i). If we 
perform the convolution by multiplying this frequency domain 
filter by the FFT of the signal, we end up with the even-
symmetric convolution residing in the real part of the result 
and the odd-symmetric convolution residing in the imaginary 
part. 

 

 
 

Fig. 3 Log Gabor filter Transfer Functions 
 

D. Design & Specifications of Log Gabor Filter Bank 
The aim is to produce a filter bank that provides even 

coverage of the spectrum of the represented signal. This can 
be achieved by making the overlap of the filter transfer 
functions sufficiently large so that when one sums up the 
individual transfer functions the net result is an even coverage 
of the spectrum. Thus, every point in the spectrum ends up 
being represented equally in the final result. For 
computational reasons, this even coverage of the spectrum has 
to be achieved with a minimal number of filters. 

The second aim is to ensure that the outputs of the 
individual filters in the bank are as independent as possible. 
The whole aim of applying the filter bank is to obtain 
information about speech signal; if a filter’s outputs are highly 
correlated with those of its neighbors then we have an 
inefficient arrangement of filters that do not provide as much 
information as they should. To achieve independence of 
output, the filters should have minimal overlap of their 
transfer functions. Thus the transfer functions of our filters 
should have the minimal overlap necessary to achieve fairly 
even spectral coverage. The parameters are given below:  
1)   The Maximum frequency: The maximum frequency is set 
by the wavelength of the smallest scale filter. 
2)   The Minimum frequency: The minimum frequency is set 
by the wavelength of the largest scale filter. 
3)  The filter bandwidth: The filter bandwidth is set by 
specifying the ratio of the standard deviation of the Gaussian. 
4)  The scaling between centre frequencies of successive 
filters: Having set a filter bandwidth decides the scaling 
between centre frequencies of successive filters. 

The specifications of the Log Gabor Filter Bank are given 
in Table I. 

E. Signal Analysis by LGW 
The noisy time signal u(l) sampled at regular time intervals 

l · T is composed of clean speech x(l) and additive noise n(l): 
)()()( lnlxlu +=                                 (2) 

TABLE I 
SPECIFICATIONS OF LOG GABOR FILTER BANK 

 
 
 
where, u(l) is the observed noisy speech signal, x(l) is the 
original speech signal, and n(l) is additive noise, uncorrelated 
with the original speech signal x(l). Taking the Fast Fourier 
Transform (FFT) the noisy coefficient U(k) of frequency bin k 
consists of speech part X(k) and noise N(k): 
 

)()()( KNKXKU +=                         (3) 
 
with X = XRe + jXIm and N = NRe + jNIm, where, XRe = Re{X} 
and XIm = Im{X}. 

Analysis of noisy speech signal is done by multiplying the 
signal with each of the quadrature pairs of wavelets. If we let 
Me and Mo denote the even-symmetric (cosine) and odd-
symmetric (sine) wavelets at a scale, we can think of the 
responses of each quadrature pair of filters as forming a 
response vector: 
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The values fe
1 and fo

1 can be thought of as real and 
imaginary parts of complex valued frequency component. The 
squared amplitude of the transform at a given wavelet scale is 
given by: 
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We will have an array of these response vectors, one 

response vector for each scale of filter. These response vectors 
form the basis of our localized representation of the signal. 
We can see that an estimate of Fe can be formed by summing 
the even filter convolutions. Similarly, Fo can be estimated 
from the odd filter convolutions. 
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F. Bayesian MAP Marginal Model 
The equn (6) can be written in the following form: 

www NXU +=                                     (7) 

where, ∑=
c

cw UU is the noisy LGW coefficient, ∑=
c

cw XX  is 

the true speech LGW coefficient and ∑=
c

cw NN  is the noise 

LGW coefficient which is independent Gaussian. 
The classical MAP estimator for (7) is 

)|(maxarg)(ˆ
wwXww UXpUX

w

=                (8) 

Using Bayes rule, one gets 
)]()|([maxarg)(ˆ

wwwXww XpXUpUX
w

⋅=        (9) 

)]()([maxarg wwwX
XpXUp

w

⋅−=      

Therefore, these equations allow us to write this estimation 
in terms of the pdf of the noise (p(Nw)) and the pdf of the 
signal coefficient (p(Xw)). From the assumption on the noise, 
p(Nw) is zero mean Gaussian with variance σNw, i.e., 

⎟
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The pdf for speech wavelet coefficients have highly non-
Gaussian statistics and are modeled as a two parameter 
generalized Laplacian distribution (heavy tailed) 

⎟
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⎠
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where, {s, ρ} are the model parameters. The distribution is 
zero-mean and symmetric and the parameter {s, ρ} is directly 
related to the second and fourth moments. Specifically (after 
consultation with an integral table) one obtains 
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where, dtetx tx −∞ −∫=Γ
0

1)( the well known ‘gamma’ 

function. Given the sample variance and kurtosis of a 
histogram, we can solve for the two parameters of our model 
pdf. Typical values for ρ are in the range [0.5;1]. This method 
of model density estimation is simple and direct, but clearly 
suboptimal. The equn (11) can written as 
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where, Z(s, ρ)is the parameter-dependent normalization 
constant. The Z(s, ρ) can be written as 
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                     (14) 

The equn (13) can be rewritten as 
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TABLE II 
SUMMARY OF PROPOSED ALGORITHM 

 
 

 
The model parameter {s} can be formulated as 
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Now, we come back to the development of MAP estimator 

for GLD. Equation (9) is also equivalent to 
)}](log{)}|([log{maxarg)(ˆ

wwwXww XpXUpUX
w

+= (17) 

Let us define, f(Xw) = log(p(Xw)). By using equn (10), equn 
(17) becomes 
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This is equivalent to solving the following equation if p(Xw) 
is assumed to be strictly convex and differentiable. 
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From the above equn. (19) we can write 
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For different values of model parameter {ρ} starting from 
0.5 to 1, we can fit our model density and estimates the true 
speech coefficients. The Table II summarizes the proposed 
algorithm. 

III. DATABASE DESCRIPTION 

A. YOHO Database 
The YOHO database contains a large scale; high-quality 

speech corpus to support text-dependent speaker 
authentication research, such as is used in “secure access” 
technology. The data was collected in 1989 by ITT under a 
US Government contract to support Government secure 
access applications. A high-quality telephone handset (Shure 
XTH-383) was used to collect the speech; however, the 
speech was not passed through a telephone channel. YOHO 
was recorded in a fairly quiet office environment with low-
level office noise, fan noise, and occasional pages over a 
public address system. The phrases are randomized and 
prompted in a text-dependent speaker verification scenario 
using “combination lock” phrase syntax.  

 
TABLE III 

YOHO CORPUS DESCRIPTION 
no. of speakers  138 (106 M / 32 F)  

no. sessions/speaker  4 enrollments, 10 verifications  
Intersession interval  Days-month (3 days nominal)  

Type of speech  Prompted digit phrases  
Microphones  Fixed high-quality in handset  

Channels  3.8KHz/clean  
Acoustic environment  Office  

 

B. POLYCOST Database 
The POLYCOST corpus was collected under the COST 

250 European project. Most of the speech is non-native 
English with some speech in speaker’s native tongue covering 
13 European countries. The speech was collected digitally 
over international ISDN telephone lines. The different 
languages in this corpus allow for experimentation on the 
effect of language on speaker recognition performance. 

 
TABLE IV 

POLYCOST CORPUS DESCRIPTION 
no. of speakers  133 (74 M /59 F)  

no. sessions/speaker  > 5  
Intersession interval  Days-weeks  

Type of speech  Fixed and prompted digit strings, read 
sentences, free monologue  

Microphones  Variable telephone handsets  
Channels  Digital ISDN  

Acoustic environment  Home/office  
 

IV. PERFORMANCE EVALUATION 
The performance of the proposed Bayesian MAP marginal 

estimator is evaluated under two different noise conditions by 
computing the average improvement in the Segmental SNR 
(S-SNR) and Log Spectral Deviation (LSD) after enhancing 
noisy speech signals. Fig. 4 shows the coefficient histograms 
plotted in log domain for three different values of {ρ} (i.e., for 

ρ = 0.5, 0.6, 0.7) and fitted model densities (dashed lines). Fig. 
5 shows (numerically computed) Bayesian estimators for the 
model of equation (20), with three different values of the 
exponent ρ. As with the MAP estimators, smaller values of ρ 
produce a nonlinear shrinkage operator. In particular, for ρ = 
0.5 (which is well-matched to wavelet marginal such as those 
shown in Fig. 4). The performance results are averaged out 
using 10 different utterances of 50 different speakers, drawn 
from the YOHO speech database. Half of the utterances are 
from male speakers and half are from female speakers. The 
noise signals include stationary White Gaussian Noise (WGN) 
and non-stationary Speech Babble Noise (SBN), taken from 
the Noisex-92 database. The speech signals are sampled at 8 
kHz and degraded by the various noise types in the range [-
5,10] dB. The proposed speech enhancement algorithm is 
applied to the noisy speech signals. For comparison, the S-
SNR and LSD are calculated by Ephraim & Malah (referred 
as M-1), Martin’s Laplacian Prior (referred as M-2), Martin’s 
Gamma Prior (referred as M-3) and Lotter’s Super Gaussian 
Model (referred as M-4). Table V presents the results of the S-
SNR improvement and Table VI presents the results of the 
LSD calculation using the various estimators where incase of 
proposed estimator it is shown for three different values of 
{ρ}. The proposed estimator yields a higher improvement in 
the S-SNR and lower LSD scores than the earlier estimators 
under all tested environmental conditions thereby giving 
improved performance. 

 

 
 

Fig. 4 Coefficient histograms for a single wavelet subband plotted 
in the log domain. Also shown (dashed lines) are fitted model 

densities respectively 
 

 
 

Fig. 5 MAP estimators for the model given in equation (20), with 
three different exponents. Dashed line indicates the identity function 
 

From the Table V and VI it is clearly shown that our 
proposed systems outperform the other estimators. For WGN, 
the Proposed-1 model gives 1.01dB S-SNR improvement 
(averaged over all SNR levels), Proposed-2 model gives 
0.92dB improvement and Proposed-3 model gives 0.86dB 
improvement than Ephraim & Malah’s MMSE estimator (i.e. 
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M-1) which is considered as the baseline [6] of speech  
enhancement field whereas the Proposed-1 model gives 
0.41dB and Proposed-2 model gives 0.32dB improvement 
Proposed-3 model gives 0.23dB improvement than the closest 
Lotter & Vary’s Super-Gaussian estimator (i.e. M-4). Note 
that method M-4 always gives closest but poorer performance 
than the proposed methods in all the test experiments. In case 
of SBN, the Proposed-1 model gives 0.67dB, Proposed-2 
model gives 0.61dB and Proposed-3 model gives 0.57dB 
improvement than M-1 whereas the Proposed-1 model gives 
0.18dB, Proposed-2 model gives 0.12dB and Proposed-3 
model gives 0.08dB improvement than M-4. For LSD score, 
the proposed models (i.e. Proposed-1, Proposed-2 & 
Proposed-3) give 0.45, 0.38, 0.35 of lower LSD score than M-
1 and 0.25, 0.18, 0.15 of lower LSD score than M-4 for SBN 
contamination whereas for WGN contamination the proposed  
models give 0.50, 0.46 and 0.41 of lower LSD score than M-1 
and 0.23, 0.19, 0.14 of lower LSD score than M-4 in −5dB of 
SNR. The proposed models give better S-SNR improvement 
and lower LSD for every dB level as well as average S-SNR 

 
TABLE V 

SEGMENTAL SNR IMPROVEMENT FOR VARIOUS NOISE TYPES AND LEVELS, 
OBTAINED BY PROPOSED AND EARLIER ESTIMATORS FOR YOHO SPEECH 

CORPUS 
Input Seg. SNR(dB)  

Type of 
Noises  Used Methods  -5  0  5  10  

M - 1  8.34  6.12  5.13  3.07  
M - 2  8.36  6.55  5.26  3.21  
M - 3  8.55  6.71  5.33  3.65  
M - 4  8.86  6.81  5.54  3.82  

Proposed - 1 (ρ=0.5)  9.11  7.35  5.80  4.42  
Proposed - 2 (ρ=0.6)  9.05  7.23  5.71  4.35  

 
 
WGN  

Proposed - 3 (ρ=0.7)  8.97  7.11  5.67  4.21  
M - 1  6.92  5.02  3.89  2.72  
M - 2  7.07  5.33  3.97  2.87  
M - 3  7.13  5.54  4.08  3.07  
M - 4  7.33  5.82  4.14  3.21  

Proposed - 1 (ρ=0.5)  7.51  5.97  4.34  3.43  
Proposed - 2 (ρ=0.6)  7.46  5.90  4.28  3.37  

 
 
SBN  

Proposed - 3 (ρ=0.7)  7.42  5.88  4.23  3.31  
 

 
TABLE VI 

LOG SPECTRAL DISTORTION FOR VARIOUS NOISE TYPES AND LEVELS, 
OBTAINED BY PROPOSED AND EARLIER ESTIMATORS FOR YOHO SPEECH 

CORPUS 
Input Seg. SNR(dB)  Type of 

Noises  
Used Methods  

-5  0  5  10  
M - 1 4.86  3.88  2.96  2.23  
M - 2 4.80  3.75  2.87  2.13  
M - 3 4.71  3.67  2.80  2.06  
M - 4 4.59  3.55  2.66  1.99  

Proposed - 1 (ρ=0.5) 4.36  3.27  2.48  1.79  
Proposed – 2 (ρ=0.6) 4.40  3.32  2.54  1.84  

 
 
WGN  

Proposed – 3 (ρ=0.7) 4.45  3.39  2.58  1.88  
M - 1 4.97  3.92  3.05  2.44  
M - 2 4.91  3.87  2.91  2.39  
M - 3 4.85  3.80  2.82  2.33  
M - 4 4.77  3.75  2.78  2.25  

Proposed – 1 (ρ=0.5) 4.52  3.55  2.57  2.08  
Proposed – 2 (ρ=0.6) 4.59  3.60  2.62  2.12  

 
 
SBN  

Proposed – 3 (ρ=0.7) 4.62  3.65  2.67  2.17  

improvement over all dB levels than competing estimators. 
The Table VII and VIII presents Segmental SNR (S-SNR) 

improvement and Log Spectral Distortion (LSD) score 
obtained from earlier as well as proposed estimator in case of 
POLYCOST Corpus. The performance results are again 
averaged out using 10 different utterances of 50 different 
speakers, half of the utterances are from male speakers and 
half are from female speakers. From the Table VII and VIII it 
is noted that our proposed systems outperform the other 
estimators in this speech corpus also. The proposed models 
give better S-SNR improvement and lower LSD for every dB 
level as well as for average S-SNR improvement over all dB 
levels. For WGN, the Proposed-1 model gives 0.55dB SSNR 
improvement (averaged over all SNR level), Proposed-2 
model gives 0.50dB improvement and Proposed-3 model 
gives 0.44dB improvement than M-1 whereas the Proposed-1 
model gives 0.20dB, Proposed-2 model gives 0.15dB and 
Proposed- 3 model gives 0.12dB improvement than M-4. In 
case of SBN also the Proposed-1 model gives 0.44dB, 
Proposed-2 model gives 0.42dB improvement and Proposed-3 
model gives 0.40dB improvement than M-1 whereas the 
Proposed-1 model gives 0.17dB, Proposed-2 model gives 
0.14dB and Proposed- 3 model gives 0.09dB improvement 
than M-4. For LSD score estimation, the proposed models (i.e. 
Proposed-1, Proposed- 2 & Proposed-3) give 0.70, 0.66, 0.65 
of lower LSD score than M-1 and 0.22, 0.18, 0.17 of lower 
LSD score than M-4 for WGN contamination whereas for 
SBN contamination the proposed models give 0.63, 0.58 and 
0.56 of lower LSD score than M-1 and 0.25, 0.20, 0.18 of 
lower LSD score than M-4 in −5dB of SNR. The proposed 
systems showed that the use of our first model (i.e. ρ=0.5) 
gives better results with small improvement on performance 
over Proposed-2 (i.e. ρ=0.6) and Proposed-3 (i.e. ρ=0.7) 
Model for both S-SNR and LSD. It is also noted that the 
results for S-SNR and LSD scores are poorer in case of 
POLYCOST speech corpus than YOHO may be due to the 
fact that the first one (i.e. POLYCOST) is telephone based and 
second one (i.e. YOHO) is microphone based speech corpus. 

 
TABLE VII 

SEGMENTAL SNR IMPROVEMENT FOR VARIOUS NOISE TYPES AND LEVELS, 
OBTAINED BY PROPOSED AND EARLIER ESTIMATORS FOR POLYCOST 

SPEECH CORPUS 
Input Seg. SNR(dB)  Type of 

Noises  
Used Methods  

-5  0  5  10  
M - 1 7.24 5.32 4.43 2.97 
M - 2 7.35 5.65 4.55 3.11 
M - 3 7.45 5.70 4.63 3.19 
M - 4 7.57 5.85 4.69 3.25 

Proposed - 1 (ρ=0.5) 7.99 6.00 4.77 3.40 
Proposed – 2 (ρ=0.6) 7.87 5.95 4.76 3.38 

 
 
WGN  

Proposed – 3 (ρ=0.7) 7.76 5.90 4.73 3.36 
M - 1 6.02 4.72 3.21 2.35 
M - 2 6.09 4.77 3.29 2.40 
M - 3 6.15 4.84 3.35 2.49 
M - 4 6.30 4.99 3.50 2.61 

Proposed – 1 (ρ=0.5) 6.46 5.15 3.68 2.80 
Proposed – 2 (ρ=0.6) 6.43 5.13 3.65 2.78 

 
 
SBN  

Proposed – 3 (ρ=0.7) 6.41 5.10 3.63 2.77 
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TABLE VIII 
LOG SPECTRAL DISTORTION FOR VARIOUS NOISE TYPES AND LEVELS, 
OBTAINED BY PROPOSED AND EARLIER ESTIMATORS FOR POLYCOST 

SPEECH CORPUS 
Input Seg. SNR(dB)  Type of 

Noises  
Used Methods  

-5  0  5  10  
M - 1 5.18  4.08  3.17  2.35  
M - 2 4.98  3.89  2.95  2.26  
M - 3 4.77  3.71  2.87  2.19  
M - 4 4.70  3.62  2.80  2.07  

Proposed - 1 (ρ=0.5) 4.48  3.40  2.61  1.89  
Proposed – 2 (ρ=0.6) 4.52  3.45  2.66  1.91  

 
 
WGN  

Proposed – 3 (ρ=0.7) 4.53  3.47  2.67  1.92  
M - 1 5.23  4.11  3.25  2.40  
M - 2 5.11  4.02  3.16  2.31  
M - 3 4.97  3.89  2.91  2.22  
M - 4 4.85  3.79  2.81  2.10  

Proposed – 1 (ρ=0.5) 4.60  3.55  2.63  1.91  
Proposed – 2 (ρ=0.6) 4.65  3.60  2.70  1.99  

 
 
SBN  

Proposed – 3 (ρ=0.7) 4.67  3.62  2.72  2.01  
 

V. CONCLUSION 
The proposed work presents a GLD to model the statistics 

of Log Gabor wavelet coefficients and a simple estimator is 
derived from the pdfs using Bayesian MAP Marginal 
Estimation. The statistical model is designed and adopted to 
fit the distribution of the speech spectral amplitudes to 
improve the quality of the enhanced speech signal. The 
underlying statistical model can be adjusted to the demands of 
the specific noise reduction system. The automatic 
determination of threshold overcomes a problem that has 
plagued wavelet denoising schemes in the past. The results 
show superiority of the proposed method over a broad range 
of noise contaminations  
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